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Pion photoproduction at threshold on Li and low-energy theorems
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The Low, Kroll-Ruderman, and Fubini-Furlan-Rossetti theorems are derived in the case
of pion photoproduction on Li. Particular care has been taken to be consistent with electro-
magnetic current conservation and Low's theorem in the extrapolation from soft to real
pions, This is new compared to previous treatments of soft pion theorems in nuclear pro-
cesses where one photon is present. Difficulties due to the spin-1 nature of Li have been
put forward.

NUCLEAR REACTIONS Low, Kroll. -Ruderman, Fubini-Furlan-Rossetti
theorems for Li{y, ~ ) He.

I. INTRODUCTION

In the past few years, considerable attention has
been dedicated to the application of low-energy
pion theorems to nuclear processes, mainly elas-
tic pion scattering and pion photoproduction at
threshold on nuclei. ' These theorems, based to a
considerable extent on the partially conserved ax-
ial current (PCAC) hypothesis, were first derived
in elementary particle physics. ' Strictly speaking,
they are only applicable to off-shell amplitudes in-
volving soft (zero four-momentum) pion(s). How-
ever, correction procedures have been proposed
and used to relate these soft pion results to the
real world. '

Of particular interest is the study of pion photo-
production at threshold on a nucleon, 4 where soft
pion techniques as well as extrapolation from soft
to real pions have to meet the requirements im-
posed by electromagnetic gauge invariance, in
particular by Low's theorem. ' This important as-
pect has been emphasized by De Baenst' in his der-
ivation of the Kroll-Ruderman (KR)' and the Fubini-
Furlan-Rossetti (FFR)' theorems. In constrast,
we consider that little care has been taken in the
Past to satisfying electromagnetic current conser-
vation uhen lozo energy pion theorems &vere applied
to nuclear processes. "

For further reference, let us state Low's theo-
rem in the case of pion photoproduction y +N, —m

+N, on nucleon' or nucleus: the two lowest terms—of order k ' (infrared divergent term) and of or-
der zero in k—of the series expansion, in powers
of the photon four-momentum k, of the scattering
amplitude depend only on the on-shell N, -N, -m

coupling constant and on the electromagnetic con-
stants (charges and anomalous magnetic moments)
of the participating nucleons or nuclei N, and N, .
These two lowest order terms are obtained from

the Born diagrams (Fig. 1) and gauge invariance
requirements, and are not directly dependent on
excited nuclear intermediate states, rescattering
terms, distortion of the pion wave by strong inter-
actions, etc. Furthermore, as far as these two

lowest order terms are concerned, nuclei can be
considered like elementary objects, just like nu-
cleons.

In the present article, we will discuss photon
and pion low energy theorems for pion photopro-
duction at threshold in the particular case of the
transition between the ground states of 'Li and
'He, y+'Li-'He+w'. Considering the nuclei as
elementary objects, as requested by the soft pho-
ton theorem, we selected the very systematic pro-
cedure of De Baenst' for deriving the theorems of

Low,"KR, ' and FFR.' This permits us to dis-
play explicitly the approximation procedure used
in the extrapolation from soft to real pions. The
derivation is carried through in detail because,
in contradistinction to the case of pion photopro-
duction on a nucleon (J = —,

' ), 'Li and 'He have 1'
and 0 quantum numbers, respectively, ' this intro-
duces novel features which may give rise to theo-
retical difficulties when the extrapolation is done,
as we shall point out in the following. We consider
these issues particularly important because the
recent measurement of this process made by a
Louvain-Saclay collaboration' seems to be in dis-
agreement with the existing theoretical predic-
tion. ''" This, in fact, has motivated the pres-
ent work.

The organization of the paper is as follows. After
defining notations and kinematics in Sec. II, we

compute in Sec. III the Born diagrams (Fig. 1);
imposing on them electromagnetic current con-
servation, we deduce Low's theorem and we find
that the anomalous electric quadrupole moment
contribution, which is a term of order k in the
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Our metric is defined by a. 5 = a'b —a. b —= a"b„,
and the states are normalized covariantly:
(p' o." lp o') =(»)'2po5'(p'-p}5

The Lorentz and parity invariant matrix element
SR for Eq. (1) can be written as

II(y +'Li -'He + w') =- e "rl'51I„,

-=-ee~(m', He IJ' (0) I'Li)
= —( He

I j„-(0)I
Li, y )

=e"q'(A, g„,+A, P,„q, +A,q„q,

+A, P,„k,+A,qq k, ) .

FIG. 1. The three Born diagrams in y(k)+ I'i(p()
—6He(P, ) +"~q).

scattering amplitude and therefore is not deter-
mined by Low's theorem, could be very important
even at threshold. The KR theorem is derived in
Sec. IV as a consequence of Low's theorem. At
this point we will point out why, due to the spin-1
nature of 'Li, the extrapolation from soft to real
pion is more ambiguous than in the case of the
spin- —,

' target. In Sec. V, using PCAC, we derive
the FFR theorem to improve the KR result. As a
by-product we find that the recoil form factor"
IiR(t) for the 'He- 'Li transition is likely to be
small. Then the slope of the differential cross
section at threshold can be exactly known up to
and including terms of order m, . Section VI is
devoted to a discussion of our results, their com-
parison with experimental data, ' and previous
theoretical works. ""Our main conclusion is
that soft Pion results cannot be directly comPared
saith Pion PhotoPxoduction on Li. Finally, we pre-
sent an extrapolation procedure from q' =0 to q'

=m, ' conspati hie saith electxomagneti c current
conservation and Lozv's theorem. This is not the
case for the extrapolation methods used in Refs.
1, 8, and 11.

II. NOTATIONS AND KINEMATICS

We begin this section by the kinematics of reac-
tion

y(k, e) +'Li(p„ri)-'He(p, ) + p+(q) .
As usual, letters in parentheses denote the mo-
menta and the polarizations of particles and nuclei.

J' (x) is the electromagnetic current, such that

8& (x) =eJ~™(x),with 8& (x) the electromagnetic
field, and j,(x) is the source of the pion field P, (x):
( +m, ')p„(x) =j,(x). The A, 's, i =1, . . . , 5, are
functions of two independent kinematic invariants
chosen to be v=-p, k/m, ' and v, =q k/m, ' because
they are well suited for deriving the Low theorem
(Sec. III): A, —= A, (v, v, ). Gauge invariance, i.e. ,
k"q"3R„„=0, implies the two following relations:

A, +p, kA4+ q' kA5 =0

p, kA2+q kA, =0.
(4a)

(4b)

In terms of %, the differential cross section in
the center of mass system (c.m. s) is given by

do ql 1 1 1
k

I (2,). 16II,. 6 Q I

pol

(5)

where W is the total c.m.s energy W'—= (P, +k)2,
and the sum is over the photon and 'Li polariza-
tions. Note that the final state Coulomb correction
has been neglected in Eq. (5).

At threshold (p, =q = o), g,.&
15II I

h' = 2
I Ai l~h' (t"'s

is easily seen if use is made of Coulomb gauge
e k=0). Then the slope of the c.m. s differential
cross section near threshold is obtained:

b/lq I

q dQ, „(2vr)' 16(m, +m„)' ' ' '" exp(b/ lq I) -1

as„b/ lq I (6)
4m exp(b/ lq I) —1

where the final state Coulomb correction" has
been included in the last factor of the second mem-
ber, b =2woZmc= 12.5 MeV/c with o. =e'/4m
~ 1/137 (e is the proton charge), Z = 2 for 8He, and

m=m„/( m+mm, } is the reduced mass of the 'He
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+ w+ system. Observe that the Coulomb correction
is the one obtained in the approximation of point
charges and has a simple analytical form because
the pion production near threshold is a pure S
wave.

We now define the different vertex functions
necessary for the next three sections. Using
Lorentz covariance, parity properties, and elec-
tromagnetic current conservation, we take the
following invariant decomposition for the relevant
electromagnetic vertex functions in the limit of
zero momentum transfer:

& ~'(q)
I
&'„(0)

I
~'(q')& =+(q +q') „, (7)

('He(P, ) (J'„(0) ('He(P', )& =+2(P, +P,')~, (8)

&'Li(p„n) I~'„(0) I'Li(p,', n')&

=-3{(p,+ pl)„[( ')+( /2, ')( ' p, )( p,')j

-(1 + «)[ n'„(n pl) + n, (n"p, )]), (9)

with'4

p, =3(1+«), (10)

the total magnetic dipole and electric quadrupole of
'Li, respectively. We use natural units, i.e.,
0= c =1. Then, from experimental data, "
«= 0.6358 and 7'= —21(+10%).

For the pion-nucleus vertex function we use":

g(m, ') =g, (13)

the on-shell m'-'Li-'He coupling constant. Simi-
larly, for the relevant matrix elements of the
axial vector current J,"(0),we use the following

('He(p, ) Ij, (0) I'Li(p„n)& =n. (p, —p, )g(t) (12)

with t = (p, —p, )' and

decomposition":

&'He(p2)l& (0)I'Li(p„n)&=in"F~(t)+i(p. -pi)"[n (p. -»)I .F~(t)+~(p, +p)"[n (p. -p, )]2 Fs(t)
1 . ~ 1

(14)

and

& w'(q) (J';~(0) (0) =-iq~ f„. (15)

The exPressions E„~s(t) are the axial, Pseudo-
scalar, and recoil form factors, respectively. If
time reversal invariance holds, these form fac-
tors are real. Finally, we close this section by
giving the threshold values of several kinematic
variables:

(16)

th 1

q k (m, +m, )'-m, '

III. PHOTON LOW-ENERGY THEOREM

Electromagnetic current conservation together
with the well-known result of quantum field theory

(18)

where p =m„/m, = 0.025. Observe that p,
'

(=6 x 10 ') and (m, —m, )/m, (=7 && 10 ') have the
same order of magnitude.

Now we are ready to derive the photon and pion
low-energy theorems in the next three sections,
having in mind that correction terms of order p,

'
and higher cannot be separated from correction
terms due to the nucleus mass differences.

a 'Li pole at ( p, +k)' =m, ' or p, k = 0,

a ~He pole at ( p, —k)' =m, ' or p, k = 0,

a pion pole at (q —k)' =m„or q ~ k =0.

(19a)

(19b)

(19c)

At these poles, using Eqs. (7)-(13), we can evalu-
ate the residues of the invariant functions A; de-

that all terms of order k ' in the amplitude come
only from the external line insertion of the photon
are the two needed ingredients to prove Low's
theorem' in particle physics. This ensures the
general validity and model independent nature of
the results derived from this theorem. However,
when the process involves more than three parti-
cles' besides the photon (this is not our case), the
terms of order zero in k not only depend on physi-
cal independently measurable quantities but also
on some derivatives of the amplitude without pho-
ton. Note that the theorem has been also proved
in potential scattering for local, "nonlocal, "and
velocity-dependent" potentials. An essential fea-
ture of the theorem, in its different versions, is
that the rescattering terms and off-shell effects
never directly appear in the first two terms in the
expansion of the amplitude in powers of the photon
four -momentum.

We are now in a position to derive the soft pho-
ton theorem for y+'Li-'He+m'. First we com-
pute the Born diagrams (B) of Fig. 1 which exhibit
the following polar singularities:
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fined in Eq. (3). Then we have:

A,s =eg —
2 (1+v) q k

1

2 3

p k p, k

(20a)

(20b)

as well choose B=2.4 fm, the charge radius of
'Li. In this last case the parameter of expansion
~k ~,„R= 1.7 becomes very large. Bypassing this
difficulty, we find the following soft photon result
for the slope of the differential cross section at
threshold:

A.,~ =eg (20c) a,
6.33 x 10 '+ O(i k i,„) pb/sr,

4m 4m
(24)

1 ~ 1
A» = eg — + —,

' (1+~)
1

(20e)

Now we make the plausible assumptions that 3R,
in Eq. (3), can be expanded in power series of k
and that the Born terms —Eqs. (20)—are the only
ones with polar singularities as defined in Eqs.
(19). We split the amplitude 3K into its terms of
order k ' and zero in k, 3RL„and the higher order
terms, 3R~:

A4a=eg 4,2
' 1-K

p. k 2m2 p, k

(20d)

2 2 2

1

3 7'
x (1 —v) ——,x,(k.q)

1
(25a)

where we have used Eqs. (6), (10), (16), and (23a).
To have a partial idea about the size of the ne-

glected terms, we consider at this point the full
Born terms (27) which are obtained from Eqs. (20)
after imposing gauge invariance, Eqs. (4a) and (4b).
We get:

SK 3gJ +SR' ~

Correspondingly, we have

(21)
3(1—x) 7'

A» =As~ —
2 Sl ]

A,.&=A,.~ when i = 2, 3,4. (25c)

A,.=A ~yA'R ~

with A,.s=0(k) if i =1, 2, 3, and A,.„=O(k') if i
=4, 5. Using gauge invariance —Eqs. (4a) and
(4b)—we get the full expression for the A,.~'s:

3 Bl —1' +'ffI,
A,~=A»+eg 1 —— ' ', ' (1 —v)

I 1

(22) x is an unknown parameter in Eqs. (25a) and (25b).
The only difference between Eqs. (23a)-(23c) and
Eqs. (25a)-(25c) is the inclusion of some terms of
order k in K proportional to r/m, ', the anomalous
quadrupole moment of 'Li.

In this case, the slope of the differential cross
section at threshold is found to be proportional to

(23a)

(23b)

(6.33+ 0.27x+0.003x')10 '
p,b/sr,

4w 4m

(26)

A,.I =A, ~ when i = 2, 3, 5 . (23c)

This is Low's theorem for y+'Li-'He+m+. Ob-
serve that Eq. (4b), together with Eqs. (20b) and
(20c), state the exact equality of the electric charge
of 'Li with the sum of the electric charges of 'He
and m'. The A, ~'s are model independent and are
expressed in terms of the independently measur-
able physical quantities: electrical charges, mag-
netic moment of 'Li, and the on-shell m-'Li- He
coupling constant. If we were to approximate 5K

by%~, the best place would be at the smallest
value of ~k ~, i.e. , when the final pion is produced
at rest (threshold) as seen in Eq. (16). However,
there are no good criteria to measure the degree
of accuracy of this approximation because there
is no definite scale on which we could measure
k,„. If we choose m„we would conclude that
k,„/m, = p=0.025 is a small number but" we could

where we have used Eqs. (6), (10), (11), (16), and
(25a). This model-dependent result indicates that
the anomalous electric quadrupole moment might
drastically change the soft photon result [Eq. (24)].
This is due to the magnitude of v.

IV. KROLL-RUDERMAN THEOREM

In the previous section we have seen that even
at threshold, contributions from SR~, defined in
Eq. (21), might not be negligible [cf. Eq. (26)]. Be-
cause the pion has finite mass, it is impossible to
take the limit k-0 and thus 5K~ is not as accurate
as we would like. Indeed, the photon has to provide
at least the energy to create the pion mass.

Since at threshold ~k~, „=m,[1+O(p)] [Eq. (16)],
we may do a series expansion in terms of nt, of the
relevant part of the scattering amplitude A, Using
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Eqs. (12), (13), (16), (17), (22), and (23a) we find tion,

A, l,„=eg(0)[1+O(m, )] . (27)

g(0) is the off-shell 'Li-'He-m coupling constant at
zero transfer momentum. The slope of the differ-
ential cross section at threshold is then obtained
from Eqs. (6) and (27):

g'(0) e' 1
, [1+O(m, )]

2 0) [7.5x 10-'+ O(m, )] pb/sr . (28)

Equation (27) is the KR theorem. In a world where
the pion mass could be neglected, A, would be ex-
actly given by Eq. (27).

When the pion photoproduction is on nucleons
(spin- —,'), the Kroll-Ruderman theorem can also
be derived" as a consequence of electromagnetic
current conservation and analytical properties of
the scattering amplitude. If, as for nucleons, this
method could be used in photoproduction on 'Li
(spin-l), then by using Eqs. (4a), (20a), (20d),
and (20e) we could know exactly the invariant func-
tion A, at the unphysical point v, = v = 0. However,
independently of problems raised by the composite-
ness of 'Li, analyticity properties are not as sim-
ple as for nucleons and the KR theorem cannot be
derived in this way: A, is not determined at v,
= v=0 because it has a simple pole at v=0 and its
residue is a function of v, . We cannot make a
series expansion in terms of v and v, around that
point and, within its neighborhood, limits and ex-
trapolations on A, must be carefully done.

Up to now we have been interested in photon low
energy results. The KR theorem, the exact re-
sult in the zero-mass pion limit, has been obtained
from the soft photon theorem. In the next section,
we will consider the unphysical soft pion limit
q 0, which implies q'=0, v=(m, ' —m, ')/2m, ',
vl 0 Note that these last three variable values
are nearby the mentioned ambiguous point q'

(31)»m 31I(q) = ——»m ~'('He I~..l'Li)
~p

with P, =P, '+k. Using Eq. (3) [the A,. 's are now

functions of q'. A,.(q') =A,.(q', v, v, )] and Eq. (14),
we get from Eq. (31)

A, (0, v, 0) = (e/f, )E„(0), (32a)

Ag(0 v 0) =(e/fr)FR(0)
1

Pl le
(32b)

with v= (m, ' m, ')/2m, '. p Qolberger- Treiman
type relation" ' is easily obtained by applying
PCAC to Eq. (14):

&„(0)+ '
2

' F (o)=f,s(0)
min

or, using Eqs. (32a) and (32b),

(33)

A, (0, v, 0)+ —,'(m, ' —m, ')A, (0, v, 0) = eg(0), (34)

with g(0) as defined in Eq. (12).
With an off-shell pion, electromagnetic current

conservation cannot any longer be expressed by
Eqs. (4a, ) and (4b) and the Ward identity" has to be
used, namely the A. ;(q', v, v, ) 's must satisfy the
more general conditions

A, (q')+ p, .kA, (q') +q. kA, (q')

limK(q) =—lim [ee"('He lZ, „(0)l
'Li) + E"q 7 ~],

q &P q ~ 0

(30)

with e'T, ~ = ('He
l J;,(0) ly'Li), is a, supplementary

condition imposed on SR.
In the limiting procedure in Eq. (30), we can use

the fact that 'He (isospin I = 1) and 'Li (isospin I
= 0) have different masses. This implies that
3|I(q) and &~T„~ have no pole at q„= 0 and therefore
Eq. (30) can be written as

[8~+fe8,(x)]Z,~(x) =m, 'f,P, (x), (29)

with f, as defined in Eq. (15). The resulting equa-

V. FUBINI-FURLAN-ROSSETTI THEOREM

The matrix elements of the axial vector current
in Eq. (14) ean be related'"~ ' to the soft pion
photoproduetion amplitude (i.e., SR defined in Eq.
(3), extrapolated to the unphysical limit q = 0) by
means of current algebra and the PCAC hypoth-
esis, or alternatively by using the modified PCAC
hypothesis' in the presence of electromagnetic in-
teractions; for the latter, we have

= eg[(k —q)'], ', , (35a)

Vl
p, &A.(q')+ q &A, (q') = - eg[(& - q)']

In the soft pion limit, the amplitude OR(0) must
satisfy Eqs. (32a), (32b), (35a), and (35b). Ob-
serve that Eq. (35a), when q = 0, is identical to
Fq. (34). This shows the consistency of our pro-
cedure. From Eqs. (32a), (32b), (35a), and (35b),
we want to improve the KR result [Eq. (27)] by in-

cluding the terms of order m, in the evaluation of
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AL 1 To proceed further we define

II(q) -=3|Iz(q) +ms(q),

A;(q') —=A, ~(q')+A,.„(q') .
(36)

imply

A,s(q') +P„kA,s(q') +q kA, s(q')
2 2

= et g((q - k)') -g(q')]

These are a generalization of Eqs. (21) and (22)
with the A,.~(q', v, v, )'s for the off-shell pion de-
fined as

A,z(q') =eg(q') 1--(1+a)
1

3m1 —m~ +q
(1 )4 m, 2

(37a)

p, kA, s(q')+q kA, s(q')
2 2

= -e[g((q —k)') —g (q')]
m, ' —(q-k)' '

Expanding the A;R(q')'s in a double series in
powers of v and v„' we have

(q') = g a,",'(q') v'v", + 6,, —,'eg(q')
f,4=0 1

(40b)

X„(11')= 81 (q')
~

— 1),
2 3

2 ~l

') =e ') 1 2

(q+k)' —m, ' p, k

(37b)

(37c)

(37d)

A,~(q') = eg(q') —,, + —(1+~)
1 3 1

qyk' —m, ' 2 P, P

(37e)

Equations (37a)-(37e) are identical to Eqs. (23a)-
(23c) when q'=m '

Introducing Eqs. (36) and (37a)-(37d) into Eqs.
(32a) and (32b), we get

A, ~(o, u, o)=e " -1((0) 1-— ', ' (1 —a) I,E~(0) 3 m, ' —m, '
f, 4 m, '

(38a)

with, in particular,

a~", (q') = 0 (i = 1, 2, 3), (42)

a "(q') = -m 'a ' (q'), (43)

as a consequence of Eqs. (40a) and (40b). The
addition to A«of a term proportional to 7 has
been discussed in Sec. III. What is left without
proof in the present work is the convergence of
the series expansion, Eq. (41). For the photopro-
duction at threshold of a pion on its mass shell v

and ~, are of order p. and p, ', respectively, as
seen from Eqs. (17) and (18). Of course, this is
not sufficient for the series to converge; besides
v and v, «1, the coefficients a~'J(m, ') must not
grow too fast in order for the series to converge.

From Eqs. (41) and (42), we have

A,s(0, v, 0) = Q a~", (0)v'=au, )(0)v+0(g'), (44)

A, (0, v, 0) = a~", (0) + Q a~„"(0)v '

(0
—

0) FB(0) 1
(0)

3 1 KCR» f +g
=a,",'(o) +o(V'), (45)

(38b)

From the definition of K~(q), it is readily found
that

A, ~(q')+p, kA«(q')+q kA, z(q')

since numerically it just happens (see Sec. II) that
2 2

m2 PPl 1V= 2
—P,2' 1

Introducing Eqs. (38b) and (43) into Eq. (44), we
have

=eg(q'), ' (,, (39a) a,",'(0) =- -'eg(0)(I - «) - e " +0(V'), (46)

p, kA, ~(q')+q kA, z(q')

rn -q= -eg (q') .' k), . (39b)

Then Eqs. (35a), (35b), (36), (39a), and (39b)

which is the Fubini-Furlan-Bossetti theorem~ for
the pion photoproduction on Li.

Now we are in position to give the threshold
value for A, up to and including terms of order
m„. Using Eqs. (17), (18), (22), (23a), and (41)
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A, (mr ~
~ l h ~ vi i,„)= eg (m, ') [ 1 - ~ (1 + g) p]

+ a~',~(m, ') g +O(m„'), (47)

moment 7; we find for different values of x:
g, '(0)/4v =gz,'/4v = 177,

g, '(I)/4n = 170, g, '(- 1)/4v = 184,

g, '(2)/4w = 162, g, '(- 2)/4w = 193 .
(54)

which becomes, with the help of Eq. (46),

A, i,„=eg (0)(1 —3 p) —e s + O(m„"),F,(0)
(48)

to be compared with Eq. (27), the KR result. Ez(0)
is not known. However, from Eq. (46) we find
E„/f„=O(g). Since g (0) = 150 (see below) we can
neglect F„/f„and we have from Eqs. (6) and (48)
that

8„; g'(0) e' 1
, [1—8p, +O(m, ')]

4m 4n 4n 12m, '

[6.0&& 10 '+O(m, ')] pb/sr. (49)
g' 0

VI. DISCUSSION

Recently, a Louvain-Saclay collaboration" has
made a measurement of pion photoproduction at
threshold. They find

a, = (0.073 +0.002)a~,

where a, was defined in Eq. (6) and a~ is defined
by

(50)

ik do& a~

iq dQ 4'
Here &~ is the cross section of the reaction
y+P- n + ~ and from Ref. 22 we have

a~/4m=15. 4+0.5 pb/sr.

This gives

(51)

(52)

g~'/4n =177. (53)

a, /4m=1. 12 pb/sr.

Neglecting terms of order 0 and higher in Eq. (24),
and taking the experimental result [Eq. (52)] into
account, one gets

We have used Eqs. (26) and (52) to compute these
values. g, (x) is the estimate of 'Li-'He-r coupling
constant obtained for a given value of the parame-
ter x. Let us mention at this point that, in the
case of the reaction y+P- n'+n, if one uses just
the tern~s obtained from Low's theorem and the
experimental value for the P-n-m coupling con-
stant, one gets'

=15.7 pb/sr. ,«ii
in very good agreement with the experimental val-
ue given in Eq. (51). Observe that Eqs. (23a)-(23c)
or Eqs. (25a)-(25c) contain more than the Born
diagrams (Fig. 1) even if we have not considered
other type of contributions (excited states, break-
up, rescattering terms, etc. ) directly. Indeed,
electromagnetic current conservation forces us to
take in account, partially at least, additional con-
tributions.

If we want to use soft pion results, we must know
the numerical value of g(0), defined in Eq. (12).
For that purpose" use is made of the 'He p-decay
data and the Goldberger-Treiman (GT) relation
given in Eq. (33). We find

g'(0)oT 1 E„(0)
4w 4n f„

' =[11.2+O(m, )] pb/sr (KR). (56)

Furthermore, using Eq. (49) we get the value of
according to the KB and FFR theorems:I.i

As we have shown in the last section, Es(0)/f„
=O(p) or E„(0)=O(m, '/m, ), since f, =0.96m„as
obtained from the decay width of n - p, + v. Observe
that Delorme in Hef. 12 concluded that ER —-O(m„),
using an impulse approximation calculation. Intro-
ducing Eq. (55) into Eq. (28)—the KR result —we
have

The index I.has been introduced to indicate the
theoretical ingredients [Low's theorem and trun-
cation of the series in & i,„]used in the estimate
of the on-shell 'Li-'He-m coupling constant.

As we see in Sec. III, the Li electric quadrupole
moment contribution could modify appreciably this
estimate of g'/4v. Recalling that the undetermined
parameter x in Eqs. (25a) and (26) is a measure of
the strength of the anomalous electric quadrupole

~4' =[8.7+O(m, ')] qb/sr (KR+FFR).

Comparing Eqs. (56) and (57) with the experimental
result given by Eq. (52), we conclude that terms of
order m, ' and higher in the scattering amplitude
must be veiny imPoxtarst, but there is no model-
independent way to compute them. Notice that our
estimate of the anomalous electric quadrupole mo-
ment contribution in Sec. III already showed that
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terms of order m, ' might be important.
However, if following Ref. 4 we assume the

simplest extrapolation between q' = 0 and q' =m, ',
i.e., that Eq. (46) is valid at the physical point
q' =m, ',

a,",'(m, ') =--,'eg(m, ')(1- a) —e " ' +O(p, '),E„(m,')

we obtain
(58)

A. , ~,„=eg(m„')(I —3g) —e " ' +O(p, ') . (59)
F„(m,')

If we neglect the terms proportional to Es(m, ') and
of order p,

' in Eq. (58) and use Eqs. (6) and (52),
we get

ge'/4m=186, ' (60)

where g~ is the on-shell 'Li-'He-~ coupling con-
stant obtained from (1) the Louvain-Saclay collabo-
ration result'o [Eq. (52)], (2) the KH and FFH re-
sults and (3) the simplest extrapolation from q' = 0
to q' =m, ' (Eq. 58) compatible with electromagnetic
current conservation and Low's theorem. This
last assumption, if valid, would indicate that the
A, (q', v, v, ) amplitude has a strong variation in
magnitude from p' = 0 to q' =m„'. A. y would then
vary proportionately with g(p'). In this case, the
expansion parameter for g(g') and a~&~~(4t'), Eq. (11),
would be m, 'R'=(1.7)', as suggested in Hef. 12,
rather than p,

' = (0.025)', where R = 2.43 fm is the
charge radius of 'Li.

Comparing our results with previous works""~
that use soft pion theorems, we see that the main
difference is that we satisfy electromagnetic cur-
rent conservation and Low's theorem at each step
of our work while previous treatments are taking
little care of it. Take for example our Ref. 1
where in Eq. (C7), p. 121, the second term in the
curly bracket is dropped without real justification. ,

This second term is a local object, [ J P(0),
1 d'x &&Z, ~(x, 0)], sandwiched between initial and
final nuclei and depends just like the first term on
the size of the nucleus. Therefore it cannot be
dropped. Indeed the relations between threshold
photoproduction and the off-shell coupling constant
g[(q —k)'= -m, '], obtained in Hefs. 1, 8, 11, and
12 violate electromagnetic current conservation
and Low's theorem.

In conclusion, we see that the main information
which can be extracted from the Louvain-Saclay
experiment" is an estimate of the on-shell 'Li-
'He-71 coupling constant

g'/4m= 150-200 if -2 ~ ~ ~2,

as we can see from Eqs. (53), (54), and (60),
to be compared with the on-shell N-N-n coupling
constant g,»"

g„„„'/4m= 14.8 a0.3.
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