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Relativistic effects on the wave function of a moving system*
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An alternative approach to the recent results of Krajcik and Foldy is presented which
stresses a different point of view, but is completely equivalent to their results.

[NUCLEAR REACTIONS Relativistic corrections to wave functions. ]

(la)

II,. = p, —Pm,./m „ P=g p, , (lb)

where the total. mass of the system of A, particles
is m, and neglects the binding energy. The intern-
al. variables r'i and II; are merely a convenient
choice. In terms of the variables of Eq. (1), the
nonrelativistic wave function of a moving many-
body system takes a particularly simple form:
it is the product of an internal wave function
which describes the complexity of the system's
structure and a plane wave which describes the
over-all motion. An identical simplification re-
sults in the relativistic case when. appropriate
center-of-mass variables are used."

The purpose of this note is to present an abridged
alternative description of the results of KF which
contains no new results, but a different point of
view. We stress the latter point, since the results

Recently, Krajcik and Foldy' (KF) published an
extremely elegant and complete treatment of the
center-of-mass (c.m. ) variables for an interacting,
r elativis tic, many-body sys tern. The center-of-
mass variables are so defined that the infinitesi-
mal generators of the Poincare group (the momen-
tum, angular momentum, Hamiltonian, and boost
operators), expressed initially in terms of the
canonical variables of the individual particles,
take the form they would have for a single parti-
cle when expressed in terms of the c.m. variables.
Nonrelativistically this is aeeomplished in the usu-
al way by defining the center-of-mass coordinate
R, total momentum I', and internal coordinates
and momenta for the ith particle in terms of the
canonical coordinates and momenta r,. and p;,
spin si and mass m,.:

A A
jr';=r, —R, R= m;r;/m, , m, = P m&

presented herein are precisely equivalent to the
more elegant treatment by KF and certain features
were modeled after their basic approach. Because
the use of nonrelativistie c.m. variables is an in-
grained feature of nuclear physics, the use of
other c.m. variables is unfamiliar and it tends to
obs cure thos e features of Lor entz kinematics
which are familiar. Classically we expect the
Lorentz contraction to modify the shape of a mov-
ing object and the Thomas precession to affect the
angular momentum. Clocks placed on individual
nucleons may be synchronized in the rest frame,
but will not in general be synchronized in any other
frame. We expect these phenomena to affect the
wave function of a moving quantum mechanical sys-
tem as well, and our treatment will emphasize
this aspect of the problem, which is bypassed in
the more formal and elegant approach of KF. In
addition, the alternative point of view we develop
permits a direct comparison of the results of KF
with the earlier treatment of relativistic correc-
tions for the deuteron by Gross' using the Bethe-
Salpeter equation. In this regard the approach is
similar to treatment of Brodsky and Primack' and
in particular, Grotch and Kashuba, ' although their
results were not complete to order (v/c). '

We restrict ourselves to relativistic correction
terms of order (v/c)' beyond the nonrelativistic
limit and because momentum divided by mass is
dimensionally the same in our units as the ratio
of velocity to the speed of light, we regard (v/c)
as the equivalent of (1/m), where m is any mass.
This does not imply that the terms of order (1/c)"
in KF necessarily correspond to (1/m)" in this
work, but merely that their expansion is equivalent
to ours. The nucleus is a weakly bound system 3nd
the kinetic and potential energies almost cancel. ,
so we treat the potential as order (1/m).

The three components of the total. momentum
operator P, , the angular momentum operator J, ,
the boost operator E, , and the Hamiltonian II,
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(2a)

[J Ji ] = ie;)»J» [Z, , I,) = is„,P, [Z, , Z, ]=ie...Z, ,

(2b)

satisfy the Lie algebra of the Poincare group:

[P,, P, ] =[a,, H]= [@,, H]=O,

commutation relations and Eq. (2a) prove that
the potential must be a translationally invariant
scalar function and the last of Eq. (2b) demon-
strates that V is a vector function under rotations.
To order {1/m) the first of Eq. (2c) yields

[z;, P, ]=iH5;, [z„K)]= —ie, ,»J„ [z,, H]=a,
(2c)

(4a)[V, , P, ] =i5, ,U, ,

and anticipating the result [R, Uo] = 0, Eq. (4a) al-
lows us to write

P=g p, , J = S +R && P, 8 = g (r'; x IT, ) +s, ,

(3a)

H=m, +Ho+t»H, H, = Q p /2m;+Uo,

t»H= —g p, '/8m, '+U, ,

(3b)

K =Ko+ &K, Ko =m, R —tP,
(Sc)

~K= g ((-,'p, .', r,.)- s,. &&p,.)/2m, . +V.

The relativistic correction to the nonrelativistic
Hamiltonian Ho (including potential U, ) is t»H,

which is of order (1/m)', and the relativistic cor-
rection to the nonrelativistic boost, Ko, is &K.
The usual canonical commutation relations of
r, , p, , and s,. are sufficient to show that the quan-
tities defined in Eq. (3) satisfy the commutation
relations in Eq. (2) to the appropriate order in

(v/c) in the absence of any interaction. These

As shown by KF, not all these relations are inde-
pendent. In the nonrelativistic limit, the Lie alge-
bra of the Galilean group is given by Eqs. (2a) and

(2b) and the last of Eq. (2c), while the Hamiltonian
in the first relation of Eq. (2c) should be replaced
by m„and the right-hand side of the second rela-
tion should be replaced by zero. This limit is dis-
cussed in detail. by KF and by Foldy. ' For a non-
interacting system, the wave function of the whole
system is simply the direct product of the wave
functions of the individual particles and the Poin-
care group generators will be the sum of the gen-
erators of the individual particles. In the presence
of an interaction between the constituents this is
no longer true and we choose a representation
where the total. momentum and angular momentum
are unchanged, whij. e a potentia, l U and interaction
boost V (which vanishes if U vanishes) must be ad-
ded to H and K in order to satisfy the commutation
relations in Eq. (2). As shown by Foldy, ' the inter-
action boost may be eliminated in the nonrelativis-
tic limit by a choice of representation. Using the
variables in Eq. (1) and the time t and including
(v/c)' corrections we obtain from KF,

V =RU, +w, (5a)

with w a translationally invariant function. To or-
der (1/m)0 the second of Eqs. (2c) yields the con-
dition that the curl of w with respect to P vanishes:

&p &&w =0 . (5b)

1 P

X.(P) =- w'dP +H.c.
2 mt

(6a)

x,(P) = —2 Q rI PIT; P/2m, '

- 2 Q r'; PIT /2m;m,

+H. c. + P s, XII; P/2m, m, (6b)

Because of Eq. {5b) the line integral in Eq. (6a) is
independent of the path. The commutation rela-
tions, Eq. (2), are therefore satisfied for any po-
tentials U, and U, which are sca, lars independent of

R, and for Uo independent of P. In addition, the
vector w, defined in Eq. (5a), mustbe independent of
R and satisfy Eq. (5b), while U„U„and w are re-
lated by Eq. (5c). As emphasized by KF, the in-
teraction boost is quite arbitrary, as is the poten-
tial, within the restrictions stated above.

In order to determine the wave function of the
system of particles in the rest frame we need to
know the relativistic correction to the potential
U, (0), as well as U„but only U, (P) —U, (0), or
equivalently p„, is needed to determine the rela-
tivistic effect of motion on the wave function. That
'is, we are not interested in the wave function in
the system rest frame, but in the relationship be-
tween the wave functions of the moving system and
of the system at rest. We denote the time-inde-
pendent wave function in the system rest frame
by ~ 0), and the time-dependent wave function of

The remaining commutation relation to order
(1/m)0 gives [R, U, ] =0 and to order (1/m)' gives
a commutation relation which was originally solved
by Foldy'.

U, (P) —U, (0) =- P'Uo/2m, —i[X„,Ho]- i[XO, Uo],

(5c)

where'
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the system moving with momentum Po by ~ Po).
The boost operator acting on the rest frame wave
function produces the wave function of the moving
object, and introducing the time dependence of the
wave function me have from KF and Osborn'

~ 50) = (ms /&~ )'"exp(i6)f) K) ~ 0) exp(- ims t),
(7a)

tanh& = v, m~ =m, + &~,

Z, = (m, '+P,')"' =-m, + P,'/2m, —P,'/Sm, ',
0

(7c)
where m~ is the total mass including binding and

E~ is the total energy. The factor in front of Eq.
(7a) is necessary to maintain the conventional
normalization of the plane wave part of the wave
function of the moving system.

The time dependence can be removed from the
exponential containing K by using the commutation
relations of the Poincare group and the following
identity for the operators a, b, and c and the quan-
tity n =v'~~:

(7b)

e"' = e' sxp b(sieha/a) sxp(- (1-sash a)),

(8a)
which holds if

[a, b] =A.c, [a, c] =)pb, [c, b] =0, (Sb)

E(I. (8b) is applicable since a-f) K(t=0), 5-i) Pt,
and c -II. The result is simply to repl. ace m~ in
the time exponential by E~ and to eliminate the

0
time dependence in K, which we will assume
henceforth.

The remaining decomposition is more complex
and we mill perform it only approximately. Be-
cause 8 is of order (I/m), K, is order (m), and
b,K is order (I/m), the factor in the exponential
splits into two pieces, one of order (I/nz) and the
other of order (I/m)2. We are working only to or-
der (I/m)' so it is sufficient to separate these two
pieces and expand the result to order (1/m)'. The
K0 and &K parts do not commute, but it is easy to
see that repeated commutators of K, with the po-
tential independent part of 4K will. eventually van-
ish. In fact, the double commutator is the last one
we need consider. Repeated commutators of K0
with m need not terminate, but for simplicity me
assume that two commutators suffice. If any pow-
ers of P in w come from a P/m expansion, there
will be no more than one such power because w is
order (I/m). In the explicit examples considered
in Close and Osborn' and KF, w was independent
of P. Neglecting terms of order (1/m~) and using
the identity

a+ b eb +c/2 ea k/6

which holds for operators a, b, and c satisfying

[a, b]=c, [g, c]= X, [b, c]= 0, (ob)

K'= 2(HOR+RHO) —S x P/2m, —tP,
H'=M+ P"/2M —P"/Sm, ',

(lib)

(11c)

M =m, + g (II; /2m, —II; /Sm, s) + U, + U, (0),

(lid)

where M is the mass operator (including relativis-
tic corrections) in the c.m. system of the nucleus.

the expression in E(I. (7a) can be simplified. Care
must be taken to use the relativistic expression
for the momentum, including the binding energy.
The quantities a and b are the K0 and 4K pieces of
K, respectively, whileb, c, and A. are of order (I/m)'.
Keeping only (I/m ) terms and performing con-
siderable algebra we find

I P.) =[I-iX.(P) -iX.(P)] I
»"'"'-"." . (10)

Because the g's are Hermitian, the usual normal-
ization of the wave function obtains.

Without the factors of g, me have the usual non-
relativistic result. These factors produce the
kinematical effects one usually associates with
relativistic phenomena. As argued by the present
author, ' the first term in E(I. (6b) produces the ef-
fect of Lorentz contraction on the internal wave
function. The second term arises because the
center of energy, rather than center of mass,
moves uniformly in the absence of a force. ' The
third term is associated with the Thomas preces-
sion of the spins of the moving system. ' The po-
tential dependent term g„arises for a variety of
reasons. In addition to the Lorentz contraction
correction, Gross found a potential dependent cor-
rection"' to the moving deuteron wave function
in the form of E(I. (10). He attributed this to the
lack of simultaneity of clocks on the two nucleons
in different reference frames. ~

Having determined the effect of relativity on the
wave function, it is useful to recover explicitly
the results of KF using the approach of Grotch
and Kashuba. 6 E(luation (10) has the form of a
unitary transformation, and if we perform the
inverse transformation on ( P,) and all our op-
erators, we have effectively changed variables
to the center-of-mass variables of KF. Because
g0 and g„do not depend on R and are scalars, this
transformation does not affect J or P. It does
modify K and H and in the new representation de-
noted by primes me have

IP'.)=l0) exp[i(P R —E &)],

(1la)
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The operators J', K', P' and JI' are now in single
particle form. In deriving Eq. (llc), Eq. (5b) has
been used. The same transformation must be
used for all other operators as well, such as the
charge operator p(x),

&P&l p(x) I P;& =—&P; I p(x)+ f[x(P), p(x)] I P.&, (12)

where g is the sum of the two individual g's and
the final matrix element in Eq. (12), explicitly ex-
hibiting relativistic corrections to p, uses center-
of-mass wave functions which may be approximat-
ed by nonrelativistic wave functions if desired.
This approach avoids the awkward expansion used
in Ref. 8, which led to an error. The correct re-
sults of KF were obtained by evaluating the com-
mutator in Eq. (12). It should be emphasized that
the representation of KF, which uses the more
complicated c.m. variables, leads to a simple
wave function and a simple form for the group

generators, while the simple nonrelativistic var-
iables we have used result in a more complicated
wave function. When calculating matrix elements
of transition operators the representation of KF
is more useful, as can be seen in Eq. (12).

In summary we have presented an abridged,
though complete, treatment of lowest order rela-
tivistic corrections to the wave function of a mov-
ing nucleus which is equivalent to the more formal
and elegant treatment of KF. This approach is
useful in making comparisons with the works of
others, such as Gross, and explicitly exhibits
relativistic effects such as the Lorentz contrac-
tion. The reader is referred to Ref. 1 for the
complete treatment of this problem, where many
other aspects are considered.
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