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The formalism for bound-state form factors in a three-dimensional relativistic theory is
used to expose the theoretical limitations of recent work on meson exchange currents. The
pair excitation and recoil emission currents used in phenomenological calculations are found
to have little theoretical support. The constraints imposed by the Ward identity are exam-
ined and the singularity structure of the form factor in rel.ativistic and nonrelativistic the-
ories is compared.
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I. INTRODUCTION

Starting with meson-exchange current contribu-
tions to magnetic moments' of two and three nu-
cleon systems, the electromagnetic processes
for which exchange effects have been calculated
have increased to include radiative neutron cap-
ture, ' electrodisintegration, ' and elastic elec-
tron scattering. While a certain amount of
success has been claimed for these calculations
they must, however, be regarded as phenomeno-
logical in nature. Standard practice has been to
construct a two-body current operator from a few
Feynman diagrams usually selected by arguments
of interaction range. The two-body operator is
then evaluated between wave functions the dynami-
cal content of which is only tenuously related to
the dynamical origin of the two-body currents.
While such a phenomenology may be successful
when the calculated exchange corrections are
small, its success must not be allowed to obscure
the need for a more critical examination of its
underlying theoretical basis now that quantitative
predictions are being sought for processes, such
as elastic electron scattering at large momentum
transfer, ' where the exchange corrections domi-
nate.

In this paper the theory of electromagnetic
bound state form factors is examined from the
point of view of a three-dimensional relativistic
approach. The primary theme of the discussion
is that the nucleon-nucleon dynamics, nucleon
structure, and the bound state electromagnetic
current operator are all intimately connected and
that to go beyond a phenomenological description
of the bound state form factor requires a consis-

tent theoretical treatment of all aspects of the
problem. While such a statement of principle may
be generally accepted, we show in this paper how
an examination of the relativistic formalism ex-
poses the limitations of present exchange current
phenomenology.

The starting point of the discussion will be the
Bethe -Salpeter equation. For nucleon-nucleon
scattering, procedures for reducing this four-di-
mensional equation to a three-dimensional rela-
tivistic equation ' are known. Although the re-
duction is not unique, it is possible to improve
systematically the agreement of the three-dimen-
sional equations with the Bethe-Salpeter equation
and the importance of relativistic effects in low-
energy nucleon-nucleon scattering has been in-
vestigated, at least in simple models. "'" Such
numerical experiments have not been carried out
for the bound state problem. To do numerical cal-
culations in sufficiently realistic models where
the hadronic and electromagnetic interactions
have been treated consistently is probably not
feasible at present. However a new, more theo-
retically grounded phenomenology may be a realis-
tic goal.

The formal expression for the current operator
to be evaluated between Bethe-Salpeter bound state
wave functions in a fully relativistic theory was
given by Mandelstam" and, as it is likely to be
unfamiliar, it is reviewed in Sec. IIA. Due to
the requirement of gauge invariance, part of the
current operator is dictated by the choice of ker-
nel used in the Bethe-Salpeter equation for the
wave function. This intimate connection between
the current operator and the bound state dynamics
is a feature of the relativistic theory that is not
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conta, ined in nonrelativistic approaches based on
phenome nological local pote ntials. Clearly, any
effort to include relativistic effects in the current
operator will be highly suspect if the same rela-
tivistic effects cannot be built into the bound state
dynamics. The current operator may also have
contributions which a,re gauge invariant indepen-
dent of the interaction kernel. It is expected that
these currents require physical input (parameters)
not already contained in the kernel and they may be
treated phenomenologically as, for example, in
Ref. 6.

In Sec. IIB the reduction procedure developed
by Gross' '" for the two-body wave function and
form factor is outlined. The main feature of this
reduction is that the only contribution to the rela-
tive-energy integration appearing in the relativistic
theory which is retained is that which constrains
one of the constituents of the two-body system to
be on its mass shell. The other constituent is
off mass shell and may propagate with positive or
negative frequency. Gross has derived coupled
equations for wave functions containing positive
and negative energy off-shell particles and it is
pointed out in Sec. IIB that the pair excitation
current" of conventional exchange current cal-
culations can be interpreted as a perturbative
solution of the coupled equations.

Some new theoretical results arising from the
formalism of Sec. II are given in See. III. The
coupling of a photon with a constituent particle
satisfies the Ward identity, and in Sec. IIIA it is
shown that in a three-dimensional theory with
relativistic kinematics the off-shell constituents
must have both positive and negative energy pro-
pagators if the Ward identity is to be preserved.
In the nonrelativistic limit the Bethe-Salpeter and
Gross equations go over to the Lippmann-Schwinger
equation. By considering the nonrelativistic limit
of the various time orderings for the bosons ex-
changed by the bound state constituents in a rela-
tivistic theory it is shown in Sec. IIIB that the re-
coil emission current is contained in the non-
relativistie limit of the Bethe-Salpeter theory.
This is in agreement with the lowest order per-
turbation theory result obtained by Thompson and
Heller. "

The analytic properties of the form factor are
examined in Sec. III C. In the Gross and nonrela-
tivistic theories the form factor has only the ano-
malous singularity, while the Bethe-Salpeter form
factor has additional normal. singularities. We
have found that other three-dimensional reductions,
in particular the Blankenbecler-Sugar quasipoten-
tial approach, ' ean lead to form factors which also
have a normal singularity.

The results are discussed in Sec. IV.

II. FORMALISM

A. Bethe-Salpeter formalism

In this section the Bethe-Salpeter formalism for
the electromagnetic current of a two-body bound
state is reviewed. The bound state constituents
mill be referred to as nucleons even though spin
mill for the most part be ignored. The exact na-
ture of the coupling of the boson mediating the
nucleon-nucleon interaction will not play any role
and will remain unspecified.

The Bethe-Salpeter equation for the wave func-
tion of two nucleons in a bound state of four-mo-
mentum D and with relative momentum P is

X,=- G '(-.'D —p)G '(-.'D+ p)q, (p).

The equation for XD is

(2-2)

X (p) =(J d'(lf(), (; D)G( ,'B —()G( D+))X ((-.)-',.

(2.3)

The electromagnetic current 4„ for a two-body
bound state (deuteron) is given by (see Fig. 1)

&& G(—'D —/)G( —,'D+ l)X (1) (2.4a)

d4 d'E—
(2,). 0 (P)F„4 (E), (2.4b)

where I
&

is the relativistic current operator. "
The operator I"„ean be split up into two parts: a
disconnected piece I'„' shown in Fig. 2(a) and a
connected piece consisting of diagrams that are
two-nucleon irreducible, examples of which are
shown in Figs. 2(b) and 2(c). The disconnected
piece is always present and the approximation ob-
tained by retaining only this contribution to I'„will
be called the relativistic impulse approximation.
The diagrams contributing to the connected part
of I „are of two types. First there a,re those dia-
grams which are expected to be gauge inva. riant
independent of the kernel, e.g. , Fig 2(b). The. se
are genuine exchange currents and to determine
their presence requires physical input in addition

( (P) = ~G(-*'~ -)') G(-'~+)') J~'«(P, (; ~)(,((),

(2.1)

where G is the nucleon propagator and K is the
interaction kernel. The nucleon propagator 6
contains both positive and negative frequency parts
and, in general, includes all self-energy contribu-
tions. It is convenient to define the vertex func-
tion
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(b)

FIG. 2. (a) Disconnected part of the current operator.
(b) Exchange current diagram. (c) Interaction current
diagram.

FIG. 1. Schematic representation of the two-body
bound state electromagnetic current.

sistently incorporated into the nucleon propaga-
tors and the Bethe-Salpeter interaction kernel in
order to preserve gauge invariance and unitarity.
For a more detailed discussion of how constituent
structure m3y be incorporated in the Bethe-Sal-
peter framework see Ref. 16.

Specializing to the Breit frame, the kinematics
of which are shown in Fig. 3, the current in rela-
tivistic impulse approximation is

to the nucleon-nucleon interaction. ' Secondly,
there are diagrams which must be combined with
the relativistic impulse approximation to obtain a
gauge invariant result. These are interaction cur-
rents. For example, if the kernel K contains the
two-boson-exchange crossed ladder graph, the
diagram shown in Fig. 2(c) must be included in
I'&. In general, a diagram will contribute to the
interaction current if, when the photon line is re-
moved, the resulting diagram is contained in the
kernel K

For the purposes of this paper it will be suffi-
cient to consider only the ladder approximation to
the Bethe-Salpeter equation. In this case there
are no interaction currents (at least for isoscalar
boson exchange which will be assumed here). In
this approximation it is also appropriate to use
the bare nucleon propagators, that is, the nucle-
ons are treated as point particles. In a relativis-
tic theory, nucleon structure cannot be properly
accounted for by merely multiplying the body form
factor by the free nucleon form factor as is the
practice in phenomenological nonrelativistic cal-
culations. The dynamics responsible for the nu-
cleon's electromagnetic structure must be con-

J„=ie,'X~i(p —,'D')G(D' ——p)A„G(D p)-
xXD(P —,'D)G(P), — (2.5)

where A„ is the photon-nucleon coupling:
=(P, +P, )& for scalar particles and A&

——
y& for

spinor particles. The propagators are G(P)
= (P' —M'+k) ' for scalar particles and G(P)
= (y 'P+M+ie) ' for spinor particles.

B. Three-dimensional relativistic formalism

In this section the reduction of the relativistic
impulse approximation from the four-dimensional
form to a three-dimensional form is considered.
In the Po plane the propagator G(P ) in the integrand
of (2.5) has singularities atP, =+ [(p'+M')' ' —ie]
and following Gross"' the three-dimensional re-
duction is achieved by keeping only the contribu-
tion to the P, integral from the positive energy
pole of G(P); that is, the spectator particle is
placed on mass shell. With this approximation
Eq. (2.5) becomes

d p XDi(p —~D')N(D' —p)A, N(D —p)X~(p —~D)
J (2w)'2Ep[(D0 —Ep)' —

ATE),
' i+a][( DOEp)' —Eqi, '+is] ' (2.6)

where E& (p'+M')' ' and the ——numerators of the
nucleon propagators are 1 for scalar particles and
N(D —P) =(D, —E,)y, —(c( —p) 'y+M for spinor par-
ticles. The three-dimensional Gross equation for

the vertex function is
d l K~(p, /;D)N(D —/)X~(l —2D).

(2. I)
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The propagators for the off-mass-shell nucleons
still contain both positive and negative frequency
parts. For the moment considering only scalar
particles, the explicit separation of the propaga-
tor into positive and negative frequency parts is

G(D —P) =[(Do-Ep)' —Ey p'+i, e] ~

where the superscripts + (-) indicate that for a
spinor theory the operator is evaluated for a posi-
tive (negative) energy spinor. If the interaction
connecting positive and negative energy states is
considered to be a perturbation, (2.9a) and (2.9b)
may be approximated by

1 1
2Ed P DD —EP -Eg P+ie

d3
q+ (G+) I, t

P Kt+~+ (2.11a)

=G++G

1

DD —EP +Ed P+i e (g ) y P K +(+

The current in this approximation is

(2.11b)

q'=(G,') '
I (K,"g'+K,' q-),

P

=(G ) 2E (K~ g +K '~g').
cPp

P

The deuteron current is

(2.9a)

(2.9b)

d p

P

+P A„'p'+P A„g ), (2.10)

D' = (D, q/'2)

(2.8)

Using (2.8) and (2.7), define the wave function
g' (g ) containing a positive (negative) frequency
off-shell particle which satisfies the coupled equa-
tions'4

cPp

(2w)'2Ep

A" + I (A' K '+K' A ') g'.X
1

(2.12)

The first term in the integral of (2.12) may be
identified with the usual nonrelativistic current
and the remaining terms with the ' pair excitation"
current in the conventional treatment of exchange
currents. ' In terms of time ordered diagrams the
pair excitation current is shown in Fig. 4. In the
region where only small nucleon momenta contri-
bute to the integral (2.12), for example in the re-
gion of small momentum transfer, the approxima-
tion of (2.11) and (2.12) may be valid (see Ref. 17).
However, when the pair excitation terms become
comparable to the nonrelativistic impulse approxi-
mation, as in the form factor at large momentum
transfer, "there is no reason to expect the per-
turbative solution (2.11)of the coupled equations
(2.9) to be a,dequate.

III. THEORETICAL DEVELOPMENTS

A. Vfard identity

q=(O, q )
' P = (Po, P)

In the relativistic theory the photon-nucleon
vertex function A& and the nucleon propagator are
related by the Ward identity

(P, P, )„A"(P„P,) =-G '(P, ) —G '(P, )

Using the kinematics of the Breit frame shown in

D = ( Do, —q/2)
FIG. 3. Kinematics of the relativistic impulse approx-

imation in the Breit frame. FIG. 4. Pair excitation diagrams.
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Fig. 3 and the expression for the Gross propaga-
tor G (for scalar particles) it is seen that

G '(P, ) —G ' (P,)=-2q p

and

(P P)-/~" =-2q p,

that is, the Ward identity is satisfied by G. It is
also easily verified that it is satisfied for spinor
particles and in an arbitrary frame. Consequently
the proof of conservation of the deuteron electro-
magnetic current is the same in the Gross forma-
lism as it is in the Bethe-Salpeter formalism.

For the positive frequency part of the Gross
propagator G+

( p

&/2

ip

(b)

[G'(P, )j ' —[G'(P, )j ' =-4q ~ p+2(D, E-)

x(Eq/2+ p
—Eq/2-p) ~

FIG. 5. Impulse approximation explicitly showing (a)
one insertion of the one-boson-exchange gadder) kernel
and (b) two insertions of the one-boson-exchange kernel.

so that the Ward identity is not satisfied. This is
a warning that an attempt to include relativistic
effects by merely calculating the current with a
positive frequency wave function obtained from an
equation that incorporates only relativistic kine-
matics is in danger of violating gauge invariance.
In the limit of very large nucleon mass, D, and Ep
may be expanded in powers of (P/M) and the Ward
identity is regained for positive frequency propa-
gators up to terms of order (P/M)4.

B. Time ordering and the nonrelativistic limit

In the nonrelativistic limit, that is, when kl be-
comes very large, the Bethe-Salpeter formalism
reduces to the nonrelativistic Lippmann-Schwinger
formalism. The three-dimensional relativistic
formalism of Sec. IIB incorporates those pieces
of that Bethe-Salpeter formalism which survive
in the nonrelativistic limit. The Bethe-Salpeter

formalism has contributions with particles pro-
pagating in all possible time orderings. It is of
interest to ask which time orderings survive in
the nonrelativistic limit. For large M the negative
frequency parts of the nucleon propagators are
O(P'/M') compared to the positive frequency parts,
so it is sufficient to keep only nucleons propaga-
ting forward in time. This is done by using the
three-dimensional formalism of Sec. II B with the
propagator G' for the off-mass-shell nucleon.
Consider the expression for the current corre-
sponding to the diagram shown in Fig. 5(a) where
Eq. (2.7) has been used to insert explicitly the
boson exchange kernel. What is important in de-
termining which time orderings are present are
the particle propagators and, ignoring all possible
spin complications, the product II of propagators
for Fig. 5(a) is

(3.2)

(3.3)

so that Il will be written as a sum of two terms II = II + II q when II (II+) has a forward (backward)going boson.
Consider II:

Il=[(DO-E1 -Eq/2-l)[(Ep-E1) —~p-$ ](Dq-Ep -Eq/2 p)(Dq-Ep -Eq/2+p)]
where ~g= [k'+p, ']'/' and p, is the mass of the exchanged boson. First separate the boson propagator into
pieces of positive and negative frequency (forward and backward in time),

[(Ep —E, )' —(up ~-'] '=(2(op -() '[(Ep -EI —(u ) ' —(Ep E~ +(up P) '], -

Il -[(Dq —E( —Eq/2 ) )(E) —Ep —(up ) )(Dq —Ep —Eq/2 p)(Do —'Ep —Eq/2 p)]

Using partial fractions, II can also be written

II [(Dq E) Eq/2 ])(Dq E E /2 ) (u ))(Dq E Eq/2 p)(Dq Ep Eq/2+p)]

+ [(Ey —Ep —(up ) )(Dq —Ef —Eq/2 f —(d
p ) )(Dp —E

p
—Eq/2 p)(Dp —Ep —Eq/2+ p)] (3.4)

Examining the energy denominators it is seen that the first term of (3.4) corresponds to the time ordering
shown in Fig. 6(a). To interpret the second term of (3.4), begin by explicitly inserting the interaction
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kernel again as shown in Fig. 5(b). Taking the positive frequency part of the boson propagator, the second
term of (3.4) becomes

[(Dq —Efr —Eq/2-I')(El' E1 +1 1')(El p p 1 )

x (D q Ep Eq /2 [ (dp [ )(D(& E~p Eq /2 p)( o p Eq /2+~p)] -( 5)

With repeated use of partial fractions (3.5) can be written

[(Dq —Eq /2 p
—E) z —(op ( —(de ( )(Dq —Ep —Eq /p ) —+p ) )

x(Dq —E
p

—Eq/2 )(Dq E ——E /2 )] ~+other terms (.3.6)

The first term corresponds to absorption of the
first boson (momentum p -1) after emission of a
second boson (momentum 5' —f). The "other
terms" of (3.6) can be broken up into specific time
ordered pieces by repeated use of the wave equa-
tion and partial fractions. The wave function, be-
ing the solution of a homogeneous integral equa-

tion, contains an inifinite iteration of the inter-
action kernel so that the second term of (3.4) cor-
responds to infinitely many different time order-
ings in all of which the boson of momentum p —f
propagates simultaneously with other (virtual)
bosons before it is absorbed.

Similarly, using partial fractions,

H @ [(Do —El —Eq/2 ~ )(Do —E~ —E'q/2 p
—+

p ~ )(Do —Ep —Eq/2 p)(Do —Ep —Eq/2+ p )]

+ [(Dp —E~ —Eq /2 ~ )(Dq —El —Eq /2- p Mp -1 )(Do —Ef —Eq /2+ p
—Rp l. )(Do —Ep —Eq/2+ p))

—[(Dq —E~ —Eq/, , )(Dq E;—Eq/—2, —~p -, )(Do E-, —Eq/2-+p —(up --, )(E-, —Ep —(gp ~)) (3.7)

The first term of (3.7) corresponds to the time ordering shown in Fig. 6(b) and the second term to Fig.
6(c). As before, repeated use of the wave equation and partial fractions shows that the last term cor-
responds to time orderings in which the boson of momentum p —7 propagates simultaneously with other
virtual bosons.

In the nonrelativistic limit

II = -([q'/8M —E —1 "/2M —(
—'q —1)'/2M][(p —f)'+IJ,'][q'/8M -E —p'/2M —(—,'q —p)'/2M]

x[p/8M~ Es-~p/2M--(-, 'q+p)'/2M]) ' (3.8)

that is, just the Lippmann-Schwinger form with an instantaneous Yukawa interaction. The nonrelativistic
limit of the terms of 11 corresponding to the time orderings of Figs. 6(a) and 6(b) is

—f [q'/8MD Ea —1'/2M- -(-,'q —T)'/2M] ~ p;(cu p;+Ea)
x [q'/8Mn Es —p~/2M- (-—,'q —p)'/2M][~q/8M~ —Es —p'/2M —(2q+p)'/2M]] '. (3.9)

This is not quite the Lippmann-Schwinger form.
The other time orderings give a nonvanishing con-
tribution in the nonrelativistic limit which combines
with (3.9) to give the I ippmann-Schwinger result
(3.8). Even though the interaction of the nonrela-
tivistic theory is instantaneous it is obtained as
the nonrelativistic limit of diagrams in which many
bosons may be "in the air" at the same time.

In the conventional treatment of the relativistic
effects, -'' the recoil emission current, which is
the nonrelativistic limit of the time ordering of
Fig. 6(c), is introduced as an explicit correction
to the nonrelativistic theory. The analysis of this
section on how the Lippmann-Schwinger theory
arises as the nonrelativistic limit of the relativis-
tic theory indicates that inclusion of the recoil
emission current in nonrelativistic calculations is

double counting. This result was also obtained by
Thompson and Heller" in a perturbation theory
analysis.

C. Analyticity

The bound state form factor is an analytic func-
tion of q with singularities in the time-like region
(q'& 0). In the Bethe-Salpeter theory the form fac-
tor develops normal singularities" corresponding
to thresholds for physical states that can couple to
a time-like photon and a deuteron-antideute ron
pair. For the relativistic impulse approximation,
the first normal sj.ngularity' is at q = 4M and
arises because the singularities of G(D' —P) and
G(D —P) pinch the integration contours in (2.5).
There will be further normal singularities from



RELATIVISTIC EFFECTS IN BOUND-STATE FORM FACTORS 907

p
q/2- P )(

q/2-jI

q/2-P && pii

p-jI ~

and X~ is the solution of the equation

X,(p ——,'D)

=g '(I, D) d'«(P, f; D)g(f, D)x, (f - 2D) .

-q/2-P -q/2-P (3.12)

In addition to the anomalous singularity at q'
=MD'(4M' —Mz')/M the quasipotential form fac-
tor also has a normal singularity at q'=4M', that
is, its singularity structure matches that of the
relativistic form factor more closely than does
the form factor of the Gross approximation. The
singularities corresponding to a nucleon-anti-
nucleon pair plus bosons are absent reflecting the
fact that the three-dimensional theories satisfy
elastic unitarity at all energies in the scattering
region.

(b) (c)

FIG. 6. Time-ordered contributions contained in the
rel.ativistic impulse approximation.

intermediate states containing a nucleon-anti-
nucleon pair plus bosons. In addition to the nor-
mal singularities, the relativistic impulse approxi-
mation also has an anomalous singularity"'"
which arises due to the confluence of singularities
from all three nucleon propagators in the region of
integration. For a loosely bound state the ano-
malous singularity occurs at a smaller value of
q' than the normal singularities. In fact the ano-
malous singularity is at MD'(4M' -M~')/M' «4M'
and it is expected to dominate the form factor for
small spacelike momentum transfer.

The Gross three-dimensional approximation re-
tains only the contribution to the relativistic im-
pulse approximation in which the spectator nu-
clean is on mass shell. The form factor in this
approximation will have the anomalous singularity
at the same value of q' as the relativistic impulse
approximation (see Ref. 14). All the normal sing-
ularities will, however, be absent. In the non-
relativistic limit the anomalous singularity sur-
vives and the I ippmann-Schwinger form factor
has a singularity at q' =16E~M, where E~ is the
deuteron binding energy. For E~ &&M, this is
essentially the same value of q' as the position of
the anomalous singularity of the relativistic theory.

The Gross prescription is not the only possible
three-dimensional reduction. One alternative is
the quasipotential or Blankenbecler-Sugar ap-
proach. ' In this approximation the spectator nu-
cleon is not constrained to be on mass shell and
contributions to the relative energy integral in
addition to that required to ensure the proper non-
relativistic limit are retained. The quasipotential
form for the current" for scalar nucleons is

IV. DISCUSSION

IIQplieit in recent work on meson exchange cur-
rents (for example Refs. 1-8) is the view that
these are corrections to be added to nonrelativis-
tie results grounded in a phenomenology based on
local potentials. In this paper a different point of
view has been adopted, namely, the relativistic
Bethe-Salpeter theory was taken as the starting
point and its reduction to the Lippmann-Schwinger
theory in the nonrelativistic limit was traced out
to identify explicitly the origin of the relativistic
effects meson exchange currents are to incorpor-
ate. The three-dimensional reduction techniques
have been known for some time, what is new here
is the application to interpreting exchange cur-
rent phenomenology.

In the Bethe-Salpeter formalism the current
operator for a bound state depends on the choice
of kernel in the equation for the wave function.
The practical implication of this statement is that
for processes where the large momentum com-
ponents of the bound state wave function play a
major role, it is necessary to know the detai)s of
the dynamics determining those large momentum
components in order to construct the appropriate
current operators. At present our knowledge of
the nucleon-nucleon interaction is much too phe-
nomenological to allow construction of reliable
current operators to be used for large momentum
transfer processes.

By examining the three-dimensional reduction
of the Bethe-Salpeter formalism some limitations
of the conventional exchange current calculations
can be seen. First, the inclusion of negative
energy nucleon propagation through the pair ex-
citation current was shown in Sec, II B to be the
perturbative solution of a more general coupled

~lg '(P, D)-g '(P, D')I
~2

q/2+ p q/p- p

(3.10)

where g is the Blankenbecler-Sugar propagator, '"
g(P, D) =

2
" ' lD.' - (&P +&d+ P)'l ', (3.11)
d+p p

d'p—J„=e
Jr (2,x,(P —,'D')g(P, D')A„g(P, D)x (P——,'D)—
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channel proble. Present calculations" fail to
justify this approximation even though the calcu-
lated correction is large. Furthermore it was
shown that when relativistic kinematics are used,
negative energy propagation must be retained in
order to preserve the Ward identity.

By explicitly separating the Bethe-Salpeter ex-
pression for the electromagnetic current into its
various time ordered pieces and then taking the
nonrelativistic limit, it was shown in Sec. IIIB
that those pieces corresponding to the photon
being absorbed by a bound nucleon while virtual
bosons are present do not vanish nonrelativistical-
ly but are necessarily present if the Lippmann-
Schwinger results are to be obtained. The con-
clusion is that the recoil emission current'" is
double counting something that is contained in the
nonrelativistic theory.

The form factor in Gross approximation and in
a nonrelativistic calculation has only the anomal-
ous singularity, reflecting the fact that the deu-
teron is a loosely bound state. In the Blanken-
becler-Sugar quasipotential approach the form

factor has the normal singularity corresponding
to a nucleon-antinucleon pair in addition to the
anomalous singularity. The other normal singu-
larities of the relativistic theory are absent in
three -dimensional or nonrelativistic calculations.

In this paper all the effects of nucleon structure
on the deuteron current have been ignored. At
present it is possible to introduce structure in a
way consistent with unitarity and gauge invariance
only in simple models. '6 Calculations with models
in which the nucleon is treated as a pion-nucleon
bound state ' "may be able to show the impor-
tance of treating nucleon structure consistently
in both the current operator and the bound state
wave function. Presumably form factors in such
models would have additional normal singularities
reflecting the fact that both two- and three-body
unitarity are satisfied in the scattering region.
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script.
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