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Off-energy-she11. T matrix elements for any partial wave are ca1cu1ated using realistic
local two-nucleon potentials with soft or hard cores. The off-shell behaviors are discussed
in relation to on-shel. l values. Off-shell cross sections involved in the impulse approxima-
tion of nuc1ear reactions are analyzed. The va1.idity of some usual on-shell approximations
is examined.

NUCLEAR REACTION Calculated off-energy-shell T matrix for local realis-
tic potential with soft or hard cores.

I. INTRODUCTION

Our present knowledge of nuclear forces comes
mainly from the analysis of two-nucleon scattering
data at laboratory energies up to 400 MeV. ' '
This information determines only the on-the-ener-
gy-shell nucleon-nucleon T matrix elements which
can be accounted for accurately in terms of a
great number of potential models such as local
potentials with soft cores, ' ' local potentials with
hard cores, ' "' and separable potentials. """

Despite the fact that these realistic potentials
are not strictly equivalent in reproducing two-nu-
cleon scattering data, as reflected in Fig. 1, there
is no fundamental criterion to favor or discard a
particular one of them. However, their off-the-
energy-shell behaviors might a priori be different.
The off-shell properties of the N-N force are in-
volved in many problems where the two-body inter-
action takes place in the presence of a third or
more particles. Thus, many-body calculations
could be a tool for selecting between equivalent
on-shell two-nucleon interactions. Many papers
have been devoted to this purpose in the three-body
problems such as electron deuteron breakup,
deuteron photodisintegration, P-P bremsstrahlung,
three-body bound and scattering states, etc. . . . .
But up to now several reasons prevented one from
drawing clear-cut conclusions. One of these rea-
sons is that the various many-body data are not
equally sensitive to the two-body off-energy-shel1
effects, another is the consequence of necessary
approximations made to solve many-body prob-
lems; moreover, recent studies in 'He and 'H

bound states conjecture three-body forces."
Our purpose is to study the sensitivity of proton-

deuteqon breakup reactions in the range of a few
hundred MeV to two-nucleon off-shell effects.
This will be analyzed in a forthcoming paper. The

preliminary work, which is the object of the pres-
ent paper, consists in the calculation and analysis
of the off-energy-shell T matrix elements for
several realistic potentials.

Srivastava and Sprung" pioneered in this domain
by proposing a practical method of computing off-
energy-shell T matrix elements for local spin-
dependent potentials with soft or hard cores. They
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FIG. 1. P-n differential cross sections in the center-
of-mass system at 40, 80, 160, and 320 MeV laboratory
energies. The starred curves correspond to the Tabakin
potential, the shaded domains indicate the spreading of
the results for the HJ, RHC, RSC, SSO, and Gl local
potentials.
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FIG. 2. Sp phase shift plotted against k (and E =2k k /
m on the upper scale) for five local potentials and Taba-
kin's interaction.
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FIG. 4. S(u (p)) and D(zo(p)) components of the deuteron
wave function in momentum space for (HJ) (solid line)
and (SSO) (dashed line) potentials. Hiilthen (starry line)
and Moravscik (dotted line) S-wave functions are drawn
for comparison.
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also studied the off-shell behavior of a class of
phase-equivalent 'S

p separable and local poten-
tials. Several authors" "have handled the 'Sp

p

'S„or P partial amplitudes for different realistic
classes of local, separable, or momentum depen-
dent interactions. Nevertheless, as far as we
know, only a few studies have been devoted to
I &0 off-energy-shell amplitudes with realistic po-
tentials. Takemiya" has given some examples for
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FIG. 3. ~&p matrix elements Tpp(k &k; ik) at negative
energies plotted against E =-252k ~/m.
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Hamada-Johnston potential at fixed 150 MeV lab-
oratory energy and fully off shell. McCarthy and
Tandy, "studying 'H(P, 2P)n reaction, have com-
puted half-shell T matrix elements involved in the
off-shell spectator approximation at incident en-
ergies from 14.4 MeV up to 100 MeV. Stephenson
eg g/."have calculated the P-P cross sections rel-
evant to a factorized impulse approximation treat-
ment of (P, 2P) reactions on heavy nuclei from 150
MeV up to 350 MeV in the energy sharing geometry
for Hamada- Johnston, Bryan-Scott, and Reid's po-
tentials (without Coulomb forces).

In Sec. II, we recall the basic equations and com-
ment briefly on the numerical method. In Sec. III,
we analyze the results on the energy shell at posi-
tive and negative energy in order to classify them
with respect to some main features of the potentials
such as the high energy phase shift assumptions,
the smoothness or the hardness of the core. In
Sec. IV, we present for each partial wave half-
shell and fully off-shell results and analyze to
what extent they are correlated to on-shell input.
In Sec. V, we calculate off-shell cross sections
which appear in the impulse approximation and ex-
amine the validity of some on-shell approxima-
tions. In Sec. VI we give our conclusions. More
details may be found in L'Huillier's thesis. "

II. FORMALISM

A. Basic equations for two-body T-matrix
elements and conventions

We define the two-body T(z) operator, function
of the complex energy z, by

T(z) = V+ V(z —H ) 'T(z)

where H, is the kinetic energy operator and V the
Hermitian potential operator.

Let us 'define the Meller operator Q(z) by

T(z) = VQ(z) ~

it satisfies the integral equation

Q(z) =1+(z -K,)-'VQ(z),

which reads

(z —Ko —V)Q(z) = z Ho .-

(2)

(4)

We assume the potential V to be a short range
static local interaction with a soft or a hard core.
We neglect the neutron-proton mass difference and
denote by m the nucleon mass. Then we define the
relative momentum x by

x=k» 0 for Z» 0,
Z=—x' with (5)I ix=zk, k&0 for g(0,

E and Z=E/2 being the two-nucleon laboratory and
center of mass energies, respectively.

The Mgller operator Q'(Z+ie) satisfies an inho-
mogeneous equation which reads in a mixed rep-
resentation

(r (Z -H, —V)Q'(Z+ i ~)
I p) = (Z —(8'/m)P')(r

I p),
(6)

with the asymptotic conditions given by Eq. (2).
The plane wave is normalized as follows:

(rIp) =(2n) ' 'exp(ip. r) .

In order to obtain the off-shell matrix elements in
momentum representation,

T(j, p; x) = (q I T(x)
I p)
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we calculate the wave function

&rim, ) =e(rip;x) =iim&rl~ (z,i.) lpga

by solving Eq. (6). Then we perform the quadra-
ture

T(q, p;x) = &q I VI e&&. (10)

We expand the wave function 4(r lp;x) and the scat-
tering amplitude T(q, p;x) in the angular momen-
tum representation (LSJM):

0'~, ,(rip;x) = g (2/m)'/'i~U~~P~(r lp;x)D~/~, ~.(~,p),
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values are plotted along the diagonal; this line cuts the
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q and P representing the angular part of the vectors
q and p, respectively. The wave function
U~, ~(r lp;x) satisfies a coupled second order inho-

mogeneous differential system of equations which
reads, in case of a local interaction with a hard
core for x & x„

8(r r,-)rU."..(r l p; ) ~-g V.".(r)8( .—) U:.'(r lp; )

—6(r —r )—[rU~~P~(rip;x)]+ (x' p')6—~,~8(r, r)rj—~(pr) = (x' p')6—1,,~rj J.(pr),
y'

(14)

8(r- r,) and 6(r- r, ) denoting the usual Heaviside and Dirac distributions. The solution U~~P~(r lp;x) vani-
shes at the origin or inside a hard core and behaves at large r as

prUz, ,z(rip;x) — 6z, &sin(pr —2Iw) —p( i)~'T-~~P~(x, p;x)e'

The coefficients T~~P~(x, P;x) are the half-shell am-
plitudes at energy Z. For x =P they reduce to the
on-shell amplitudes which are related to the phase
shifts (note that we do not consider the Coulomb
case). The prescription lm x &0 implies an out-

going wave behavior in case of positive energy Z
and an exponential decay if E is negative. In Eq.
(14) V~~P~(r) is the local real interaction in the

(I.SZM) representation:

2

(r's(&'l Vlrso) =—g D~.,~,(r"', r)6(r —r')V~, ~(r) .

Then the T matrix amplitudes are obtained from the equation

QO I && xr m
T~, ~(q, p;x) = r~, ~(q, p;x)+ Q j~, (qr) j~,(qr) „(—) ,V~, ~(r)U—~~(rip;x)r'dr,I 1» I l » 1 l, c g(-&xr g2 I &(

C

~~~i~ represents the T matrix amplitude corresponding to scattering on a hard sphere of radius r, .
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FIG. 10. ~P~ half-shell isoamplitudes e '~& T&~(q, k;k) in fm.



&30 BALLOT, L'HUILLIER, AND BENOIST- GUEUTAL

1 2 3

q 3-+

O +

~;p.y/ Jf
Jf

Jf

'L 5 & I I i g"p.05

& PP8 l2
l 1

I ] l

] )r /j ]
tllg~ ~ OW /

D2 SSO
T" (q, ~;a}

~g'1.(q, P;x) = ~I,I. (P, q;x), (21)

lmTisi(q, P;k)+ Qk[Ti I"(q k'k)j Ti~sJ(k P k) =0 ~

For large k values, the phase shift goes to infinity
as —(kr, —,LI—I), and v ~s~ has an oscillatory de
creasing behavior. As a result of time reversal
invariance (in the case of Hermitian potentials) and
unitarity one obtains the following symmetrical
properties of T matrix elements:

6
-i 6~(n) 2pFIG. 11. D2 half-shell isoamplitudes e ' 2 T22(q, k;k)

in fm.

where j~(p) and h'~" (p) stand, respectively, for
the first derivative of the Bessel function jl.(p) and
a first-kind Hankel function h~" (p). The derivation
of the half-off-energy shell amplitude is straight-
forward:

( 1)T ( 1)L+s+I (23)

Note also the occurrence of two poles correspond-
ing to the bound state (J'= 1) at the negative relative
energy e, = —(5'lm) o',' (x = iIxI) and to the antibound
state (J= 0) at the energy e, = —(h'/m) o.,' (on the
unphysical sheet x = —iIx,). The residues of the
T~,~ or Tpp amplitudes at the poles are directly
related to the Fourier transform of the deuteron or
antibound state wave functions.

Now we shall again turn our attention to EIl. (12).
It defines, in the momentum representation, the
nonantisymmetrized elements Ts, ,(q, p;x). The
antisymmetrized Tsr(rT, p;x) amplitudes, where T
is the total isospin, are constructed with EIl. (12),
but the summations over the quantum numbers
O'LL' satisfy the selection rule

zs
kh'(k )

and for the phase shifts we obtain

5z(k) = —arctan ~'

(19)

(20)

B. Numerical method

The Eels. (14) and (15) yield a two-point bounds. ry
value problem of the type

(24)
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In our case the functions Y, g, and h label the com-
plex matrices

(25)

switch over to the Ridley alternative method where
one uses the new functions

S=s '

gr. ~ z, ( ) =
) 2 z.'z, (

I '(L '+1)
~2

(26)

V=Sv

y =SY+ V,

which satisfy the system of equations

(33)

which must satisfy the boundary conditions

(27)
S'+Sgs=-1,
V'+ SgV= Sh. ,

Y' —SgY=gV —h .
y~~s(r)-P( —i)~ T~~gx, P;x)e'"" for large r and

U~s~(r) = 0 for r ~ r, . (23)

S —S =g,
V —SV=A

~

+Sf =V

(29)

(3o)

(31)

This problem is conveniently solved by the method
of Ridley. " In this method, auxiliary complex
functions s and v are introduced so that Eq. (24)
is factorized in three first order equations:

We choose a quadratic mesh with 150 points in the
range(kr„kR) favoring the smaller r values where
potentials are rapidly varying. The quadrature
(17) is performed during the outward calculation.
Our code calculates the T~/s~(q, P; x) matrix ele-
ments. Then it couples them with the Dz;;z,, (q,P)
functions in order to build the antisymmetrized
elements T~~r(q, p;x). In relative values the pre-
cision is estimated to be 10 ' for a partial wave
amplitude and 10 ' for Ts,r(q, p;x).

asymptotically, the boundary conditions are:

s(r)- —ixand v(r)-0 for large r. (32)

III. RESULTS FOR THE ENERGY SHELL,
ITS CONTINUATION AT NEGATIVE ENERGY,

AND THE BOUND STATE

We prefer this complex solution to s =x tansy used
by Srivastava and Sprung which is not bounded and
must be computed very carefully. Using the initial
va, lues (32) at r=R, Eqs. (29) and (30) are inte-
grated inwards to kx„constructing punctual solu-
tions of s and v by the Gill-Runge-Kutta method. "
Then using y(r, ) as the initial value, Eq. (31) is in-
tegrated backwards to kA, completing the solution.

In practice, during the inward calculation the
functions s and v may have too rapid variations.
In this case, when dets x0 and ~trs

~

~ 10'k, we

A. Potentials considered

We study six potentials, assuming they are on
the whole typical of the classes of "realistic po-
tentials, " i.e. , of the phenomenological potentials
which fit the two-nucleon observables. The Hama-
da-Johnston (HJ)"' and Reid hard core (RHC)' in-
teractions provide two types of hard core poten-
tials. Both reproduce asymptotically the one-pion
exchange potential (OPEP). The soft core poten-
tials we retain are the soft Reid's potential (RSC),'
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FIG. 13. 38& fully off-shell Too(p, q; k) for (HJ) poten-
tial at E =60 MeV. The curves are plotted against q
momentum with conventions of Fig. 11. ImT00 has an
apparent separability because of the weakness of the
coupling with the 3D& state.
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FIG. 14. && fully off-shell ImTO()(P, q;k) for Tabakin's
potential at E =60 MeV, with the conventions of Fig. 12.
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one from de Tourreil-Sprung (SSA),' or a prelimi-
nary version available in 19V1 (SSO)" both contain-
ing the OPEP and a smooth potential from Gogny-
Pires-de Tourreil (Gl)' built on radial Gaussian
functions.

These five potentials are local. We shall com-
pare their behaviors with that of Tabakin's separa-
ble potential (TA)" which reproduces the main fea-
tures of the N-N scattering data up to a relatively
high energy (although it gives a bad fit to the bound
state").

B. Energy shell

At first we remark that the potentials quoted
above are not strictly equivalent in interpreting
two-nucleon scattering data. This is illustrated
in Fig. 1 which gives P-n differential cross sec-
tions at four laboratory energies between 40 and
320 MeV.

In Fig. 2 the 'So phase shift is represented as a
function of k between 0 and 7 fm '. For k&1.8 fm '
the scale chosen for the drawing does not allow
one to distinguish between the local potentials.
But, for k &2 fm ', which is out of the domain of
the data used to build the potentials, the results
exhibit large variations. When k- ~, (HJ) and

(RHC) phase shifts go to —kx„while the soft core
potentials phase shifts go to zero. In view of the
results, the Tabakin potential can be classified as
a super soft core interaction.

One finds similar behavior for other partial
waves and for the coupling parameters &~ with,
however, somewhat broader deviations between the
potentials in the range k & 2 fm ' than for L = 0.
The partial waves L &0 are mainly responsible for
the spreading observed in Fig. 1.

These results exhibit the fact that the selected
realistic potentials are by no means "on-shell
equivalent, " the main discrepancies coming from
their short range behavior.

C. p =q = k shell at negative energy

As an example, Fig. 3 gives T0''0(k, k;ik). The
curves lie upon one another according to the order
of decreasing softness of the interaction. They
are constrained to fit the scattering length ao in the
limit E-0. The spreading grows with E in the
studied domain.

D. Deuteron wave function

The fitting of the deuteron observables varies
somewhat among the potentials. One obtains re-
sults between —2.1 MeV (G1) and -2.5 MeV(TA)
for the binding energy, and between 4% (Gl) and 7%
(HJ) for the D state percentage. In Fig. 4 are
drawn u(p) and zo(p), the S and D components of

the deuteron wave function in momentum space
calculated with the (HJ) and (SSO) potentials. The
main discrepancies come from their different D
state percentages. The other local potentials give
very similar results. The phenomenological S—
wave functions from Hulthen and Sugawara" and
Moravcsik" are drawn for the sake of comparison.
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FIG. 17. So fully off-shell isoamplitudes at E =300
MeV for the (TA) potential.

IV. GENERAL FEATURES OF OFF- SHELL AMPLITUDES

The transition operator T(q, p;x) is a complex
function of the variables q, p and x. To understand
the general features of its off-shell matrix ele-
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ments and especially their behavior in energy and
momentum, we shall give some selected results for
values of P and q up to 8 fm '. Though the domain
of validity of a potential description of N N-inter-
action limits the momenta up to 2 fm (E,~-320
MeV), we have to consider in nuclear theories
off-the- energy- shell amplitudes as mathematical
functions which are integrated over large momenta.

%e shall explore off-shell amplitudes for p and

q values only up to 8 fm ', since in nuclear theo-
ries the contributions of the higher momenta are
always weighted by wave functions whose signifi-
cant values occur only in a range of a few fm '.
We computed the T~P'(P, q;x) amplitudes up to

,7=6 for the set of potentials: RHC, RSC, HJ, 61,
and SSO.

In Fig. 5, we show the 'S, amplitude at positive
energy e "o'"'Tooo(q, k;k) for k=1.5 fm '. The
pinching of the curves near q =k exhibits the on-
shell constraints. On both sides their discrepan-
cies reflect the different degrees of hardness of
the potential cores. At negative energy, the dis-
crepancies are enhanced because of the lack of on-
shell constraints. See in Fig. 6 the 'S, state
Re T,",(q, k; k). Near E -20 MeV, the phase shift
crosses —,w; then T,",(k, k;k) goes to zero. This
property is extended to the half-off-shell ampli-
tudes by the unitarity relation.
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FIG. 18. 2 g and I'3 isoamplitudes for (SSO) and ~TA) potentials
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In F'ig. 7 we give the S, half-shell isoamplitudes
e '68I~'Toooo(q, k;k) in the fq, kJ plane. To understand
their topological features, we calculate the 'S, half-
off-shell amplitudes for a square well potential,
with range a= 2.54 fm and depth 14.5 MeV, which
fits the low energy parameters (Fig. 8). For lower
momenta (p, q &2 fm ') the deep hole of the realistic
local potentials is well reproduced; outside one
observes a smooth diffraction structure parallel to
the diagonal with a period L4g = bk = v/2a. If we
add a hard core barrier with radius x, = 0.5 fm,
the resulting potential model gives a topology
(Fig. 9) very similar to that of (HJ) or (RHC) po-
tentials. With a pure hard sphere potential [EII.
(19)), one gets parallel straight lines with damp-
ened oscillations and a pseudoperiod bP = ~
= v/2r, Thus . the behavior of the amplitudes for
high k or q values are explained by a hard sphere
scattering. The hump near q=4 fm ' is due to the
short range repulsion of local potentials. Its width
and its height increase with the hardening of the
potentials. The two- rank separable interaction
(TA) is less picturesIIue because of the diffuseness
induced by the nonlocality.

As regards the 'P, state, Fig. 10 shows that the
core influence is still discernible; in the (HJ)
case we again find the asymptotic characteristic
lines parallel to the k axis. The different struc-
tures of the isocurves (HJ) and (SSO) are well un-
derstood from the 'I', phase shift properties which
determine the values of the isocurves on the diag-
onal. For k& 2 fm ' the potentials get phase shifts

l
analogous to those of the 'So case. However, e '~i
x T',o(k, k; k) must vanish for k = 0 while, in the 'So
state, it is equal to the negative scattering length

ao, giving rise to the characteristic deep hole. In
Fig. 11 we give an example of half-off-shell iso-
curves for the 'D, state.

For the fully off-shell T ~.~(q, P; x) calculated at
fixed positive or negative energies, we give some
typical curves in Figs. 12-18. In case of noncou-
pled states, Im T~~~(q, P; k) is separable (Figs. 12,
15, and 17) because of the unitarity [EII. (22)].

The fully off-shell isoamplitudes in the fP, qj
plane outline the symmetrical properties in P and
q. The quantity Re T»(q, P; x) is weakly energy
dependent in the range E = 25-300 MeV (Figs. 15
and 16), while Im Too(q, p; k) is nearly proportion-
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sections do not include the Coulomb interaction.
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FIG. 20. Half-shell p-n polarizations for the local potentials. Conventions are given in the caption of Fig. 19.

al to E, see Fig. 15. For highest I states, the in-
teraction takes place peripherally so that the am-
plitudes are practically the momentum represen-
tation of the long range part of the potential. . As
a consequence, if V is local, the diagonal P=q
looks like a ridge line of the l.evel curves.

V. OFF-SHELL CROSS SECTIONS AND

ON -SHELL AP PROXIMATIONS

A. Off-shell cross sections and polarizations

Off-shell cross sections are calculated from the
antisymmetrized operators T (Q, p; x) defined by

Eq. (23),

(q, p; x) = w 'm' tr IT"(q, p; x)T '(q, p; x)],
PP

(35)

as functions of 6), the angle between p and q, at
the positive or negative energy E =2(I'/m)x'.
The cross section do'/dQ~„ is calculated in the
same way but with —,(To+ T') instead of T'. Off-
shell polarizations are computed similarly. These
quantities give a global estimation of off-shell ef-
fects and available variations between the poten-
tials. For momenta P, q, and k, we use three
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FIG. 21. Fully off-shell "diagonal" cross sections da„&(p, p;0)/dQ for E =80 (- ~ -), 160 (—), and 320 (-.~ -) MeV,
p =1 and 1.4 fm ~ calculated with (G1) and (HJ) potentials.
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values 0.98, 1.39, and 1.96 fm ', which corre-
spond to 80 160 and 320 MeV l.aboratory ener-
gies.

R its for the half-shell do&~q, k;. k~/d0 areesu s
drawn in Fig. 19 for the Pn and PP cases (the Cou-
lomb field is omitted) and in Fig. 20 for the pn

at the s read-half-shell polarization. One notes tha p
in between the local potentials has the same mag-
nitude off and on the energy shell, =q, . At very
low energy, the discrepancies between the poten-

t E =1 MeV andtials increase. For instance, a
q=2 fm, one o=2 f ', e obtains for the P-n case ratios up
to 10. For is reaF th' eason the off-shell effects may
play a nonnegligible role in a nuclear reaction
with a kinematic of final state interaction. Taba-
kin's shapes are clearly different especially at
backward ang es, u1 b t this potential affects too few
partial waves (I ~3).

Studying the negative energy cross sections
do(, k; ik)/dQ, we observed larger deviations be-
tween e pth potentials as one might have expected

ve resultsfrom the analysis of the partial wave resu s
(Fig. 3).

dQ theFor the "diagonal" elements do'(p, p; x„

soft potential (G1) looks like (SSO) while the hard
one (RHC) is similar to (HJ). In Fig. 21, we give
the results obtained for (Gl) and (HJ) at positive
energies. No e at th t the cross sections are more
sensitive to p than to E.

red to dQ(p, p; x)/dQ the fully off-shell.Compare o
to be small. er.do(p, q;x)/dQ for given P and x seem to be

B. On-shell approximations

Several on-shell approximations for the off-shelI
two-nucleon T matrix have been used in the im-
pu se appr1 oximation description of elastic and in-

2 re-t' ucleon-nucleus scattering and (P, P) re-elastic nuc eo-
x to an on-shell am-action. They relate a T(tl, p;x o an o-

plitude T(k', k;k) at suitable energy E =2 II m

and angle 8 between k and 4'.
Stephenson et al."have studied the quality of on.

shell prescrip ions
' t'ons for (P 2p) reactions on very

boundheavy nuc ei,1 the knocked-out proton being boun
b 45 MeV. We come back to this problem, u
for the scattering on a deuteron i.e.,i.e. a nucleus
of small binding energy e, = — ' o,'=-= —@' m '=- 2.22
MeV) of a proton with laboratory energy
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E, = 2(h '/m) k,'.
In the impulse approximation treatment of the

elastic &(P, P)d scattering, when the two-body ma-
trix is factorized for zero momentum of the struck
nucleon, the amplitude is a function of the off-shell
matrix element T(j, p; x) with momenta q=ko —K,
p =ko, x =(ko' —o.',')'" and energies Ez -—2(h'/m)q',
E; =2(A'/m)P' =Eo, where 2ko is the initial momen-
tum of the incident nucleon in the laboratory and
K is the transfer momentum in the s catter ing on
the nucleus.

The shell deviation is bE =Ef —E; =(5'/2m)K',
~E increases with K from 0 to —",E,. As an exam-
ple, the two-nucleon off-shell cross sections at
ED = 155 MeV, corresponding to (HJ) and (SSA) po-
tentials, are plotted in Fig. 22 against 8, the cen-

ter of mass scattering angl. e of the P+d system.
As &, is negligible compared with Eo, the cross
sections are nearly half-shell at the initial ener-
gy. The discrepancies between the potentials can
reach 10%%uo even near the on-shell point 8=0 . In
Fig. 22 we compare five on-shell approximations
to these off-shell cross sections. In the so-called
"on-energy-shell impulse approximation" (OEI),
one takes k=0, and 6) =3. This prescription does
not preserve the transfer momentum, which be-
comes &K. In the four other approximations, one
maintains the length of K which gives 8 = 2 arcs in-
—,'K/k and for E one takes Eo, Ez, &(Eo+Ez), or'
~6(9Eo+ VE~).

Except for (OEI), the discrepancies between the
on-shell approximations and corresponding exact
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83 0

5"

=0

I

4
I I

2 3 5 4 3 2 1 0 1 2

E~ MeV

The functions J and J&„relevant to p-d breakup in the nucleon spectator model [see Eq. (36)] and with
symmetric geometry are shown as a function of the spectator nucleon energy E3 for E0 ——155 MeV. We compare the
off-shell calculations with (HJ) (-) and (SSA) (-—-) in parts I and II. For (HJ) interaction corresponding on-shell ap-
proximations a (. . .), b (-"-), c (- —-), and d (- -) defined in the text are given in Secs. III and IV.
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off-shell calculation are less, for 6(60', than
differences due to the potentials. For 8& 60 these
approximations are cl.early less good, but in this
region the factorized impulse approximation is
known not to reproduce the experimental data.

The impulse approximation ampl. itude of the
d(P, 2P)n reaction is a function of the half-shell
matrix elements T(k, p; 0). Let p„p„and p,
be, respectively, the final momenta of the two
protons and neutron in the laboratory system,
and E, the neutron energy. We consider the ki-
nematical region E,«E„where the impulse ap-
proximation is supposed to be valid (spectator
neutron approximation). One has k = ~(p, —p, ),
p =k, + &p, . The shell. deviation is ~E =2E, —
Having removed the kinematical factor, the cross
section is expressed by

As an example we consider a symmetrical. geom-
etry: E =Ez =2(I'/m)k' is larger (smaller) than
Eo when the neutron is emitted forwards (back-
wards). The quantity J» calculated for (HJ) and
(SSA) potentials at ED=155 MeV is plotted in Fig.
23 against E, «5 MeV. The analogous J~„corre-
sponding to the d(p, pn)p reaction are also shown
in the same figure.

In the symmetrical geometry p k =0, we studied
three on-shel. l approximations defined by 6) = 90'
and 8 =E„Ez,2(E, +Ez)—(labeled respectively a, b,
and c in Fig. 23). We considered a fourth one (d)
which preserves the two-body transfer K=p —k
by introducing an auxiliary vector Q parallel to
K, such as k' =p+Q, k=k+Q, with 5=k'.

The approximations are very good when the
spectator nucleon is emitted forward, especially
in the P-P case. The best fit is obtained with the
fourth approximation.

VI. CONCLUSION

We have developed a practical method of calcu.-
lating the fully off-shell T matrix elements for any
partial wave using local N-N potentials with soft or
hard cores. The work supplements the previous
work of Srivastava and Sprung.

We have compared the results obtained with five
realistic local potentials and the Tabakin separable
potential. Since these potentials are not phase-
shift equivalent, the on-shell T matrix elements
display large differences for k&2 fm ', related to
the short range behavior of the potentials. There
are similar differences in the off-shell results.

We have shown that the square well potentials
with repulsive cores which contain the general
trends of the local realistic potentials reproduce
the gross features of the off-shell T matrix ele-
ments. The scattering amplitudes T~~Pi(P, q; k)
arise from the interference between two parts.
The first, corresponding to the long range part of
the force, dominates whenever P, q, and k are
small; when P and q are large it gradually de-
creases as a diffractive picture when one goes far
from the P =q shell. The second part originates in
the potential core region; it looks like a hard
sphere amplitude and has a diffractive behavior in
the P and q directions with a pseudoperiod inverse-
ly proportional to the effective core radius; its
magnitude is directly related to the strength of the
repulsive core.

In itself, the present analysis does not allow one
to foresee the ability of many-body calculations to
select among the different two-nucleon potentials,
since this ability depends mainly on the off-shell
sensitivity of the studied problem. Furthermore,
up to now, most of the many-body problems have
been solved in the framework of models and ap-
proximations whose accuracy is not well known.
It will, then, be difficult to draw any conclusions
when the off-energy-shell deviations between the
potentials are small.

*Laboratoire Associe au Centre National de la Recherche
Scientifique.
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