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Hartree-Fock-Bogoliubov calculations for odd-mass nuclei in the Of-1p shell
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Employing the Hartree-Fock-Bogoliubov approximation and the Kuo-Brown interaction,
results for odd-mass nuclei in the Of-1P shell are reported. A Ca core has been assumed.
The blocking effect due to the presence of the odd nucleon has been taken into account. The
ground-state energies, the intrinsic and ground-state quadrupole moments, reduced transi-
tion rates, and the pickup strengths are calcul. ated and compared with the corresponding
avail. able experimental values.

NUCLEAR STRUCTURE Odd isotopes of Ti, Cr, Fe, Ni, Zn, Ge, V, Mn, Co,
Cu, Ga, As; calculated single-particle binding energies, ground-state energies,
intrinsic and ground-state quadrupole moments, reduced transition rates, pick-

up strengths. Hartree-Fock-Bogoliubov method. Kuo-Brown interaction,

I. INTRODUCTION

In recent years considerable theoretical as well
as experimental effort has been expended to under-
stand the structure properties of the Of 1P shell-
nuclei. ' From the theoretical point of view the
simplest way to study these nuclei is to assume a
"Ca core while studying the lighter nuclei and a
"Ni core for studying the heavier Of 1p shell nu--
clei. However, recent observations and calcula-
tions' ' show that the assumption of "Ni as a closed
core is not a good one and one must include Of, &,
orbital in addition to the other P fshell orbits-in
order to study nuclei heavier than "Ni. It is well
known that the increase in the number of valence
nucleons coupled with the consideration of all the
Of 1p single part-icle orbitals, makes a shell mod-
el study of these nuclei an unmanageable task. On
the other hand, such calculations are quite tract-
able within the framework of Hartree-Fock (HF),
Hartree- Fock-Bogoliubov (HFB), and Bardeen-
Cooper-Schrieffer (BCS) approximations.

Recently, a study of the ground-state properties
of the even-even Of 1P shell nuclei u-sing the above
mentioned self-consistent approximations had been
reported. ' A "Ca core was assumed and the axial
symmetric solutions were explored. Similar cal-
culations for the 1s-Od shell even-even nuclei had
been reported by Satpathy, Goss, and Banerjee. '
Investigation of asymmetric shapes in the ls-Od
and Of 1p shell nuclei had-been carried out by Ban-
erjee, Levinson, and Stephenson" and Chandra
and Rustgi. " It was found by Chandra and Rustgi
that the inclusion of T = 1 pairing, yielded axially

symmetric HFB solutions for N = Z nuclei. A re-
cent study by Sandhu, Rustgi, and Goodman" fol-
lowing the work of Goodman, Struble, Bar- Touv,
and Goswami" shows that the T = 0 pairing is not
at all important for these nuclei. Further it may
be mentioned that according to Geoke, Garcia,
and Faessler" and Whitehead and Watt" there is
little experimental evidence for T = 0 pairing cor-
relations in ' Mg, "S, and ' Ne nuclei in the
1s-Od shell. For N 4 Z nuclei, it is known from
the work of Wolter, Faessler, and Sauer" that it
is a good assumption to consider only the proton-
proton and neutron-neutron pairing.

In the present paper the work of Chandra and
Rustgi is extended to odd-A nuclei. At present
such a study for odd-A nuclei employing realistic
interaction does not exist in the literature for
Of 1p shell. For -even-even nuclei, the proton-
neutron and time-reversal symmetries are known
to produce fourfold degeneracy of the orbits.
These symmetries, however, do not hold for odd-
A nuclei. In the HFB approximation, the pairing
interaction acts on a nucleon pair occupying the
degenerate time-reversed orbits and makes it to
jump to other orbits. But the presence of the odd
nucleon in one of the orbits prevents the pair from
jumping to that orbit, an effect referred to as the
blocking effect.

In the following section, the HFB equations for
odd nuclei are introduced. The numerical calcu-
lations are given in Sec. III. These calculations
are carried out for Kuo-Brown" interaction. In
Sec. IV a summary and conclusions of the study
are given.
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II. HFB EQUATIONS FOR ODD-A NUCLEI

The shell-model Hamiltonian of the system in the
second quantized form is given by

&=+ &~lelp)~'. a~+l g &~plv~lyb)~ta8ta, a„
at ~ g~y~ 6

where q represents the single-particle energy and

&ap l V„l &6) represents the two-body matrix ele-
ment between the antisymmetrized states. The
creation and annihilation operators for a nucleon
with quantum number o (nljm) are denoted by at
and a, respectively.

In the HFB approximation the pairing correla-
tions are taken into account by introducing the
generalized Bogoliubov quasiparticle transforma-
tion given explicitly in Ref. 8 [Eq. (9)]. Since this
transformation does not conserve the particle num-

ber, the chemical potentials ~„and ~~ are intro-
duced as Lagrange multipliers to keep the expecta-
tion value of the nucleon numbers to the assigned
value.

According to Bloch and Messiah, "the general-
ized Bogoliubov transformation could be decom-
posed into three successive transformations. The
first transformation transforms the particle op-
erators a~ from spherical basis into a set of parti-
cle operators btz in the deformed basis,

(7)

This wave function, however, lacks axial symme-
try.

Following the same procedure as in the case of
even-even system, we get the following expression
for the energy of the ground state of the odd-A nu-

cleus,

E„re= Q [Tr'&(ep) + —,'Tr'~(I'p) + —,'Tr'~(a)f)],

where

(8)

~m ~g j1mg jimmy
2

f jj' ~ jm j~ nl j1m
jl

p-p correlations), but interacts with the rest of the
nucleons so as to contribute only to the HF field.
Such an odd-A system can be described by the one
quasiparticle state, i.e, ,

(6)

where n(4i) represents all the quantum numbers
of the states occupied by the odd nucleon. In the
following the quantum numbers of the odd nucleon
are represented by n and those of the rest even
number of nucleons by i. The symbols j, k, and
l represent any general state.

From Eqs. (3) and (6) it is clear that a wave
function possessing time reversal symmetry may
be written as

The second transformation converts b~z into
quasiparticle operators At~, X~~. ———Q C' "C), V~, mU&, m (10)

&8= Uabo+ ~sbS (3)

where a bar over the subscript indicates that the
operator belongs to the time reversed states, i.e.,

~8 tI'.'., = &j~7„j,m, r,, l V„j 'm7,j,m, r,,)p, &~',

~lj2
m 11 8

b ( )Jm mmCS&t
8 C jO nl~ ~

The third transformation mixes the quasiparticle
operators among themselves. Since we are inter-
ested only in the ground-state properties, we can
assume the last transformation to be unity.

The ground state of an even-even system in the
HFB approximation may be written as

le,„)=II(U~ —vfb; b; )(U,"—v bt„b~& ) l0),

5 ] 22m]

with

y2- p2--'
n n

and

&im7'„ i 'mr,
l
v„ l i,m, r„i,m, r,)y,. ';"1 2

(12)

(13)

i (5)

where P(u) denotes proton (neutron) and the rest of
the symbols have their usual meaning and are de-
fined in Ref. 8.

For odd nuclei there is a nucleon which does not
have any pairing correlations with the rest of the
nucleons in the nucleus (we consider only n-n and

The expression (8) can be reduced to the follow-
ing form

1 ~ 1E»s =
2 p(e«+X —E,)V)'+2 (e„„+e„)V„',

i n ~ n

(15)
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where

~ g og

q;C) C,' (16)

2
g 2+ei i

The quantities e~ and 5, are obtained from

(17)

g r,,c,'= e,c,', (18)

and

6,.= g ~,.„c,'.c,',

where

The chemical potential X is determined from

N E(1=— ' ) +1—.

(20)

(21)

In deriving Eq. (15) use has been made of the
following relations

(22)

(23)

U'.2+ P.~ —1 (24)

III. NUMERICAL RESULTS

A. Binding energies and separation energies

The results for the binding energies given with
respect to the ' Ca core and separation energies
are listed in Tables I and II. Since we have not
performed projection calculations, for reasons

As mentioned earlier, the Kuo-Brown matrix
elements for the Hamada- Johnson interaction are
used for numerical computations. The single-par-
ticle energies (in MeV) are —8.35, -2.85, 6.28,
and 4.22 for neutrons and -1.07, 4.83, 0.72, and
0.43 for protons corresponding to Of, )„Of,)„
1p, /, ) and 1py/2 orbitals, respectively. The re-
sults of the self-consistent HFB calculations for
the odd-neutron even proton and odd-proton even-
neutron nuclei are given in Tables I—V. Wherever
possible the calculated values are compared with
the experimental results. Since the particle num-
ber projection has been found" to have negligible
effect on the intrinsic wave function, its effects
are not studied.

given above the separation energies are calculated
as the difference between the self-consistent energy
minima of the neighboring nuclei.

The binding energies agree fairly well with the
experimental values" though as one goes very far
from the core (Zn, Ge isotopes) the calculated
values are found to be slightly higher. This could
be due to the fact that we use the same oscillator
parameter for the entire f-P shell which is not a
very good assumption. One needs larger values
of the oscillator parameter for the heavier nuclei.
However, for realistic interactions the renormal-
ized matrix elements are not available for different
values of the oscillator parameter and calculating
them is a very time consuming job.

From Table I it is clear that as one adds neu-
trons, both the neutron separation energies and
neutron pair separation energies (E,„„&,«&
—E„,&,«») decrease. Agreement with the ex-
perimental values is good for the lighter isotopes.
As the neutron excess increases, the decrease in
the theoretical separation energies is slower than
what is observed. This feature is more pronounced
for the heavier nuclei (Ni, Zn, and Ge). The fluc-
tuations in the separation energies are fairly well
reproduced. It is also noted that for a particular
set of isotopes the calculated binding energy comes
closer to the observed values as one adds more
neutrons.

To study the effects of the addition of protons,
results for the different sets of isotones are given
in Table II. For neutron numbers 24, 26, 28, and
30 the theoretical binding energy is consistently
smaller than the observed value. Unlike in the
case of isotopes where the difference between ob-
served and calculated values became less with the
addition of neutrons, here in case of these iso-
tones the difference does not decrease. Inclusion
of n-p pairing might improve the situation. For
neutron numbers 32, 34, 36, and 38 the calculated
binding energy is generally greater than the ob-
served value and may be understood in terms of the
employment of a smaller oscillator parameter
than what is needed. The saturation of the calcu-
lated binding energy for a fixed number of neutrons
is more rapid than what is observed, as can be
seen from the proton separation energies. Only
for the neutron number 38 is the decrease in cal-
culated proton separation energy slower than the
experimental value. For neutron number 24, 26,
and 28 the calculated proton pair sepatation ener-
gies are reasonably close to the experimental val-
ues, and the rate of decrease in it as one adds
more protons is also in good agreement with ex-
periments. For the neutron numbers 36 and 38
the calculated proton pair separation energy ~»
is generally greater than experiment, but the rate
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TABLE I. Comparison of the calculated binding energies (B.E.) of odd-neutron nuclei vrith

respect to Ca core, neutron separation energies (AE~), and neutron pair separation ener-
gies (DE~/ with the corresponding experimental values. All energies are given in Mev. The
value of intrinsic quadrupole moment using effective charge e =0.8 are given in the last col-
umn.

Nucleus Calc.
B.E.

Expt. Calc. Expt. Calc.
&&~s

Expt. Qo (ex10 24 cm2)

"Ti
45 gi
46 Ti
47T.

Tl
4'Ti
50 Ti
5i Ti
48 Cr
"Cr
"Cr
"Cr
52Cr

"Cr
"Cr
"Cr
"Fe
53Pe
"Fe
"Fe
"Fe
"Fe
58Fe
"Fe

57Ni
58 Nj

60Ni

Ni
6'Ni
63Ni

'4Ni
"Ni
6~ zn
"zn
"zn
'4zn
"zn
"zn
"zn
"Ge
66Ge

6~Ge
68G

69Ge

27.94
39.21
50.11
59.81
69.98
79.23
88.82
97.24
60.61
73.06
84.37
96.97

106.53
117.26
126.24
135.39
94.44

108.05
119.73
131.91
142.39
153.20
163.07
173.32
133.06
146.01
157.35
170.21
181.28
193.78
204.74
215.50
224.34
234.60
180.06
192.34
206.92
219.57
232.19
242.49
254.89
218.87
232.19
247.00
258.37
272.98

33.43
42.95
56.15
65.02
76.65
84.80
95.74

102.12
69.42
80.06
93.00

102.26
114.30
122.24
131.96
138.22
105.66
116.34
129.72
139.02
150.22
157.22
167.91
174.00
141.95
157.87
164.42
173.42
184.81
192.63
203.23
210.07
219.73
225.82
183.42
196.03
205.20
217.06
225.04
236.09
243.15
213.92
227.81
236.15
248.47
256.94

~ ~ ~

11.27
10.91
9.70

10.17
9.25
9.59
8.42

12.45
11.31
12.60
9.56

10.73
10.98
9.15

13.61
11.68
12.18
10.48
10.81
9.87

10.25

12.95
11.34
12.86
11.07
12.50
10.96
10.76
8.84

10.26

12.28
14.58
12.65
12.62
10.30
12.40

13.82
14.81
11.37
14.61

9.52
13.20
8.87

11.63
8.15

10.94
6.38

10.64
12.94
9.26

12.04
7.94
9.72
6.26

10.68
13.38
9.30

11.20
7.00

10.69
6.09

15.92
6.55
9.00

11.39
7.82

10.60
6.84
9.66
6.09

12.61
9.17

11.86
7.98

11.05
7.06

13.95
8.28

12.32
8.47

22.17
20.60
19.87
19.42
18.84
18.01

23.76
23.91
22.16
20.29
19.71
18.13

25.29
23.86
22.66
21.2g
20.68
20.12

24.29
24.20
23.93
23.57
23.46
21.72
19.60
19.10

~ ~ ~

26.86
27.23
25.27
22.92
22.70

28.13
26.18
25.98

22.72
22.07
20.50
19.78
19.09
17.32

23.58
22.20
21.30
19.98
17.66
15.98

24.06
22.68
20.50
18.20
17.69
16.78

22.47
15.55
20.39
19.21
18.42
17.44
16.50
15.75

21.78
21.03
19.84
19.03
18.11

22,23
20.60
20.79

1.06
1.12
1.23
1.20
1.26
1.24
1.27
1.16
1.64
1.74
1.82
1.84
1.85
1.84
1.79
1.68
2.31
2.28
2.24
2.26
2.15
2.00
1.90

-1.64
2 033
2.32
2027

-2.24
-2.19
-2.16

2e 12
—1.96

1077
-1.02

2.40
-2.09
-1.96
—2.02
—1.80
-1.57
-1.36
-1.84
-1.85
-1.68
-1.44
-1.20

of decrease as the proton number increases agrees
well with the experiment.

B. Intrinsic quadrupole moments and transition probabilities

In Tables I and II, the values of the intrinsic
quadrupole moment (Q, ) are given in the last col-

umn and are evaluated by using the expression

where e~ is the effective charge, i.e. , e„„„=1+e
and e„„„„=e.The vaLues of Q, is positive for the
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TABLE II. Comparison of the calculated binding energies {B.E.) of odd-proton nuclei with
respect to 40Ca core, proton separation energies {4&&), and proton pair separation energies
{DE&&) with the corresponding experimental values. All energies are given in MeV. The
values of intrinsic quadrupole moment using effective charge e =0.8 are given in the last col-
umn.

Calc.
B

Calc. Expt.
DEpp

Calc. Expt. Q0 {ex10 ~4 cm~)

47'
48 Cr
48 I'i
48 p
50 Cr
5iMn
52Fe
50 Ti
51V

"Cr
53Mn

"Fe
"Co
53'
'4Cr
"Mn
"Fe
57Co

Ni
57Mn

58Fe
58Co

Ni
"Cu
"Zn

6i Co
62Ni

"Cu
'4Zn
"Ga
"Ge
64Ni

'5cu
"Zn
"Ga
68Ga

"Cu
"Zn
60Ga

VOGe

TiAs

50.11
55.87
60.61
69.98
77.-.)c4

84.3 7

90.33
94.44
88.82
97.89

106.53
114.02
119.73
127.29
116.50
126.24
135.03
142.39
150.46
157.35
154.52
163.07
172.81
181.28
188.02
192.34
195.00
204.74
213e23

219.57
218.87
232.19
224.34
234.49
242.49
251.71
258.37
255.06
264.86
275.94
284.07
294.82

56.15
61.28
69.42
76.65
83.37
93.00
98.23

105.66
95.74

103.76
114.30
120.82
129.72
134.73
119.56
131.96
139.99
150.22
156.20
164.42
156.o5
167.91
175.24
184.81
189.56
196.03
192.07
203.23
209.31
'- & i'.06
213.92
227.87
219.73
227.13
236.09
241.36
248.47
243.31
253.34
259.95
268.48
273.10

5.76
4.74

7.46
6.93
5.96
4.11

9.07
8.64
7.49
5.71
7.56

9.74
8.79
7.36
8.07
6.89

8.55
9.74
8.47
6.74
4.32

9.74
8.49
6.34

—0.70
13.32

10.15
8.00
9.22
6.66

9.80
11.08
8,13

1o.75

5.13
8.14

6.72
9.63
5.23
7.43

8.02
10.54
6.52
8.90
5.O1

12.40
8.03

1O.23
5.98
8.22

11.86
7.33
9.57
4.75
6.47

11.16
6.08
7.75

—3.14
13.95

7.40
8.96
5.27
7.11

10.03
6.61
8.53
4.62

10.50
ceo

14.39
12.89
10.07

17.71
16.13
13.20
13 27

18.53
16.15
15.43
14.96

18.29
18.21
17.21
11.06

18.23
14.83
5.64

12.62

18.15
17.22
15.88

20.88
19.21
18.88

13.27

17.35
14.86
12.66

18.56
17.06
15.42
13.91

20.43
18.26
16.21
14.20

19.19
16.90
14.32
11.22

17.24
13.83
4.61

10.81

16.36
14.23
12.38

16.64
15.14
13.15

1.23
] 44
1.64
1.26
1.52
1.82
2.04
2.31
1.27
1.56
1.85
2.08
2.24
2 ~ 12
1.48
1.79
2.00
2.15
2.20
2e27
1.80
1.90

-1.96
-2.19
-2.08
-2.09
-1.88

2e 12
-2.08
-2.02
-2.00
-1.85

1~ 77
-1.60
—1.57
-1.18
—] 44
—1.24
—1.19

—1.06
-0.04

prolate shape and negative for the oblate shape of
the nucleus. From Table I it is noted that the Ti,
Cr, and Fe isotopes (except "Fe) are prolate in
shape. For Ti isotopes the deformation first in-
creases and then it is constant for "~"e"Ti iso-
topes. For the Cr isotopes it increases gradual-
ly and then drops for ' '"Cr. For Fe isotopes the
deformation decrea, ses consistently. This is in
contradiction to what was found with Rosenfeld-
pukawa interaction. " All the ¹,Zn (except "Zn),

and Ge isotopes are oblated in shape.
For the nuclei with neutron numbers N = 24, 26,

28, and 30 the nuclei are prolate and the deforma-
tion increases with the addition of protons. For
%=32, 34, 36, and 38 except for "Mn and "Fe all
the nuclei are oblate and the deformation increasc'=-
with the additi. on of protons.

In this paper because the projection of good angu-
lar momentum states ha, s not been attempted, the
quadrupole moment of the ground states (Ql) and
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TABLE III. The projection quantum number E of the state occupied by the odd nucleon as
calculated by the HFB approximation is compared with the experimental ground-state spin I.
Calculated ground state quadrupole moment Qi and B(E2) values are compared with the ex-
perimental values whenever possible. The Ql values are also compared with those calculated
by Scholtz and Malik (SM).

Nucleus
Qi {ex10 24 cm2)

Calc. Expt. SM
a(E2) (e2x 10-5' cm')

Transition Calc. Expt.

4'Ti

4'Cr

"Cr
53Fe

59Ni

"Zn

"Zn

6~Zn

4'V

49'

5i V

53'

55( o

"Co

3
2

2

2

~r

2

2

2

2

2

2

2

2

5
2

2

2

2

2

2

2

2

2

2

(2 2)

2

2

2

2

2

3

2

2

2

-0.20

0.44

0.12

-0.16

-0.44

0.48

-0.68

0.08

—0.29

-0.32

-0.32

-0.12

—0.12

0.16

-0.12

—0.32

-0.24

0.29

—0.05

-0.587

+0.880

+0.873

-0.423

—1.194

—1,194

-0.985

2 2

2 2

2 2

2 2

3
2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

2 2

5 3
2 2

3
2 2

0.46

0.85

2.00

3.08

4.28

4.92

2.26

1.57

0.62

0.82

0.86

1.86

2.66

2.86

1.68

2.20

1.32

2.8

1.8

the reduced transition rates [B(E2)]for the lowest
transitions cannot be calculated exactly. However,
one can follow the suggestion due to Villars" that
the rotational model approximation is reasonably
good for the lower levels. Thus we use the rela-
tions

3k' —I(f + 1)
(2I+3)(I+1)

I 2 I'"'
16 k Ok

where [ j denotes the Clebsch-Gordan coefficient
in the convention of Rose." The theoretical values
of Qz and B(E2) shown in Table III have been cal-
culated for e= 0.8. Our values of Qz correctly pre-
dict the sign and are slightly in better agreement
than the calculations of Scholtz and Malik" based
on the Coriolis-coupling model. For the odd-neu-
tron and odd proton nuclei, the B(E2) values ob-
tained are very similar to the one obtained with
the Rosenfeld-Yukawa interaction" except for a
few nuclei. It is hoped that in the future more
data will become available to test the results.

C. Pickup strengths

The pickup strengths obtained from the equation

STz g V 2(C QTz)2

are given in Tables IV and V for odd-neutron and
odd-proton nuclei, respectively. Experimentally
these can be found from one-nucleon transfer reac-
tions. For even isotopes agreement for the pickup
strengths was found' to be quite satisfactory. For
odd isotopes not much experimental data are avail-
able except for "Ti and "Ti and in both these cases
the data seem not to satisfy the sum rule ZS,.=N,
where N is the number of neutrons or protons out-
side the "Ca core. For the Ti isotopes it is the
f,&, shell which gets most of the contribution as
we add more neutrons and the proton pickup
strengths remain almost constant. A similar ob-
servation is also made for the other isotopes.

In V isotopes (Table V) as we go from lighter to
heavier isotopes, one notices that the proton pick-
up strength for the f», shell decreases and there
is a corresponding increase in the values corre-
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TABLE IV. Neutron and proton pickup strengths are given for odd-neutron nuclei. The
available experimental values are given in parentheses.

Neutron pickup strengths

P1/2 P3/2 f5/g f7 i2

Proton pickup strengths
P1/~ P 3/;. ~5/" f7/:

-15Ti

49Ti
51Ti
4'Cr
51( r
"Cr
"Cr
"Fe
"Fe
"Fe
59Fe
57Ni

59Ni

Ni
63Ni

Ni
Zn

"zn
Zn

"zn
65Ge
67 Ge
69Ge

0.11
Q.14

0.34
0.49
0.33
0.56
0.63
0.71
0.65
0.71
0.80
1.40
0.73
1.00
1.11
1.60
1.72
0.82
1.56
1.64
1.76
1.60
1.66
1.80

0.47
0.64

1.18
1.71
0.85
1.07
1.58
2.16
1.21
1.63
2.56
2.93
2.32
2.56
2.77
3.32
3.86
2.13
3.00
3.39
3.85
3.79
3.46
3.84

0.19
0.30

0.53
0.65
0.62
0.99
1.41
1.66
0.93
1.35
1.86
1.71
1.56
1.86
2.51
2.67
3.54
2.49
1.78
2.68
3.54
0.85
2.70
3.53

2.23
3.92

4.95
6.15
3.20
4.38
5.38
6.47
4.21
5.31
5.78
6.96
4.39
5.58
6.61
7.41
7.88
5.56
6.66
7.29
7.85
6.76
7.18
7.82

0.12
0.10

0.11
0.11
0.13
Q.12
0.10
0.09
0.73
0.68
0.63
0.38
0.77
0.73
0.69
0.54
0.37
0.90
1.11
0.99
0.99
1.54
1.56
1.48

0.46
0.48

(0.18)
0.55
0.55
0.78
0.86
0.88
0.85
1.22
1.29
1.40
1.83
2.33
2.41
2.46
2.58
2.41
1.94
2.82
2.85
2.85
3.09
3.13
3.27

Q.12
0.11

0.08
0.07
0.22
0.20
0.17
0.15
0.74
0.50
0.31
0.29
0.91
0.73
0.52
0.37
0.22
1.75
0.76
0.58
0.58
1.09
0.75
0.23

1.30
1.30

(2.35)
1.26
1.27
2.87
2.82
2.85
2.91
3.31
3.53
3.66
3.50
3.99
4.13
4.33
4.51
4.99
5.41
5.31
5.59
5.59
6.30
6.56
7.02

TABLE V. Neutron and proton pickup strengths for odd-proton nuclei.

Nucleus
Neutron pickup strengths

P1/2 P 3/2 f5/2

Proton pickup strengths
P1/2 P 3/~ f5/S f7/'

47V

49@
51V
53V

51Mn

53Mn

"Mn
57Mn
55( o
57( o
59CO

"co
"cu

Cu
Cu

"cu
"cu
6'Ga
67Ga
71As

0.11
0.37
0.56
0.67
0.58
0.64
0.72
0.85
0.75
0.76
1.04
1.50
0.78
1.08
1.57
1.70
1.74
1.57
1.71
1,98

0.61
1.01
1.30
2.00
1.09
1.18
1.95
2.77
2.35
1.89
2.64
2.80
1.89
2.70
2.92
3.69
3.90
2.97
3.68
3.97

0.24
0.58
0.83
1.19
0.89
1.00
1.71
1.88
0.94
1.88
2.09
2.55
1.89
2.12
2.60
2.93
4.41
2.63
2.99
4.15

3.04
4.04
5.30
6.13
3.43
5.18
5.62
6.51
3.93
5.47
6.22
7.15
5.44
6.10
6.91
7.69
7.95
6.83
7.61
7.89

0.12
0.13
0.13
0.12
0.42
0.43
0.44
0.43
0.80
0.76
0.35
0.31
0.83
0.72
1.05
0.54
0.38
1.05
0.99
1.00

0.59
0.68
0.75
0.74
1.03
1.06
1.15
1.21
2.33
1.44
1.94
1.99
1.70
2.61
2.63
2.75
2.48
2.89
3.09
3.95

0.17
0.14
0.12
0.11
0.51
0.47
0.29
0.22
0.53
0.45
0.59
0.42
1.13
0.72
0.48
0.35
0.21
1.16
0.55
0.11

2.12
2.04
2.00
2.04
3.04
3.04
3.11
3.14
3.34
4.34
4.12
2.27
5.35
4.95
4.84
5.36
5.93
5.89
6.37
7.94
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sponding to p», shell. This is so because as the
number of neutrons increases, the structure of
the HF field in the HFB approximation for differ-
ent states becomes more dissimilar and this shows
up in the calculation of pickup strengths through
the wave function.

D. Single-particle levels

The single-particle levels for neutrons and pro-
tons are displayed in Fig. 1 for the Ti isotopes.
The number to the right of each level is twice the

projection quantum number of the level. The level
occupied by the odd nucleon is represented with a
solid circle on it. The dashed lines show the
Fermi levels.

For Ti isotopes we see that the first occupied
m = —,

' level is far removed from the rest of the
levels. Except for "Ti, the Fermi level is always
below the level occupied by the odd nucleon. As
we go from lighter to heavier isotopes, the order
of the levels does not change though the separation

between them does. For the Cr and Fe isotopes
(not displayed here), the Fermi level is always
below the level occupied by the last nucleon, though
"Fe has a different order of the single-particle
levels than the rest of the isotopes and has its
Fermi level above the level occupied by the last
neutron. Similar features are also seem in other
nuclei. In all the nuclei studied, it is found that,
in general, the effect of the addition of a neutron
(proton) is that the neutron (proton) single-particle
spectrum becomes more compressed accompanied
by a lowering of all the proton (neutron) single-
particle levels and thus increasing binding energy
of the nucleus. This last feature could be attributed
to an increased neutron-proton interaction through
the Hartree-Fock field. This feature is most
prominent in Ni, Zn, and Ge isotopes.

IV. SUMMARY AND CONCLUSIONS

A study of all the odd-A nuclei in the Of 1P shell-
is carried out. By comparing the present results

Neutron single - particle levels Proton single- particle
levels

5-0

-6—

I

5

I
7 -5

F

5

———--F ————-F

5

- l3- F --IO

-l4—

-I5-
45T. 47 49T 5IT 45T 47T. 49T. 5I T.

——l2

FIG. 1. Positions of the self-consistent neutron and proton single-particle energy levels for Ti isotopes for the Kuo-
Brown interaction. The dashed lines show the Fermi levels. The level occupied by the odd neutron is represented by
a solid circle,
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with the ones for even nuclei, an attempt to study
the effects of the addition of a neutron or a proton
has been made.

The binding energies, the saturation of separa-
tion energies, and the fluctuation of separation en-
ergies are fairly satisfactorily reproduced. The
addition of a neutron or a proton does not, in gen-
eral, change the shape of the nuclei and the se-
quence of single-particle levels as classified by
their m value. The separation between the levels
does change and there is a crossing over of the
levels in case they are very close to each other.

As one adds more neutrons (protons), the neu-
tron (proton) single-particle spectrum is more
and more compressed and the proton (neutron)
levels go down and gain more binding energy.
This last feature could be attributed to increased
neutron-proton interaction through the Hartree-
Fock field. This effect is most prominent in Ni,
Zn, and Ge isotopes.

The quadrupole moments and B(E2) values as
calculated employing the rotational model approxi-
mation compare favorably with a few pieces of data
that are available and give better agreement than
obtained by Scholtz and Malik" on the Coriolis
coupling model. Unfortunately not enough experi-
mental data are available to make the comparison
of neutron and proton pickup strengths meaningful.
In the only case where the data are available, it
is found that the observed pickup strengths do not

satisfy the sum rule ZSJ =N.
It might be remarked that in our calculations we

have not considered the ~-P pairing in T = 1 states.
However, it has been concluded in the work of Chen
and Goswami" that the contribution from this pair-
ing decreases as the difference in the number of
neutron and proton increases and should be there-
fore unimportant for most of the nuclei considered
here. Similar conclusions have also been reached
at by Wolter et al." The T = 0 pairing has been
shown to be unimportant by Sandhu et al." Also
we have not attempted particle number projection
since the nuclei studied here do not exhibit a rota-
tional spectrum and it has been found' that parti-
cle number projection has negligible effect on the
intrinsic wave function. Further the interaction
considered here does not have any density depen-
dence. '""
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