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Electrostatic potentials for nucleus-nucleus optical model
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The electrostatic potential between nuclei having arbitrary charge distributions is expressed as a triple integral.

For two nuclei having uniform distributions, an algebraic expression for the electrostatic potential is obtained.

This is then compared with the electrostatic potentials normally used in various nucleus-nucleus optical model

calculations. The results of the former are found to be significantly different from the latter. For Fermi-Fermi

types of charge distributions, the nuclei may be assumed to be uniformly charged spheres without much loss of
accuracy. If one of the charge distributions has either Gaussian or harmonic well shape, the triple integral is
reduced to a single integral. For a number of nucleus-nucleus pairs, we have calculated the electrostatic
potentials assuming them to be uniformly charged spheres and compared them with those derived from

realistic charge distributions. %'ith a proper choice of radius parameters, the former can be used to a good
degree of accuracy to generate the electrostatic potential between the nuclei.

[NUCLEAR REACTIONS Realistic Coulomb potential for optical model. ]

I. INTRODUCTION

In the proton-nucleus optical model of elastic
scattering, it is customary to use the electrostatic
potential (ESP) derived by assuming the proton as
a point charge and the nucleus as a uniformly
charged sphere. ' ' However, it is known that the
realistic charge distributions of various nuclei
differ considerably from the uniform distribution.
For light nuclei like Li, "C, 0, etc. , charge
densities vary like a Gaussian function or harmonic
well, and in heavy nuclei like Ca it is close to a
Fermi distribution. ' There have been calculations
estimating the deviations of the ESP between pro-
ton and nucleus due to realistic charge distribution
as compared with the uniform one. ' It is found that
the difference is usually about 5-8%. In the case of
nucleus-nucleus scattering however, a concrete
estimate of the ESP has not been made and many of
the nucleus scattering calculations use the ESP be-
tween a suitably chosen uniformly charged sphere
and a point charge.

In Sec. II we derive the expression for the ESP
between two nuclei with arbitrary charge distribu-
tions. An algebraic expression for uniform charge
distributions is obtained so that it is readily ap-
plicable in any nucleus-nucleus scattering calcu-
lations. In Sec. III we compare numerically the
expression for the ESP between uniformly charged
spheres obtained by us with the normally used ex-
pressions. The results with realistic charge dis-
tributions are also compared with those obtained
with uniform charge distributions for various com-
binations of nuclei having different functional
forms for the charge distribution. Section IV gives
the summary and the conclusions.

II. ELECTROSTATIC POTENTIAL BETWEEN TWO NUCLEI

HAVING ARBITRARY CHARGE DISTRIBUTIONS
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where r» r', and r, are as shown in Fig. 1 and
r'=(r, '+R'-2x2Rz)'~' where z =cos8. Using the
expansion
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where r, =r„r =r, for r, &r, and r, =r„r&=r,
for r, ~ r2. Carrying integration over angular co-
ordinates of r, we obtain

V(R) =8~' p, (r,)r,'dr

I
x p, (r,' + R

' —2r,Rz)' 'dz . (2.2)

In the case of uniformly charged nuclei with
radii a, and a,(a, ~ a, ) and charge numbers Z, and

Z, the triple integration in Eq. (2.2) can be easily

Let p, (r) and p, (r) be the spherically symmetric
charge distributions corresponding to the two nu-
clei A and I3 with their centers a distance 8 apart.
The ESP between A and B is then
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performed to get

V(R) =Z,Z, e'/R, R ~ (a, +a, )
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If p, (r) has a Gaussian form

p, (x) = p, e "'"', p, =Ze/(p" o. ')

or a harmonic well form

2 2 Ze
3/2 g(1 &

)
(~) = 1+- re —" ~

2

well form

W = Ze/[4Rn' '(1+-'&u)],

X, = o.[ 1 + &o(2 + $)] e ~ —o [ 1 + &u(2 + g) ] e ",
X.=(~, +R)[(1+~)y(-,', () + ~y(-'„()],

X, = (r, —R)[ (1+v) y(-,', g) + u&y( 3, q)],

X, =(1+~)y(-,', &) + ~y( '„C),-
(2.6)

the integration over ~, and ~ can be performed
analytically. The result as a function of r, is
given by

I(r, ) = W(X, +X~+X,), r, aR
= W[X, +X~ —(r, +R)X4+ nX5], r, ~ R.

(2.4)

X,=(1+2m)(1- e ~)- &u&e
~ .

Thus, if either of the two nuclei has either the
Gaussian or the harmonic well type charge distri-
bution, then the triple integral in Eq. (2.2) reduces
to a single integral which may readily be per-
formed numerically.

menthe

next section we compare

For Gaussian form the quantities appearing in Eq.
(2.4) are given by

200—
r t ——1.713

W = Ze/(4Rw'~')

X, = u(e ' —e "), ] =(~, +R)'/n', g=(r, -R)'/u',

180

160
X, =(&, +R)y(-,', 5), X.=(~, R)y( ,', tl-), -
X, =y(-,', g), g =4R'/~',

X, =1 —e '.

(2.5)

y(x, y) are incomplete y functions. For harmonic
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FIG. 1. Two spherically symmetric charge distribu-
tions, A and 8 with their centers a distance R apart,
showing the various quantities in Eq. (2.1).

FIG. 2, Electrostatic potentials obtained from Eq.
(2.3) (curve a) and Eq. (3.1) with R~ = a& (curve b) and

R~ = (a&+ a&) (curve c) for the Ca- Ca system, The
results with minimum y~ given by Eq. (3.2) are shown

as a dashed line.
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TABLE I. The charge distribution parameters for various nuclei. All lengths are expressed
in fm.

Nucleus
Type of charge

distribution
Radius

parameter
Skin

thickness

Half-
density
radius

Radius of
equivalent

uniform model

6Li

z Li

16O

4'Ca
9ZAu

Gaussian
1Q= 3

Gaussian
=1

Harmonic well
co = 2.0, a = 1.75

Fermi
Fermi

1.56

1.49

1.35

1.32
1.18

1.9
2.5
2.32

2.6

3.64
6.38

2.84

2.84

3.41

4.54
6.87

the ESP between two uniformly charged spheres
with that obtained by assuming one of them as
point charge. Then we compare the results with
realistic and uniform distributions.

III. COMPARISON OF ELECTROSTATIC POTENTIALS

FROM VARIOUS CHARGE DISTRIBUTIONS

If one assumes the nuclei to be uniformly
charged spheres, Eq. (2.3) provides a simple
algebraic expression for the ESP for use in the
nucleus-nucleus op~ical model calculations. How-
ever, in such calculations the expression used is
the ESP between. a point charge and a uniformly
charged sphere and is

where V,(R,) and V,(R;}are the ESP's given by
Eqs. (3.1) and (2.3), respectively. A total of 20
points were taken from 0.05(a, +a~) to (a, +a~).
The results with either R, =r, A.,' ' or R,
= r,~(A, '~'+A~'~') are practically the same and are
shown as a dashed curve in Fig. 2. The values of
r, and r,~ are found to be 1.713 and 0.85, respec-
tively. Figure 3 shows similar calculations for
the 'Li-'"Au system. Here the results are com-
paratively better because one of the nuclei is very
small compared to the other and can be treated as
a point charge. The parameters r& and r&~ for
minimum X' (calculated in the same way as for

Z [~i(«) —~.(A)]'

ZP2(R~) 1' (3.2)

V(R) =Z,Z,e'/R, R

= Z, Z, e'(3R,'- R')/(2R, '), R -R, , (3.1}

where R, is chosen" to be either r, A&' ' or
r,~(A, '~' A~+'~') where r, and r,~ are adjustable
parameters and A.

&
and A~ are the mass numbers

of the target and the projectile, respectively. %e
now examine the validity of these two models com-
pared to V(R) given by Eq. (2.3). We do this for
two types of combinations —(i) when the two nuclei
are of comparable sizes and (ii) when one of them
is large compared to the other. Figure 2 shows
the results of calculations from Eq. (2.3} (curve
a) and Eq. (3.1) for the 4'Ca-40Ca system. The
radii a& and && of the nuclei were calculated from
radius parameters given in Ref. 4 and are tabu-
lated in Table I. It is seen that for the separation
where R is small compared to (a, +a~}, the results
with either R, =a, (curve b) or R, =(a, +a~) (curve
c}differ considerably from curve a. They how-
ever become very close to it for R = (a, + a~). Pa-
rameters r& and rt~ were varied to get the mini-
mum value of X' defined by

80 1.2325
rtp —0.9 275
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FIG. 3. Electrostatic potentials obtained from Eq.
(2.3) (curve a) and Eq. (3.1) with R~ =at (curve b) and

R~ = (a&+a&) (curve c) for the ZLi- 9 Au system. The
results with minimum X2 given by Eq. (3.2) are shown
as a dashed line.
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Fig. 2) are found to be 1.2325 and Q. Q275, respec
tively. The radius parameters of the nuclei are
taken from Ref. 4 and are given in Table I. It
should be noted that the parameters r& or x&~ cor-
responding to the best X' in our case are quite
different from the parameters used in the nucleus-
nucleus optical model calculations. ' This shows
that the ESP is not correctly reproduced in general
in nucleus-nucleus optical model calculations.

It should however be stressed that for many nu-
clei the assumption of uniform charge distribution
is a poor one. This is particularly so for light
nuclei like 'Li, "C, and "0where the charge dis-
tribution is either of the Gaussian or harmonic
well type. ' Therefore, it is important to consider
the exact ESP given by Eq. (2.2) and to examine to
what extent Eq. (2.3) is a good approximation to it.
In the case of heavy nuclei like "Ca, '~Au, etc.
the charge distribution is of the Fermi type for
which uniform distribution is a reasonably good
approximation and the potentials given by Eqs.
(2.3) and (2.2} can be expected to have good agree-
ment.

Figures 4 and 5 give the results of calculations
for a variety of combinations of nuclei having dif-
ferent types of charge distributions. The solid
curves show the results obtained from Eq. (2.2)
with realistic charge distributions and the dashed
curves show the results from Eq. (2.3}. As ex-

pected for the "Ca-"Ca system, the two results
agree fairly well at all separations between the
nuclei. But for other combinations, the two re-
sults differ substantially at small separations. To
get a good fit with exact results the radii of the nu-
clei were put as a~=r,'.A~' ' and a& =x"A.&' ' and thet p

parameters r,' and r," are varied to get minimum
values of x' defined in Eq. (3.2), where V, and V,
are now given by Eqs. (2.3) and (2.2), respectively.
Thirty points were taken from 0.1(a, +a~) to
3(a, +a~) to evaluate X'. The values of r' r" and

2
Oy Oy

for least g' are also mentioned along with the
curves. The various charge distr ibution parame-
ters are tabulated in Table I. From these figures
one finds that with the proper choice of appropriate
parameters, the algebraic expression Eq. (2.3) re-
produces the ESP obtained with realistic charge
distributions quite well at large separations be-
tween the nuclei, and the agreement in most cases
is qualitative when the separation is smaller. For
the Fermi-Fermi type of combination, no change
in radius parameters is necessary in view of the
good agreement between the Eqs. (2.2) and (2.3).
In the next section we present the conclusions based
on the analysis carried out in Secs. II and III.

IV. DISCUSSION AND CONCLUSIONS

From the analysis carried out in earlier sec-
tions we can draw the following conclusions. It is
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FEG. 4. Electrostatic potentials assuming realistic
and uniform charge distributions for 4 Ca- Ca 80- 80

ie 40
7

and 0- Ca systems. The curves with minimum y2

defined in Eq. (3.2) are shown as dash-dotted lines.

FIG. 5, Electrostatic potentials assuming realistic
and uniform charge distributions for Li- Li Li- Ca
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and Li- 0 systems. The curves with minimum g2

defined in Eq. (3.2) are shown as dash-dotted lines.
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found that there is a significant amount of error
involved in ESP when one approximates one of the
nuclei as a point charge, compared to the case of
two uniformly charged finite spheres. The error
may be as high as 25Pq at small separations be-
tween two nuclei of comparable sizes, such as the
"Ca-"Ca system, when we put 8, =a, in Eq. (3.I).
The error is much more if 8, =(a, +a~) is taken
and the two results may even differ by a factor of
2 for A&0.1A, . Similar conclusions were recently
reported by DeVries. ' %hen the size of one of the
nuclei is very small compared to the other, the
error with A, =a, is compaiatively small because
the smaller nucleus may be taken as a point
charge. In both the cases, a parameter (r, or
r,~) may be varied to get a minimum y' fit. But,
as pointed out earlier, the order of values obtained
for radius parameters r& or r&~ are much different
from those used in optical model calculations. '
The exact expressions for the Coulomb potential
given by Eq. (2.3) should therefore be used if the
nuclei are assumed to be uniformly charged
spheres.

The realistic charge distribution is however far
from uniform, especially for light nuclei like Li,

' O, etc. Calculations with the actual charge
distributions show that the ESP between two nuclei
is not properly reproduced at small separations if
the nuclei are assumed to be uniformly charged
spheres. The height of the Coulomb barrier is
much more enhanced if realistic charge distribu-
tion is taken. This is clear from Figs. 4 and 5.
Here also one can vary two parameters ro and x,"
to get the minimum g' fit, but good fit is still not
obtained except for the 'Li-'Li system. The reason
for getting a good fit in this case is that the charge
density in 'Li falls off too fast (see Table I). In
the case of heavy nuclei such as "Ca, '"Au, etc. ,
the charge distr ibution is of the Fer mi type, which
is very close to the uniform distribution. Thus

when both the nuclei have a Fermi type charge
distribution, the algebraic expression in Eq. (2.3)
is sufficiently accurate and convenient to be incor-
porated in optical model calculations. But for other
types of distributions one has to solve the triple
integral in Eq. (2.2). In case one of the nuclei has
a Gaussian or harmonic well type distribution, r,
and z integrations in Eq. (2.2) can be performed
analytically and are given by Eqs. (2.4)-(2.6).
Thus for all combinations other than the Fermi-
Fermi, the expression for V(A) is in terms of a
single integral and for the Fermi-Fermi combina-
tion, the algebraic expressions in Eq. (2.3) are
reasonably good. So in no case is a numerical
computation of the triple integral required and Eq.
(2.2) can be used economically in any nucleus-
nucleus optical model calculation. The computa-
tion time can further be reduced if we note from
Figs. 4 and 5 that after a distance of about —,'(a, +a~)
the uniform charge distribution gives fairly good
results. Thus while calculating the electrostatic
potential, one may perform numerical integration
only up to a certain distance, say —,'(a, +a~) and
after that the algebraic expressions in Eq. (2.3)
can be used. The nucleus-nucleus optical model
calculations using the electrostatic potentials
stated in this paper will be described in a future
publication.
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