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The response of a many-fermion system to dilatation is studied through the introduction, in close analogy
with the "cranking" and "pushing" models, of a "squashing" model characterized by the Hamiltonian, H
= Ho —i D, where D„ is the generator of dilatations in the x direction. The evaluation of the "rigid" dila-
tational moment of such a noninteracting system is carried out for both standing wave and periodic boundary
conditions in a cubic box of side L. As in the pushing model, the dilatation moment can be evaluated
formally using the relation between D, and the commutator fx ', Ho]. For independent fermions moving in a
harmonic oscillator one-body potential, this relation is shown to lead to further simplification after the
introduction of perturbed one-body wave functions. In the case of periodic boundary conditions, it is shown
that the rigid dilatational moment is not altered by an interparticle interaction to first order in the interaction
strength; by comparison with the analogous cranking moment problem, this result extends to all orders in the
interaction strength. The response to a symmetric dilatation, D = D„+ Dy + D„ is studied in a soluble
Hartree model of "nuclear" correlations wherein a separable monopole-monopole interaction acts between
"nucleons. " In this model the dilatation moment in the presence of pair correlations is found to be the rigid
moment, with the kinetic energy of dilatation ~ i', there being no higher order corrections.

NUCLEAR STRUCTURE Approximate many-body methods appl. ied to solvable
models.

I. INTRODUCTION

"Cranking"" and "pushing"' models of many-
fermion systems were introduced a long time ago
to discuss the inertial responses of such systems,
these being characterized by the inertial moment
in the one and the translational inertial mass in
the other, as well as to investigate the effects' of
particle-particle interaction on their "rigid" val-
ues, the respective inertial responses in the ab-
sence of particle-particle interaction. It is curi-
ous to find no mention in the literature of yet an-
other such model, one in which we are invited to
consider the response of this many-particle sys-
tem to dilatation; we choose to term such a model
colloquially the "squashing" model.

After briefly recapitulating the properties of the
generator of dilatations (in one dimension) D„
= —,'(xp„+p„x) in the context of the one-body quan-
tum mechanics, we introduce the noninteracting
squashing model of a many-fermion system, and
carry out the evaluation of the rigid dilatational
moment of such a system for both standing wave
and periodic boundary conditions in a cubic box of
side L. (The results are of course identical. ) It
comes as no surprise that the rigid value is found
to receive its maj or contribution from states ve ry
near the Fermi surface. ' We next prove in the
case of periodic boundary conditions in a cubic
box of side L that the rigid dilatational moment
is not altered by interparticle interaction to first
order in the interaction strength in the manner of

the calculations of Brueckner and Amado' and of
Hockmore of long ago, and indicate the extension
of this result to all orders in that coupling. '

While the squashing model is seen to resemble
the cranking model on a number of counts, it is
interesting to note that as in the pushing model
the kinetic energy of dilation with the associated
dilatational moment given by the familiar crank-
ing formula'

2 ~ I&(.l D. I tt.)l'

n~p p n

can be evaluated formally using the analogous re-
lation between D„and the commutator of x' with

Hp. ' In this connection it is illuminating to calcu-
late the dilatational moment yet again in a soluble
(Hartree) model of a many-fermion system with a
(separable) monopole-monopole interaction. ' The
dilatation interaction (which we take to be sym-
metric with D =D„+D,+D,) may be exactly trans-
formed away in this case (although initially worked
out in the familiar random phase or pair approxi-
mation [random phase approximation RPA])' so
that the dilatational shift in the ground state ener-
gy is exactly given by —&c'Q„.„,„, where i is the
dilatational coupling. (See the discussion given
below. ) This result, though based on a soluble
model of interacting fermions, reconfirms the
recent observation made by Zamick' in the re-
lated calculation of the inertial parameter in the
vibrating potential model' that the Inglis model
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works better for high frequencies than one would
have expected.

tween single-particle states in the box with wave
functions ggol„(xyz) = (8/L')' ' sink, x sink ysink„z
ls

II. SQUASHING IN THE NONINTERACTING SYSTEM.
PARTICLES IN A BOX

Preliminary to considering the problem without
interaction we recapitulate briefly the salient
properties of D„, the generator of dilatations in
the x direction. Under an infinitesimal dilatation
in the x direction

U, = 1 —i(c/5 )D„,
where c is the infinitesimal extension, one has

Utf(x)U, =f(x) +i (e/h)[D„, f(x)]

=f(x) + ex
d x
dx

(l'm'n' lD„l lmn) = 6„„,6„„,(- )'
& kg -k,

where

k, = lw/L (l=1, 2, . . .) .
The energy of a single-particle state is

E,~„=,(l'+m'+n') .

Substituting into Eq. (1) we find

(k, .'+ k,')'

&, t'

(10)

(12)

(13)

Similarly

U~g(t, )U, =g„) —ep„
dg(p. )

x
(4)

Again as in the analogous cranking model calcula-
tion of Brueckner and Amado, since the principal
contribution to the sums comes from values of L

and l' close to the maximum value
(In this connection, note that one has for the oscil-
lator Hamiltonian (say, in one dimension) under a
finite dilatation

U(~)'k, " U(n) = e*'"'""[p '/2M+ ,'(Zx')]e-' "-" *

A =(Z' —m' —n')"'

we write

l" —l' = 2A(l'- l) = 2Aq .
Equation (13) now becomes

(14)

(15)

with

=P„'/(2Me'") + 2(Ke'"x') =ho'"'

m, n q=l l =A-~

&u
' = [Ke'"/(Me'") ]"'= (u . ) (6) The sum over q and l gives a g function

Proceeding in direct analogy with the cranking
model, ' where for rotation about the z axis with
angular velocity u one has

H=H, —~L,

(L, is the angular momentum operator about the
z axis) and with the pushing model, ' where for
translation along the z axis with velocity V one
has

H =H0 —VP,

(P, is the linear momentum operator in the z
direction) we construct the squashing model for
noninteracting fermions:

(7)

(8)

~ =NML' (18)

emerges, with the kinetic energy of dilatation
—2E' S;g,d characteristically coming from small
values of q, i.e. from states very near the Fermi
sul fa,Ce.

As in the case of the pushing model, where the
inertial mass

and the sum over mand n gives the number of par-
ticles ¹ Thus the rigid dilatational moment

H =H0-4 D„, 2 ~ l&g. l p. l g.&l
'

2 (19)

where e is the angular frequency for vibrations in
the x direction and D„ the appropriate dilatation
operator. For orientation purposes we carry out
an evaluation of the dilatation moment (—', S) first
in the case of standing-wave boundary conditions
in a box of side L. The matrix element of D„be-

n&0

can be evaluated formally using the relation'

1
—. [z If] =—'
i@ ' M

(20)

one may similarly evaluate the dilatational moment
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formally by using the relation

,@
[x',H, ] = 2D„

which leads to the alternative expression

m=3M(qJ x') q, )=M(qJ r') y, ) .

(21)

(22)

has trivially by redefinition of 4,

H=g c-c-- V P ltk, c-c-
2M

k k

=P (
—Rlfv')c c (31)

However, note that we only encounter the analog
of the perturbed single-particle wave function

Ni-(xyz) =e'"'"0i"..(xyz) (23)

in terms of which the Hamiltonian [Eq. (8)] of the

pushing model is diagonalized (through the intro-
duction of the field operator 4 in its expansion in
Perturbed single-particle wave functions [4' =

Q,„„c,„g, „(xyz)] in place of its expansion in
unperturbed single-particle wave functions [0 =

g, „c~("„g~('&(xyz)] inH with

Analogously, for the squashing model in periodic
boundary conditions (with single-particle wave
functions (I'„=(1/L)'" exp[i2v(lx+my+nz)/L]
= (1/L)'" exp(ik r)}~ with one-body matrix ele-
ments

ik k„'+4„
(D.?r,T =

2 k", k" ~ay, ~ay„(k,'~k„),

(D„)g k
= 2 Rk„L

one has (after again redefining k„here)

H = dr 4 ~ 3'.0 —Vp, 4
2 2

H= ——,c ML, c-c-+II, ,
KVS k k

(34)

)mn

(El mn 2M V )c l mnc l mn } (24) H~ = —e (D„)p pc c
k' k

T&',4
{T&'&5)

(35)

in the case of independent fermions moving in a
haxnzonic oscillator one-body Potential, viz. for

with the nondiagonal contribution to & given by

II = dr% 0
—can (25)

("'" "")= —2(y, ~H, H, ~ g, )
0 0

with

I, =I {"~+I{'~+a{'~,

e = g c„„„.y„(x;Z ~'M)y(0&(y; Z)y~„"(z;Z),
n„nynz

(k„'+ k„)'~ (k' —k )'(k" -k2)
kk'

(36)

y„(x;Z-~'M)=e'"" ""y(0&(x;Z ~'M) (28)

where we have taken the limit of a large system'
for which A =(E' —m' —n')'" is large; thus we are
able to write

H= g ((n„+2)m~[z'- PM]
nynynz

+ (n, +n, + 1)k~[Z]}c t „„c„„„
together with the expected result O(e'),

[E„,„,„—~at M(x )„„„„„„,„,]
nzn&nz

xcC n„n,n, n„n, nz

(29)

(30)

ltD(nondiag ) j. ~~I 2
3 (37)

Thus, adding to the nondiagonal contribution given
by Eq. (37) the diagonal contribution of Eq. (34)
(M3("""l——4ÃML ), the earlier result for standing-
wave boundary conditions S = A'Ml. is recovered.

and to introduce the summation variabl. e q=l'-l.
From the symmetry of contributions from positive
and negative l and the relation" Q „A = ,N, it fol-—
lows that

It should be emphasized that these results are
rather indifferent to the boundary conditions im-
posed. Thus, in the pushing model in the case of
periodic boundary conditions (to simplify matters
we use the formalism of second quantization) one

III. SQUASHING IN THE INTERACTING SYSTEM.
PARTICLES IN A BOX

Here we sketch briefly the proof that for fermions
in a box the rigid dilatational moment is unaltered
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by particle-particle interaction to first order in
interaction strength and its subsequent extension
to all orders. (It is not necessary to go into much
detail here because of the very close resemblance
of this pxoblem and its resolution to that encoun-
tered a long time ago in the study of the cranking
moment of the very same interacting many-par-
ticle system. "}In the case of periodic boundary
conditions and under the characteristic assump-
tion of a translation-invariant two-body interac-
tion, one has now, as a consequence of the dis-
cussion given in Sec. II, to deal with the Hamil-
tonian

with

+ —Q cT, c), (1,21v13, 4)
1

k4 k3 k1+k2~ k +k
3 4

thus it is sufficient to show that the effects of par-
ticle-particle interaction vanish in the calculation
of the nondiagonal contribution to S:

H =II +'{3+H

j.g)(nondiag ) "o iE (~ +~) a o
0 0

(40)

which to first order in V is given by'

I (nondiag) &to( nondiag )
3 rigid 1+ 2+ 3

2 ~ (e.l &. I (.& (& O. I vlkd -& P. l vl 0.& ~..)&e.lD. I e.&

(E —E )(E —E )

4 ~ &4.1D.14.&& A. ID.I e.&& e.l lve. & (41)

The three interaction-dependent terms 6, (i =1, 2, 3) given by

t, l'()))))))(PPI+)IPP&(i) I~)l)).&)

1 m1 f11 l1 l2~2rt

(42)

I) +Ig f2+I, (P) P21" I p)P2)

l m n l' l2m2n„l2

(43)

M'I' ~ ~ l~~l,' /, +l~ 1 1 (p,'p,'lvl p, p,)
g g2

lf l ~ ~ lt 1 1 2 2 1 1 2 2 1 2 1 2
1 11 1 2 2 22

(44 )

are, following Ref. 2 successively transformed into

A1- l1 +1
2 4 1

t, + ~, = — , , g (& p, p, lvl p, p, ) —( p, —p, lvl p, —p. &). =. =o, g
m1n1 m2n2

l1=0 q =1

'2 1
q

M2L4E'
dQ, dQ, sins, sin6, sin4), sing, (pip21 vl p)p2&)&, =p, =pz

96m 2@2
4
„'4„

M2L4E'
54' 2 1(PE~PE)
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Since this last expression may cast into the form'

M2L4F4
2 3 36+2

1

d(c«e„)( pp. lvl p,P. & p, =.,=.,c»i'i.

Introducing operators for particles

c„=a„, n(o. ) &nr (51a)

[nz refers to the Fermi surface, the last filled
level nz(n„n, n, ) in the reference system. ] and for
holes

we have

, M dV

P~ dP~
' (47)

c„=bt, n(e) ~n~

and normal ordering H, one has

(511 )

a, +a, +a, =o.
This first order cancellation of interaction effects
is a consequence of the "generalized gradient
theorem" (already familiar' from earlier dis-
cussions of the cranking moment) and the exten-
sion of this result to higher orders is straight-
forward, ' i.e. we conclude that interaction effects
on the dilatation moment vanish to all orders in
this model.

where

A. r -~M~ Tao

(52)

IV. SQUASHING IN A SOLUBLE HARTREE MODEL OF
FERMIONS WITH A SEPARABLE MONOPOLE-MONOPOLE

INTERACTION

=-,'(n+ —,
'

)k&v

H= dr@ 4'+2~.' dr+ r24:. 482M

The field operator 4'(r) is expanded in the eigen-
states of a harmonic oscillator reference spec-
trum

e(r) = g c„„„yt~„„(r;K)
nz n& nz

(49)

with the harmonic oscillator parameter I& =N(K/
M)' ' variationally determined and with the as-
sociated annihilation (creation) operators c„„„n& n& nz(c„„„)satisfying the anticommutation relations

{c„.o„' ) =&„„,5„„,5„„,. (50)

(It will usually suffice to label operators and wave
functions schematically, i.e. ,

We consider finally the response to dilatation
in a "soluble" model' of nuclear correlations
wherein a separable monopole-monopole interac-
tion' v„.= &r, 'r, ' acts between nucleons (these we
take to be spinless, adopt, iiigthe definition that
exchange terms vanish'). The result in this in-
structive and simple model may be indicative of
the situation in the case of more realistic inter-
actions. In the formalism of second quantization
the Hamiltonian of this interacting system is given
by

(a)N~ =a~a„,

0~8 =c„8+c„g +N„'e —%~a(tf) {&)

c„a=b a,
Q„'j =a„as,
f(i g~ =bt„b8.

At the minimum of

np- n~

&o)a[(v])o& =Q z'„+-,'z Pr„'
determined by

rr(o(a[ra, ](o), F z
(

s )'(F)'
(54)

the pair excitations are decoupled from the un-
correlated ground state energy, viz.

a[(v, ]=(o~a[(v,]~ o& + gz [(v,]o„„
2

+2k. & 8 0„8 (56)

where Q denotes the sum over occupied states,
ng

Q -=Q(n„+n, +n, +3) = —,'(n„+l)(n~+2)'(n~+3),

(55)
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since there

[(g)o] —RM(do = 0.
y

The statement of the problem is complete with the
addition to H of the interaction with, say, a sym-
m et' c dilatation D = D„+D, + D, :

The solution to this (so far) exact problem is ob-
tained readily by comparison with its solution in
the "boson" approximation (RPA). ' The equivalent
pair approximation to the exact problem is con-
structed by defining boson annihilation (creation)
operators c„]](c 8) with commutation relations

H, = —~ cfr %~DC . (57) C(gBc C g8('] (xnc 88' (58)

in terms of which

(0 I II[~ ] I 0) cf(cRPA ~RPA+ c0RPA ~ ~RPA

where

d, =d(")+d("J +d('R)

—(y(o) D(((o) )

with

= 2+8 —+ )c Bc 8+ )R(Z 8 (c 8+6]]) —~Z" 8(c 8
—c 8)

n8 n8 n8
(59)

(60)

d„'c = ( N)({[ci(li)+(][c,. (())+2]P 'c„ i„i „ici,—(c—())) n il d„i „is i,

In the case of no pai) coPrelations (A. =0) the RPA Hamiltonian

(61)

Ko +3(~ = Q (E[) —F )c []c 8
—e Qd [](c 8

—c 8)
n8 n8

is diagonalized by the unitary transformation

(62)

S(') =exp[~ Q g(,'[) (c„+cd,}],

where g& q is pure imaginary. Thus,

gc(cc *+Jc)s="„'P (g",c'g)ci cc„c—gc* -diccigJ j —d g (gc -g, }(gJc')'
n8 =1 n g =1 n

d(J) 2

=Q( ,g- g)c'„, „d, - PQP
n8 j1 n8 8 n

(64)

provided

g )g(d) d(s) (65)

The kinetic energy of dilatation is easily evaluated:

expression reduces to

c~ c2(d 2(d0 0
n„n&nz n„n~nz n n nxyz

;.P P ld(gR)I'

1 n8E8 —E
n&, n&-1

= e"" (n„+ 1)(n„+2)w„(n„)
8(d 0 nz

= 0 ~ i)f g (~ )„„„„„
Z

X

»om the condition [Eq. (65)) with

(67)

(66)

and, with some additional manipulation this last

(g @ )g(g-(y(0) [g(i) g [~ ]]yEO))

((()(o) D y(0)) (68)
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we find

g"'= -(M/2N)r, .'.
thus

(69)

cussion, the theorem is preserved intact if we

simply make the correspondence"

S -S(,„„,i = exp (isM/25) g &z s'0& s
n8

('l0)S =exp (ieM/2h)g~ys'(c~, +cy~, )
ya

and S cornnzutes avid 'U "as well, i.e., the dila-
tational moment in the presence ofpair correla
lions is the rigid dilatational moment. In the ex-
act problem posed above at the outset of our dis-

again with

This result is "quasiadiabatic" only in the sense
that had we expanded 4 in the perturbed oscillator

states of Sec. II, we would have found that"
n& ~g

&f~l+&[~]=g 7'..l~'I+l& Q ~.o*I~'I —l~'MQ "..'I~'I+(& Q „„'f~'I- lM~")

2

x Pr s'[&u']O„s+ g(E„[&u'] —', C'Mr-„'[e'])0„„+—,'A. gr s'[&u']0„s
cx8 n8

(VS)

Neglecting the term 0(s') in the minimization of
g„T „[&u']+—,'A. +„&„'[e'])'produces our earlier
result [Eq. (6'l)J, since after minimization v'=m, .

with

[a, at] =1. (AS)

APPENDIX: PERTURBED SINGLE HARMONIC

OSCILLATOR

It may be of some interest to solve the eigen-
value problem of the perturbed single harmonic
oscillator of Sec. II by algebraic means. One in-
troduces the operators

t), = (l)((&')'+ o'&,

7), = (-,'i) f(at )' —a']

t), =(-,')(aat + at a)

(A1)

~ = (I/2M(u)'~'(a +at ),

P„=(2hM&u)'~'(a —at)/i
(A2)

constructed of the annihilation (creation) operators
a (& ) defined by

The q; satisfy commutation relations analogous to
those of angular momenta

[n„n.l = in. , -
[q„r),] = it)„
[n., n, ] =in, .

In terms of the g&

(A4)

g
= 2k@)f)3 + 2''g2, (A6)

Under the unitary transformation S=e'e "i (g real)
we have

g,' =S t),S =7),cosh/-q, sinhg,

g,' = 7),cosh/ —t),sinhg,
(A6)

St (h," —CD, )S = 2h(u(1 j '/(u2)' &2t) (A'I )

so that for the particular choice, +sinhp=Ccoshy,
one finds
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