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No-resonance condition for a So separable AW potential with suppression effects
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Two-channel AN potentials each of whose matrix elements is a single nonlocal separable
are discussed. A simpler condition than obtained previously is derived for the A- channel
shape such that the AN scattering Length and effective range agree with the values obtained
from a meson-theoretic potential both with the ~ channel unsuppressed and fully suppressed
and which at the same time guarantees the absence of an unwanted AN resonance below the
Z-channeL threshold due to a bound state in the uncoupled ~ channel. A specific nonlocal
separable shape is exhibited which obeys this condition for a range of values of its param-
eters when the most recent 'So meson-theoretic potential scattering lengths and effective
ranges of Brown, Downs, and Iddings are used as input.

NUCLEAR REACTIONS YN potential, AN scattering length and effective range,
two-channel separable potential, AN ~N suppression, AN resonance.

I. INTRODUCTION

In a number of recent papers' ' it has been
stressed that for application to some hypernuclear
bound states, it makes more sense to use a phe-
nomenological AN potential that reproduces fea-
tures, at or near the AV threshold, of a meson
theoretic potential (MTP) with the Z channel sup-
pressed, than to use one that reproduces the MTP
values of the AN phase shift at energies far above
this threshold. Within this philosophy, investiga-
tions of 'So nonlocal separable (MLS), two-channel,
phenomenological, AN potentials whose relative
momentum space matrix elements have the form

( kx ( lx r I kr') = Pxr~x rvx(kx}vr(kr)

have been carried out. "4 Here V~„ is the poten-
tial energy operator responsible for YÃ- XN,
where X, Y = A or Z; k„ is the relative YN momen-
tum (k =c =1};X» is the strength parameter for
V»,' P» is a pure number used to introduce sup-
pression effects which are present in hypernuclei';
e.g. , P» =P» = 1, P~~ = c, and & is varied from
e =1 down to e =0 to suppress A —Z conversion.

In Refs. 1, 2, and 4 the '90 AN scattering length

a, and effective range r„calculated from an NLS
potential of the Eq. (1) type were fitted to the val-
ues of the scattering length and effective range,
respectively, at ~ =1 (i.e., no AN ZN supp—res-
sion) and e =0 (i.e., full AN ZN supp—ression) ob-
tained from the MTPs of Brown, Downs, and Idd-
ings (BDI}." The results of these earlier works
were threefold. First, ' a simple condition on the
shape v~(k~) was obtained that had to hold to guar-
antee unitarity; i.e., X~z' & 0. Second, ' a more

complicated condition on the shape v~(k~) was ob-
tained that had to hold if a nonexistant AN reso-
nance below the ZÃ threshold' was to be eliminat-
ed. Third, for both the MTP input of Refs. 6 and
'7 and for a variety of specific one-parameter
shapes v„(kA), the no-resonance condition was
violated; i.e., every NLS S, potential investigated
previously that fit the BDI MTP values of a, and

r„at e =0 and e =1, produced an unwanted reso-
nance.

In the present work two new results are present-
ed. First, a simple form of no-resonance condi-
tion is obtained. This condition is combined with

the unitarity condition previously obtained to yield
an acceptable range of values for the slope-to-
value ratio of vz' as a function of kA' evaluated at
kA' =0. Second, an explicit example of a shape
vA(k~) that yields the BDI Ref. 7 values for ao, a„
r~, and r„and meets the no-resonance condition
is displayed.

II. NO-RESONANCE CONDITION

It was shown in Ref. 1 that if the Eq. (1) potential
form is used to calculate the four parameters ao,
a„r~, and xo„ the four equations obtained could
be used to determine the three strength parame-
ters X~A, X~~, and A,» as functions of the shapes
v~(k„) and vz(kz) and to obtain a relation that v~(k~)
by itself had to satisfy; namely,

oo +o uy(ao+Ao) =

where ,=c1/a„uis defined by the k~-0 expan-
sion

vA (k~) =uo+u, kA +. ~ —=uo(1+u„k~'+ ~ ~ ), (3)
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and the A, are defined by the kA-0 expansion

where gA~ is the Cauchy principal value integral
"v~'(q) q'dq

gAA v g k2 (5)

where

(n, +A, )

k,'(n, +A,)(u, —X)
(6)

It was further shown in Ref. 2 that to avoid a AN
resonance below the ZN threshold due to a bound
state in the uncoupled ZÃ channel it was necessary
that

But we can do better than this. The inequality
(6) and (n, +A,)/(n, +A,) &1 yield k,'(u„—y)& 1 or
u„& X+kp '. A necessary set of limits on u„ for
both unitarity and our no resonance condition to
hold is then

X&&r &X+&p

or, with the numerical input described above

-1.652 fm &g„& -1.162 fm

(12a)

(12b)

We also note that (n, +Ao)/(no+A, ) & ko'(u, —y)
implies $ & 1 and in addition (n, +A, )/(no+AD)
& n, /no. Thus, a sufficient set of limits on u„ for
both unitarity and our no-resonance condition to
hold is

X
= l(~m -~m)/(n. —n.) (7) g & Qq & (ng/no)ko (13a)

and kp' is the value of kA at the threshold of the ZN
channel; i.e., k,' =2g~(Mz -Mq), Mr being that Y
hyperon mass and g~ being the AN reduced mass.

It was pointed out in Ref. 4 that unitarity required
$&0, which from the definition (6), Eqs. (4) and

(5), which imply A, & 0, and the BDI values of the
scattering parameters, which imply

op& n, &0 and X&0,

means u„must satisfy

X&u„.

(8)

(9)

ap = 1.42 fm, sop =3.64 fm

a, =-1.77 fm, spy 3.18 fm,
(10)

and the above values of the baryon masses.
First we note that all vA(k~) such that u, =0 can-

not satisfy (& 1. For u„=0, the definition (6) may
be combined with Eq. (7) to yield

n, +A, (-1)
a ~

cvp +Ap k'p X

From the above numerical values of jap and X,
0 & -1/(ko y) & 1, while from A, & 0 and relation (8)
the bracketed ratio in Eq. (11) also lies between
0 and 1. So in this case 0& $ & 1 rather than (& 1.

In addition, we can see from the definition (6)
that as u„ increases from zero g decreases in mag-
nitude. Thus, u„& 0 cannot yield $ & 1. Combining
this result with Eq. (9) limits u„ to the range y & I„
&0.

With the Ref. 7 input and the mass values (in MeV)
M„=939.0, MA =1115.0, Mz =1193.0, we find (to
four figures) y =-1.652 fm ' and ko' =2.032 fm ~.

What we shall do now is replace the no-resonance
condition (6), which involves both Ao and u„with a
simpler condition that involves u„alone. For nu-
merical work we shall use the BDI Ref. 7 values
for the scattering parameters, namely,

or, with our numerical input

-1.652 fm u„-1.259 m (13b)

Of course for y+(n, /n, )k, '&u„&)f+k, ' it may
(or may not) happen that g& 1 and an unwanted res-
onance exists.

Equations (13) provide a simple check on any
shape vA(k~) which one might try to use in Eq. (1).
For multiparameter shapes vt, (k~) there will be a
large region in the parameter space for which Eq.
(2) is satisfied, but Eqs. (13) should narrow this
region considerably as indicated by the example
given in the next section.

III. EXAMPLE

The most straightforward explanation' of why the
Eq. (1) NLS potential with one-parameter shapes
used in earlier works produces a resonance that is
not produced by the MTP to which it is matched,
is that the MTP includes a hard core, whereas the
NI.S potential contains no such short range repul-
sion. Thus, by choosing the NLS potential param-
eters to give the same attractive behavior as the
MTP at &A=0, we make it too attractive at higher
values of k~ where the hard core of the MTP comes
into play.

There are two ways out of this bind. One way is
to replace the single separable term in the Eq. (1)
matrix element of V&A by a sum of separable
terms such as A.,v, (k~)v, (k~)+A, v, (kz)v, (kA) with
A.,&0 and X, &0 so that the first term represents
an attraction and the second term a repulsion. '
An alternative is to use a multiparameter shape
v~(kA) instead of a one-parameter shape, so that
we still have freedom to modify the high kh behav-
ior of the A)&phase shift even after fitting the BDI
low k~ behavior. We follow the second simpler
alternative.
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We choose for our shape v~(kA) the form

v, (u, ) =(p,'+u, ')-'- x(p,'+0,') ', p, & p, .
(14)

(fm) (fm 2)

TABLE I. Typical no-resonance results for the Eq.
(14) shape vA(A. A).

x& 0, 0& x& (p, /p, )', (p,/p„)'& x. (16)

The second term represents a "core potential"
(i.e., one whose effect is to be large at high values
of k~) addition to the commonly used Yamaguchi'0
potential shape of the first term, so that its range
p,

' is chosen to be less than the range pA '. The
third parameter x is left free to give us the needed
flexibility of an exploratory calculation.

From Eq. (3) for this shape we obtain

a, = 2(1-/P ' x/-P. ')/(1/P '-x/p, ').
We note that we satisfy the very weak no-resonance
condition u„&0 only for the regions

0.29

0.41

0.47

0.2371
0.2406
0.2500

0.1740
0.1773
0.1871

0.1071
0.1101
0.1202

0.0358
0.0382
0.0489

1.430
1.386
1.290

3.362
3.304
2.943

11.21
10.36
8.499

115.6
106.3
58.09

-1.382
-1.259
-1.172

-1.364
-1.260
—1.171

-1.354
-1.259
-1.169

1t337
-1.259
-1.166

1.793
1.230
1.001

1.685
1.234
1.000

1.635
1.236
1.001

1.553
1.241
1.001

We may now use Eqs. (14) and (15) along with
Eqs. (4) and (5) to reduce Eq. (2) to

ax'+bx+c=0,

where

a = ( rp,-+ 3p, —4a )pA

c =( r00pn -+3p 4o'0)p

(17)

b =b, +b~+b3

with

bl PA Pc r00 i

b. =-4P;P.'(P; P, p. P.')/(P, P.),
bs =4PA'P. '(PA'+P0') o'0 ~

In the limit x- 0 we must get back to the results
of Ref. 1 for a Yamaguchi shape, namely

r pA' —3PA+4o. =0.

So, we take that solution of Eq. (17) for which x-0
as c-0.

Any two values in the octant of the p,
' —pA

'
plane defined by PA &P, '&0 may be used in Eq.
(17) and a corresponding value of x obtained. Pro-
vided that the value of x is real, this means the
NLS potential of Eq. (1) may be made to match the
BDI data of Eq. (10). Only for a part of that octant
will Eq. (16) be satisfied and only for a more limit-
ed region of the P, 'PA ' plane will either Eqs. (12)
or Eqs. (13) be satisfied.

We carried out the indicated calculation by vary-
ing PA

' from 0.1 to 1.0 fm in steps of 0.1 fm. For
each value of pA

' we va, ried p, ' over the range of
P, '&

PA
' in steps as small as 0.0001 fm. When

PA
' was too small, x turned out to be complex for

all P, '& Pz '. When P~
' was too large, the no-

resonance condition was violated for all p, '& p~ '.
We did find a, range 0.27 fm 6 pA

'& 0.49 fm for
each value of which a range of values P,

' existed
such that either or both Eqs. (12) and (13) held.
The results of some typical calculations are shown
in Table I.

The left most column of Table I shows four val-
ues of PA

' for which no-resonance results could
be obtained. For each of these values we have list-
ed three rows of results for the parameters P, ',
x, u„, and $. The first row gives values of these
parameters for the smallest value (to four figures)
of P,

' (for the given value of P~ ') for which a
solution exists; i.e., for any smaller value of P, ',
x becomes complex. The second rom gives values
of the parameters for which the no-resonance suf-
ficiency inequality of Eq. (13) is just met. The
third row gives the values of the parameters for
which $ ~1. For each P~

' then the values given
for p,

' in the first and third rows define the range
of p,

' for which solutions exist that satisfy the
original no-resonance inequality of Eq. (6) and the
BDI input of Eq. (10). Each such range is extreme-
ly small, being less than 0.02 fm in each case, so
that only in a very narrow strip of the PA

' —P,
'

plane are acceptable solutions to be found. Another
interesting point is that the no-resonance sufficien-
cy condition u„& -1.259 fm gives a much narrower
range of P,

' than is allowed by the original no-
resonance condition g& 1 which itself gives values
of u„ that lie much closer to the no-resonance ne-
cessity condition of Eq. (12), u„& -1.162 fm. All
of the solutions shown obey the unitarity condition
-1.652 & u„.

It is possible therefore to find a small region of
the PA

'- P,
' plane for which the shape vA(kA)

given in Eq. (14) can be part of a NLS potential of
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the Eq. (1) type that obeys unitarity, yields the low-
energy scattering parameters of Eq. (10), and does
not give rise to a AN resonance below the ZN chan-
nel threshold due to a bound state in the uncoupled
Z N channel.

The drawback of using the particular shape v~(k~)

given in Eq. (14) is that it contains more free pa-
rameters than one would like. A more acceptable
situation would be to find a two-parameter shape
v~(k~) which has the same desirable properties as
the shape given in Eq. (14). A search for just such
a v~(k~) is under way.
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