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Exchange effects and n-body forces in nuclear matter
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The n-pion-exchange (n+ 1)-body force is written explicitly in coordinate space and separated into its central
and tensor parts. Exchanges of the spectator nucleons are shown to cause large cancellations. The ratio of n-

body forces to (n+ 1)-body forces is estimated and compared with recent three- and four-body calculations.

NUCLEAR STRUCTURE Nuclear many body forces; calculated effective two-
body potential; includes correlations; estimated convergence ratio; calculated

effect of spectator exchanges.

I. INTRODUCTION

Until recently, only three-body forces have been
considered in any detail in computing the binding
energy of nuclear matter. However, McKellar and
Rajaraman' have pointed out that higher order
many-body forces of the type represented by the
diagram of Fig. 1 could produce some new physics
especially at high nuclear densities, as in neutron
stars. A detailed calculation by Blatt and McKel-
lar' on the effect of a four-body force in nuclear
matter at ordinary densities has shown good con-
vergence with respect to two- and three-body ef-
fects. In that calculation both exchanges of inter-
mediate nucleons in the four-body chain were taken
into account, and correlations between all four nu-
cleons. The work of McKellar and Rajaraman, '
although taking some account of correlations (cor-
relations between those nucleons which exchanged
pions were included), took no account of exchanges
between nucleons in the n-body chain.

In this paper, we calculate an exact coordinate
space expression for the n-pion-exchange potential
for (n+1) nucleons, and then by assuming that cor-
relation functions are spin and isospin independent,
we split the direct term (i.e. , the term considered
in Ref. 1) into central and tensor parts, thereby
generalizing the effective potential method of
Loiseau, Nogami, and Ross. ' Consideration of
te rm s where the intermediate o r spectator nucle-
ons in the many-body force exchange among them-
selves, however, gives almost exact cancellation.
Therefore, rather than summing over the n-body
force direct terms only, as done in Ref. 1, we cal-
culate an approximate relation between the n-body
forces and the (n 1)-+body forces, including the
exchange effects, and show that this agrees with
our earlier work on three-body forces and four-
body forces. 2

x, =r, , -r, , i =1,2, 3, . . . , n; (2. 1)
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i =1, 2, 3, . . . , n. (2.2)

This enables us to proceed with the analysis of
nPEP in a manner analogous to the treatment of
2PEP and 3PEP. " For the direct term, the
(n —1) "spectator" nucleons satisfy the condition
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FIG. 1. The n-pion-exchange (n +1)-nucleon potential
@PEP).

II. nPEP FOR (n+1) NUCLEONS

In this section we find an expression for the gen-
eral n-pion-exchange potential (nPEP) for (n+1)
nucleons; as in the three- and four-nucleon cases
we exchange the outer (nonspectator) nucleons.
We use the diagram rules given in Miyazawa. ' To
facilitate the calculations, we introduce the coor-
dinates shown in Fig. 1. The (n+1) nucleons are
labeled (r,o, 7),. i. =0, 1, . . . , n, and the npions have
momenta q&, i =1,2, . . . , n.

We define relative coordinates
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of no isospin-flip. The effects of exchanging thespectator nucleons are examined in the next section. The
general equation for the direct n-pion- exchange potential is then given by

4''7 ~ 7 „-f a [2Q + fl)] ~ ' ' ' dq dq, ~ dq e'~&' "&e'"2' "2 ~ ~ e'"»
» . : (2 }3» 2 1 n

z're(q, ') z'fc'(q„')
2 2 2 2 0 qlql q2 qn-1 qnqn +n &+9 Vn +9

(2.3)

where E and K' are the vertex and propagator form factors, f' =0.08 is the mN-coupling constant, p, is the
pion mass, and A and 8 are constants related to the P-wave 7tX-scattering cross section. These constants
are a].l. defined as in three-body calculations. 4 ~ '' The form factors are assumed to have the form

K'(q')K'(q') 1 1

+v q +e q'+n

with the parameters g and q specified in Table I. Form factor I is the case of a form factor which is iden-
tically 1 and, as in three-body calculations, '' is included for comparison purposes only. Generalizing
the three- and four-body expressions'" we can write

2~

W„pE (r, r„~ ~ r„) = (-1)""','„," [2(A + 8)]" '(2g m')" l22" 9(%,x2 ~ x„),
where

(2 5)

1 „„8 8 8 1 8 1 8
9 (x,x, x„)=,„o, 1+x,x,x, I + X2X2X2 I+x xx ~ 0

Bx ——— Bx1 2 Bxn 1 1 2 2x Bx x Bx

1 8X» ~ ~ ~ ~ ~

x Bxn n

(2.6)

Here I is the unit tensor of rank two and the functions 7„

1„=1"„(x)—g
—1 „(x),71

are given by

(2.7)

e-PX
1 „(x)=

QX

The differentiations in (2.6) can be done, giving

9(X3X2 ' ' ' X») = V3 ' G ' 0'„,

where

G" = [,'(X, -X,) I+X-,x,x, ] [ ', (X, —X,)f+X,x-,x, ] [-,'(X„X„)f+X„x„x„]1-' (x,)1' (x, ) 1' (x„)

and X; and X,. are functions of X,. = p,x;, i =1, . . . , n, defined by

(2.8)

(2.9)

(2.10)

(2.11)

3 g 3 3 ( ) ~1+ + 2 2
—(—2 1+ + 2-—e'"

P.x) g x) g 'gx] T/ X]
(2.12)

Equations (2.5) and (2.8)-(2.12) define the nPEP
for (n+1) nucleons. OPE (one-pion exchange),
2PE, and 3PE formulas are special cases of these,
and are easily verified by putting n. =1, 2, and 3
into these expressions. For example, pg =1 gives
the usual expression for QPEP:

~opE(~, ) =!f'gT. r,b, o,X, +S„(x,)X,]1„(x,),
(2.13}

Form factor

I
II

III

0
0.72
1

5.73
10

TABLE I. Form factor parameters.
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where the tensor operator S» is defined by

~01(Xl) O0 1 1 1 O0 O1 ' (2.14)

Notice that form factors are included in (2. 13) for
the reasons we outlined in Ref. 6. The case of unit
form factor is given by X,-1 and X, —1+3/X,
+3/X, ' (note that X( = p, x().

III. EXCHANGE OF SPECTATOR NUCLEONS

(1 2 ~ n —s n —
s)

(iz Z2'' Z. -2 Z.-i
(3.1)

is an arbitrary permutation with parity e~ of the
spectator nucleons. There is a factor cp from
antisymmetrization of the final state wave function.

To estimate the contribution from this process,
we review the case of 3PEP.' Here there are only
2I =2 possible permutations of the spectator nucle-
ons (', ', ) and (,' ', ). These are the direct term and
the exchange term. As we demonstrated in Ref. 2,
the exchange term is approximately a factor of 4
smaller than the direct term when it is assumed
that the correlations are independent of spin and
isospin. Notice also that

In this section we estimate the effect of exchanges
among the spectator nucleons in the nPEP for (n+1)
nucleons. We consider the general diagram in Fig.
1 with nucleons 0, 1, 2, . . . , n —2, n —1, n in the ini-
tial state exchanged to n, i„i„.. . ,i„„in „0 in
the final state:

overlap between the initial state and final state
wave functions for nucleons in this cycle will be
unity.

There are only four ways this condition can be
satisfied (all spins up, all isospins up; all spins
up, all isospins down; etc. ). For a cycle of length
k, there are 4" possible spin-isospin wave func-
tions which must be averaged over. The effect of
this particular cycle on the spin-isospin average
is therefore a factor of 4/4'. Equation (3.2) is a
special case of this with k =2.

All cycles in the permutation P Eq. (3.3) can be
summed over independently, giving the factor

4 4 4 4 (-4)
P 4&sz 4)s2 4&s3 42m ( 4)tl-1 (3.4)

~ (-4) („g
~ss PEP ~ ( 4)ss-1 +m

m= 1

(3.5)

We can establish the recurrence relation for
g(n) .

m

Az("& =(n —I)i(f(" " m =1

=(n —I)~" ' +N+ ' 1&m& n (3.6)

for the spin-isospin average of I'.
We must now sum over all permutations P. Sup-

pose there are N(" "permutations of the (n —1)
nucleons with a cycle notation containing exactly
m cycles. The effect of exchanges is then to intro-
duce a factor

(
1 1 11 )spin-isospio

=
2

'
2

=
4 ~

exch. av.
(3.2) +(n- l)

m- l 7

The exchange average of 1 derives its only contri-
butions from the initial states ~f0) and ~kk) for
spin, giving a factor of —,-', and a similar factor of
—,
' is derived from the isospin average. That is,
when the spin or isospin of the two spectator nu-

cleons is not the same, the exchange gives a zero
contribution, and the matrix element of 1 is zero.

Now consider the general case with its permuta-
tion P, Eq. (3.1). We write P in cycle notation:

(
(1) (1&. . . (1))( ~ (2& (2). . . ~ (2)). . . (

~ (m&. . . ~ (m))
2n

5-n
~(n+ l)PEP 4 ~nPEP ' (3.'I)

This has the interesting property that $ PEP be-
comes identically equal to zero for n& 5. The gen-
eral solution is

~2PEP

=3
~3PEP 4 ~

and then putting (3.6) into (3.5) gives the recurrence
relatiOn On g„pEP.

(3.3)

Here P is split into m cycles of lengths k„k„.. . ,
k kl + k2 + + k = n —1. In this notation, the
identity permutation is written as

=8
~&PEP

= 3
~5PEP

gnPEP =0, n

(3.8)

= (1)(2)(3) (n —1)

It has (n —1) cycles each of length 1.
Now consider a particular cycle in (3.3). For a

term in the spin-isospin average to contribute, all
spins must be the same in the cycle and all iso-
spins must be the same. Then the cycle will have
no effect on the spin-isospin wave function and the

For the 3PEP we see that this type of exchange
reduces the effective potential by a factor of —,',
in agreement with the results of Ref. 2.

We emphasize that not all exchange diagrams
have been considered. Only exchanges among the

(n —1) spectator nucleons have been allowed. Fur-
thermore, even the exchanges considered have only
been treated approximately. While $ pEp =0 for
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n& 5 only in this approximation, we would expect
ppp to be sm all fo r large n.

A similar cancellation due to exchanges has been
observed by Rajaraman and Trehan' in their work
on many-body correlations in liquid helium and
nuclear matter.

IV. DECOMPOSING pEPEP INTO CENTRAL
AND TENSOR PARTS

As in the case of 2PEP and 3PEP, we define an
effective two-body potential for nPEP by

x, x~ to emphasize the general form of (4.3). The
integration of (2.9) with respect to (t) can now be
done by using (4.3) to replace the outer vectors o,
and o„ in the product, giving

9(x,x, x„)d(t) =1[-,'o, (x„——,
' S,„(r)]9„2

~ ~ I ~
~

~« ~~I
~

~
I ~

n
~ ~~I 0~ «

h
A

r(-,'n „(r)]8 ]

fdic,

(4.4)

where BA and 9~ are spin-independent geometric
functions of the —,'(n+1)(n+2) interparticle dis-
tances, given by

x p(ror, ~ ~ r„)dr, ~ ~ dr„, ,

n&1. (4.1)

' x;xg ' (T„d(t) = [nv(&' v„x] ' xg + 3 Son(&)

~ (-,'x, ~ P"~x r —,'x; ~ x,
")—] dy.

(4.2)

[See Ref. 2, Eqs. (4.5)-(7), and discussion. ] As
the nPEP is constructed without any parity violat-
ing features, the parity violating term involving
0'p x 0' & must vanish in the general case as it did
for 3PEP; so we have omitted it from Eq. (4.2).

Rewriting (4.2) we see that o, x;x& ~ v„ is re-
placed by

[—,'go ~ o„—,'S,„(r)]Tr—(x;x&)+[-,'S,„(r)]r ~ (x,x&) ~ r
(4.3)

We have written x,. - g& as the trace of the tensor

Here r =ro- r„and p is the square of a correlated
(n+1)-body wave function. The factor Q„PKP repre-
sents an approximate treatment of exchange dia-
grams where the "spectator" nucleons are permut-
ed among themselves, and was obtained in the pre-
vious section.

The integrations leave r as the only spatial-vec-
tor dependence remaining in the expression for the
potential. It can therefore be reduced to a central
and tensor part, provided only that p has no spin
dependence.

In principle, we can transform to a domain with

Q, the axial angle about r", as our first coordinate
in the integration. We can then treat the integra-
tions in a similar manner to those of the 3PEP.
The expansion of (2.9) will give terms such as
op x ' x g o „with coeff ic ients which are dot pro ducts
of the x,. 's. These coefficients are independent of

They depend only on the shape of the (n+1)-
sided skew polygon with sides r xg x2 o o ~ x„.
Hence we can write

(4.5)

where
(4.6)

~(ff) g T g(g)
c 3

y ~ G" ~ y2 e

(4.7)

This enables us to separate Eq. (4.1) for &„Ps into
central and tensor parts, given by

ps(np') =7'o'&.I&o'(T. l'".' +So.(&)l')"])
where

(4.8)

linPE(&) ~ f2 0 ( )

x C',"', p r r, r„dr, dr„, .

(4.9)

V. CONVERGENCE OF THE nPEP

In infinite nuclear rnatter, all possible many-
body forces are present and must therefore con-
tribute to the binding energy. Qne of the main rea-
sons for calculating the binding energy contribution
due to 3PEP in Ref. 2 was to examine the size of
many-body effects and check that four-body forces
were indeed smaller than three-body forces.

Using the n-body potential we have developed in
the previous section, it is possible to estimate the
ratio of the energy contributions due to nPEP to
those due to (n —1)PEP.

Consider the function

G'"'p ro ~ ~ ~ r„dra ~ ~ ~ dr„, . 5.1

P+' is a function of the internucleon distances

Collecting together central and tensor parts of (4.4)
then gives

()(x,x, i„)dg=(G',"'ir, ir„+G',"'S,„(r)]fd(,
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x„.. . , x„[Eq. (2.10)]. It is reduced to the two
scalar functions G',"' and G',"' in (4.7), which are
then integrated in (4.9) to give V", , Hence, V,"PE

can be written as appropriate scalar reductions
of J''"'. As the only spatial direction not integrated
over in (4.1) is r", the tensor dependence in J'(+

must be on I and H. It is easy to verify that

~(n)(r) [1(VnPE VnPE)I+ VnPErr]
Q ft

(5.2)
"n-P

using (4.7) and (4.9). The constant n„ is given by

-p'(A+8) " '
(En ~n PEPf (5.3)

Now observe that G'"' can be factorized:

G'"'=G'" "~ [-,(X„—X„)I+X„x„x„)Y„(x„), (5.4)

and in the approximation of step function correla-
tion functions p is given by

FIG. 2. Integration coordinates in the calculation of
the effective potential for n PEP.

where

p(ror, ~ r„) = (p}" '
] 8(

~ r,. —r&
~

—c)
i &'j=o

8„= [] 8(~ r( - r„~ —c). (5.6)

=p(r, . r„,)pg(x„—c)g(r —c)0„,
(5.5)

(p is the constant particle density of nuclear mat-

ter and r =ro —r„.) Substituting (5.4) and (5.5) into

(5.1) gives

( -x)c" =JJ G'" " (l(x„-x )rexxr Jl'c(r)e e(r —c)e(c, —c)c(r r„,) r, ~e) der e (5.7)

We now attempt the integrations over r„r„.. . ,
r„,. Since x„ is constant during these integrations,
0„ is the only variable factor not present in J'" ".
e„prevents the points r„r„.. . , r„, from being
within a sphere of radius c about the "external"

point r„(see Fig. 2).
As there are already —,'n(n —1) 8 functions in the

integrations to produce J'" ", we neglect e„con-
taining (n —2) 8 functions, expecting it to be a sec-
ond-order effect, and approximate (5.7) by

'(rx)=fc' "(c)( (x —"x)r+x-', e„r Ixr(r)ee(r —c)e(r —c)er„,„.

If we now substitute (5.2) for Z(" "we get

(5.6)

g()(r) = t[—', [V,'" " (z) —V'," " (z)]I+ V'," " (z)zz)[—,(X„—X)I+Xxx„]Y (x)pg(x„—c)8(r —c)dr„, .
n- j.

(5 9)

As V',","pE(z) contains a g(z —c), the integration over r„, looks very much like the integration required"
to get 2PEP:

c"'(r) = f (-', (x —x)r zci] x( )[l(x„-x)cr+x ]xc(r)cre(cr —c)e(r —„c)e(r„—c)e . , (5.10)
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After one further approximation, we can prove
by induction that V'", E are (approximately) a con-
stant factor times V,'"," . The necessary approx-
imation is

C~' = 1.7 MeV (central)

= 0.7 Me V (tensor) . (5.12)

The approximation (5.11) is much better for the
central part of the potential than the tensor part.
However, the central and tensor components con-
tribute approximately equally to the binding energy
in both the 2PEP and 3PEP cases. The constant
C"' should therefore be chosen somewhere in the
range 0.7 to 1.7 MeV to estimate ratios of binding
energies.

We are now ready to proceed with a proof by in-
duction. Our induction hypothesis is that

V'," " (r) =C'" "RY„(r)8(r—c),
V'," " (r) =C" "RY (r)8(r —c),

where C'" " is some constant. Then (5.9) and
(5.10) give

(5.13)

V',"(r) = C'XY„(P.) 8(r —c),
(5.11)

V', (r) = C 'R Y„(r)8(r —c),
where C"' is a constant. A' and A are defined sim-
ilarly to X; and X; in Eqs. (2.11) and (2.12). If C~'

were replaced by C'" =-', f'll. (3.68 MeV), Eqs. (5.11)
would be the equations for the central and tensor
parts of OPEP with form factors included (com-
pare with 2.13). As the 2PEP effective potentials
calculated with cutoff correlations have the same
shape as OPEP for form factors II and III, the ap-
proximation should be quite good for the central
part (see Fig. 3). Looking at the OPEP and 2PEP
potentials we estimate that

+0.2

0

CL
UJ
CL

~-I
hl
0
CV

lL
UJ
CL
O
O
UJ

-2

(a)
I

0.8

x6

I

2
R(fm)

CL L,
UJ UJ
O.
OJ

CENTRAL

TENSOR

j+ (p) = C'" 'J@'(z)3

&n-i
(5.14)

since (5.9) with the hypothesis (5.13) is precisely
the three-body integration with cutoffs required
for the evaluation of 2PEP.

Using Eqs. (4.9) and (4.7) we then find that

VnPE(&) 3 n C(n 1& V2PE(~)
n 1

n-1 2
(5.15)

V",",(~) 8 „, C"
Vn, t (+) g&n-QPEP 3 f l

(5.16)

Hence, using (5.11) as a starting point, we have
proved by induction on n that there are propor-
tionality constants C'"' to make (5.13) valid for all
n) 2.

Finally, a comparison of (5.11) and (5.13) togeth-
er with (5.3) allows us to write (5.15) as

(b)
I

08 1

I

2
R (frn)

FIG. 3. Comparison of (a) the central part, and (b)
the tensor part of the effective potential for OPEP,
2PEP, and 3PEP. Form factor II with a cutoff at 0.8
fm was used in the calculations.
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The convergence ratio (5.16) can now be calculated
using (5.12). For C in the range 0.7 to 1.7 MeV,
this ratio is between

~ pEp/&3& -l)pEp an ~ pEp/~& -DFEp (n&2).

(5.17)

The factor g„pEP/g&„»PEP clue to exchange diagrams
was discussed in Sec. III; it was shown there that
this factor causes the convergence ratio to drop to
almost zero for n~ 5. For m=3, the factor is 4.

Figure 3 shows the OPEP, 2PEP, and 3PEP
central potentials with cutoff 0.8 fm and form fac-
tor II. The potentials are scaled so that the posi-
tive peaks in OPEP and 3PEP are close to the
size of the 2PEP positive peak (0.12 MeV).

If the central and tensor parts of gPEP were
really a constant factor times the corresponding
parts of (n —1)PEP (i.e. , independent of r), the
ratio of the first-order energy contributions EF.'"
and the second-order cross terms AF., '

=2 [VopEP(Q/e) V"PEP] would also be given by
this factor. The ratio for AZ2~' =(V" (Q/e) V" )
would be given by the square of this factor. A

comparison of the actual results ' for 3PEP and
2PEP gives the ratios

VI. CONCLUSION

In calculating the convergence ratios we have
made two approximations. The first was to ne-
glect 8„ in the integrations over r,r, ~ ~ ~ r„„
which then gave J'" ". The inclusion of 8„ in this
integration would remove a sphere of radius c
about r„ from the domain in general. This would
presumably reduce the result of (5.17) to a value
similar to (5.18) for the 8PEP integration. The
second approximation we have made was to say
that 2PEP is proportional to OPEP with form fac-
tors included [Eqs. (5.11)]. This approximation is
quite good for the central part of the potential, but
is not nearly as good for the tensor part and, as
we have seen, different proportionality constants
are required in the two cases. This will introduce
some error, and our final convergence ratio should

not be expected to be more accurate than this dif-
ference in the constants C of Eq. (5.12). How-

ever, the convergence ratios calculated are con-
vincingly smaller than one. This is more spec-
tacularly so when exchange diagrams are included.
These exchanges cause strong cancellation so that
for g~ 5 smaller order effects begin to dominate.
This enhances the convergence considerably.
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