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It is pointed out that previously published equivalent local representations of the relativis-
tic Hartree-Fock exchange potentials are too small by a factor of 2. The implications of
this error for the relativistic Hartree-Fock calculations of closed shell nuclei are discussed.

NUCLEAR STRUCTURE Dirac equation, equival. ent local potentials presented.

Recently the concept of equivalent local poten-
tials has been applied to the nonlocal exchange
potentials which arise from the relativistic Har-
tree-Fock theory' ' (based on the Dirac equation).
In the present work, it is shown that the explicit
expressions for the equivalent potentials given in
Refs. 1 and 2 are too small by a factor of 2. The
implications of this error for the relativistic Har-
tree-Fock calculations of closed shell nuclei that
are reported in Ref. 2 are discussed. It is found
that the conclusions based on those calculations
are not affected by the correction of the error.

It is also shown that local state-independent
potentials in the Dirac equation can be given equiv-
alent local state-dependent forms. Aside from
being a curiosity of the Dirac theory, these equiv-
alent local state-dependent forms are useful in
the present context because they can be used to
illustrate the error which occurs in Refs. 1 and 2

while avoiding the complications associated with
the nonlocal exchange interaction.

The basis of this work is the rotationally sym-
metric parity conserving Dirac equation:

(cZ p+ p[mc + U, + y U„—y" U„" —y y" U& ])g =Ey.

The notations and conventions for the potentials
and Dirac matrices are given in Ref. 2. Note is
taken of the special nature of the potential U„" in
that it cannot simultaneously satisfy the further
restrictions of Hermiticity and time reversal in-
variance unless the potentials are state-dependent
in a particular way. This fact was pointed out in
Ref. 2 and is further elaborated in a forthcoming
paper. Our interest is with the discrete eigen-
functions of this equation which can be labeled by
the set of quantum numbers (nu&ZI) and can be

given the spatial representation

2m c'+ Us Uv+E

dG . (U„"+U', ) &u(J'+-,')
dr Ic r

V~+ „—E
(4)

The quantum number indices have been removed
from the radial functions for simplicity. The rest
energy has been subtracted from the energy eigen-
value as well.

One may obtain state-dependent equivalent po-
tentials for a local state-independent potential (a
scalar potential for example} by considering the

following identity

q, (r)y,'(r)
PU AP)=PUs T( ) (r)

Here we assume g, to be one of the eigenfunctions
of Eq. (l) where only the scalar potential U, is
nonzero. All the quantu~ number indices are
represented by the single index i. Now one may
note that the matrix g, (r)gt(r} may be expanded in

l (Z,""(r) p," (8, y)}
(ia", (r) M,„(e,y) j

Again the quantum number notation and the defini-
tion of the spin-angular functions 'JJz' (8, P} are
given in Ref. 2. Equation (l) may be reduced to
radial form in which the radial large and small
components E and G occur
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the 16 Dirac matrices

0; (r)»I,'(r) =
4 g I 0»'.(r)r&»1»»(r)1 r" (6)

A

Inserting Eq. (6} into Eq. (5), one obtains an equiv-
alenc e relation

merator and denominator of the equivalent local
form over the magnetic quantum number m. To
test this argument one may define a new potential
U,' by performing this magnetic averaging upon
the right-hand side of Eq. (7),

Z I. g» (r)rg4;(r)l r
A

I-'»U. =~ t-'»U.
, y(-)~ (-) ~ (7)

& ZI.4,'(r)r 0 (r)lr"
pUt & gv A mi

Z 0,'(r);(r) (8)

While this equivalence is formally exact insofar
as the operation of either of the potentials upon
one of the eigenstates g; is concerned, it is com-
plicated by the fact that all 16 elements of the sum
over A on the right-hand side contribute. Further-
more, the right-hand side of Eq. (7) depends upon
all of the single-particle quantum numbers (n~Jm).
An analogous situation obtains in Refs. 1 and 2

where equivalent local forms for the Hartree-Pock
exchange interaction were considered. There it
was argued that the rotational invariance of the
nonlocal interaction permits one to sum the nu-

By utilizing the form of the wave functions given
by Eq. (2) and the algebra of the Dirac matrices,
one can reduce Eq. (8) to the form

Now only 3 terms of the original 16 a.re present
and the dependence of the right-hand side upon
the magnetic quantum number has disappeax ed.

To test the validity of this averaging procedure,
one may calculate the matrix element of the right-
hand side of Eq. (9) between two eigenstates (g,.

and g, ) of the original scalar potential,

1 1
(q, IPU,'Iy, )=- I -(F, j:,-»G, y,'.- )PU, 1+ ' ' '+ ' ' r'

('G» '8im f
(10)

Note that the quantum numbers co, J, and m are not distinguished for the states i and j because the poten-
tial on the right-hand side of Eq. (9) cannot connect states of different »d, Z, a»'~ „.quantum numbers.
Performing the angular integrations in Eq. (10), one obtains:

(P,. IPU,'Ig,.) =4 U, (F, F, —G, G, ).+ ', ', (F, F, +G»G, )+. , ' '-, (F, G, —G, F,)dr. .

After a little algebra Eq. (11) may be reduced to
the simple form

oo

($, IPU,'Ig, ) =2 U, (F, F; —G, G, )d» .
0

(12)

One may note that the right-hand side of Eq. (12)
is exactly one-half of the matrix element of the
original scalar potential. Since this is the most
general nonzero matrix element in this basis, one
concludes that the angle averaging procedure used

Ga o 2iEG
+G. (13)

For the sake of completeness, the more general
equivalence relation which includes all three po-
tentials which satisfy the usual shell model type

in defining Eq. (8) is rendered exact by a multi-
plication of the result by afactor of 2. 'Thus one
has proved the following equivalence for a scalar
potential U, acting upon an eigenstate g; of the
Dirac Ha.miltonian:

restrictions is given below without proof:
2 Q 2 2 G 2

2i &,.Q,. E] —Q; „„2iE)G],' U + - ', ',— U", y" + —U", + —, , U'„y'y"
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As is shown by Eq. (14), these equivalent state-
dependent potentials in general include a com-
ponent which transforms like the unusual U„" po-
tential.

While the equivalence relation given, for ex-
ample, by Eq. (13) is amusing, it is probably not
of any practical importance since it is far easier
to work with the original state-independent local
potential than with the state-dependent form. The
exercise of deriving Eq. (13) is useful, however,
in that it illustrates the factor of 2 error in the
angle averaging procedure which was erroneously
represented as being exact in Befs. 1 and 2. Al-
though the details are too lengthy to present in a
short communication of this nature, it is straight-
forward to show that a similar factor of 2 error
occurs in the state-dependent equivalent local po-
tentials which are presented in Refs. 1 and 2.

The concept of equivalent potentials has been
investigated within the framework of the Dirac
equation and it has been shown that local state-
independent potentials which are rotationally in-
variant and parity conserving may be given local
state-dependent representations. With respect to
the nonlocal exchange potentials of relativistic
Hartree-Fock theory, it is shown that the local
state-dependent representations given in Eqs.
(14)-(17)of Ref. 1 and in Eqs. (41)-(44) of Ref. 2

must be multiplied by a factor of 2 in order for
the potentials to be exact representations of the

original nonlocal potentiaLs.
One should also note that the right-hand side of

Eq. (53) of Ref. 2, which gives the exchange con-
tribution to the total binding energy, should be
multiplied by a factor of —,

' inasmuch as the er-
roneously defined exchange potentia1 U„" occurs
there.

As far as the author knows, no numerical cal-
culations have been published which are based
upon the erroneous equations in Ref. 1. In Ref. 2,

however, some numerical calculations were pre-
sented for the nuclei "0, 'Ca, and 'Ca and it is
of interest to consider to what extent this error
affects the numbers published and the conclusions
drawn from them. 'The corrections to the exchange
contributions to the total binding energies pub-
lished in Ref. 2 will be due to second order effects
coming from changes in the single-particle wave
functions rather than from changes in the equa-
tions used to calculate the binding energies. The
corrections to the total binding energies given in
Table D of Ref. 2 should be no more than a few
percent since the exchange energies themselves
are only about 15% of the total binding energy.
The corrections to the rms radii and single-parti-
cle eigenvalues can be estimated by noting the
differences between the Hartree and Hartree-Fock
values quoted in Ref. 2. This amounts to a de-
crease of about 0.03 fm for the rms radii.

The exchange potentials which are plotted in
Figs. 1-4 of Ref. 2 for "0, for example, are ex-
pected to be doubled in value. They will, never-
theless, stiD remain very small in comparison to
the direct potentials. For the exchange potentials
from the inclusion of .he one-pion exchange (Figs.
6-8), a doubling is also expected and this should
further increase the stability problems associated
with these potentials which were noted in Ref. 2.
One concludes then that the conclusions reached in
Ref. 2 will not be significantly altered. by the cor-
rection of the error in the exchange potential ex-

pressionn.
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