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Coulomb corrections for extracting spectroscopic factors using analyticity
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The Coulomb scattering and Coulomb distortions are included in the optimal expansion
technique in the cos~ plane. From p-3He elastic scattering from 4-20 MeV, an energy
independent spectroscopic factor for H~ p+d is found, with an accuracy of a few per-
cent. The method seems most promising for transfer reactions.

NUCLEAR REACTIONS Dispersion relations, Coulomb corrections for cos6
analyticity.

I. INTRODUCTION

The amplitude of the asymptotic wave function in
a breakup channel of a nucleus (say X-b + Y) is an
important nuclear structure property. The square
of this amplitude, which we call a spectroscopic
factor, appears in exchange Born terms in the
amplitude for elastic scattering (X+ Y elastic scat-
tering with b transfer) and gives characteristic
peaks in the backward scattering. It also appears
in the Born approximation for transfer cross sec-
tions (X+A- Y+B with b transferred) and gives
characteristic transfer peaks. It was suggested
long ago to use these features to extract spectro-
scopic factors directly from the data. ' However,
the experience since then has shown that the dis-
torting effects are so large that one cannot do this
directly; e.g. , one cannot simply extrapolate the
data to pick out the Born contributions.

From the point of view of the analytic properties
of the scattering amplitudes these Born terms are
poles with the residues proportional to the spec-
troscopic factors. In this language the problem
of extracting spectroscopic factors is finding the
residues of poles of scattering amplitudes in the
background of other singularities —namely, cuts
and other poles. Recently, it was suggested' that
one could carry out such a procedure through the
techniques of optimal expansions' which are being
used in particle physics. The method was applied
to n-d and n- He scattering with what seems to be
consistent and reasonable results. It is the purpose
of the present paper to study the inclusion of Cou-
lomb effects so that one can treat the charged par-
ticle scattering and reactions with this method of
conformal mapping.

The three-body problem offers an interesting
test of the method. For P-'He and n-'H scattering
the only transfer pole arises from deuteron trans-
fer, and a successful application would be en-

couraging for application to many-nucleon trans-
fer reactions. The theoretical value of the spec-
troscopic factor for the triton 'H- d-n has been
obtained from accurate calculations using "real-
istic" two-body potentials, and it has been pointed
out that this is an important and useful property
of the three-body system. 4 The spectroscopic
factor has also been determined from photodis-

integrationn.

'
In studies of the three-body spectroscopic factor

the technique of Refs. 2 and 3 was applied to P-'He
elastic scattering' and &-'He scattering. ' Also,
forward dispersion relations, ' peripheral model
calculations, ' "and partial wave dispersion re-
lations, "'"as well as numerous conventional
distorted wave Born approximation (DWBA) de-
terminations have been made" for these three-
body spectroscopic factors. The various deter-
minations are not completely consistent.

The results of the conformal mapping calcula-
tion were that the cut contributions cause the
peripheral model' or forward dispersion relation
calculation' to underestimate the spectroscopic
factor in the three-body case. Although the re-
sults of Ref. 6 were consistent with the theoreti-
cal value of the spectroscopic factor, 4 the analysis
of the P-'He angular distributions gives an energy-
dependent spectroscopic factor which was attributed
to Coulomb effects. In the present paper we in-
clude the Coulomb effects to see if one can ex-
tract an energy-independent spectroscopic factor
with the optimal expansion techniques. The meth-
od is seen to offer promise as a practical tool
for analyzing data.

II. COULOMB CORRECTIONS

Coulomb corrections to pole diagrams have long
been studied'4 and the complication of the Coulomb
cut for nuclear applications of dispersion rela-
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tions has been noted since the early attempts to
use these methods"' "; of course the Coulomb ef-
fects are included in standard DWBA calculations.
Coulomb distortions have been included in the
peripheral model calculations for P-'He scatter-
ing, "and recently for the study of the 'H(d, n)'He
reaction, and also have been included in forward
dispersion relation calculations. " We now show
how we can include such effects for an analysis in
the cos8 plane as in Refs. 2 and 6.

There are many advantages in working in the
cos8 plane; the most important is that there is a
clear physical signature for the pole term from
the angular distribution. Also, one can obtain a
spectroscopic factor for a variety of energies
and check the consistency and accuracy of the
results. However, since the conformal mapping
technique makes use of the analytic structure of
the amplitude near the physical region, it is es-
sential to be able to treat the Coulomb cut ac-
curately. Here we treat the elastic scattering,
which is the more difficult case since there are
cross terms between the Coulomb and strong
amplitudes which are absent in transfer reac-
tions (at least in the DWBA).

A. General considerations

Let us consider the elastic scattering N+A -N
+A, where N is an N-nucleon andA is anA-nu-
cleon system. The general form of the amplitude
for elastic scattering is

where f'(8) is the Coulomb amplitude,

)f '~' = q'/4k'(I —cos 8)'

with q = gZ„Z„e'/k'k, p the reduced mass, and k' s{c)
the center of mass momentum. In Eq. (1)f„(8)
is the nuclear amplitude modified by the Coulomb
distortions with & and 0." the spin, orbital, and

projection quantum numbers. The charges of N
and A are Z„e and Z„e, respectively.

In the absence of Coulomb interactions the strong
amplitude denoted as f'(8}has singularities near-
est to the physical region corresponding to physi-
cal processes depicted in Fig. 1. Neglecting ex-
plicit meson degrees of freedom (mesons are in-
cluded as form factors only) the poles correspond
to s-channel (compound nucleus) bound states
[Fig. 1(a)] and the transfer of a bound system
[Fig. 1(b)]. The compound nuclear states of the
A+Jtf system correspond to fixed energy poles
with laboratory energy at the pole

E„„,(compound nucleus)

= [M„,„'—(M„+M„}2]/2M„. (2)

These fixed energy poles are not of great interest
for the cos0 plane analysis, one of the character-
istic features of the method. The transfer poles
[Fig. 1(b)] give a pole in the cos8 plane at fixed
u =M„„', where u is the standard Mandelstam
variable. In the cos8 variable the pole is at

cos 8~ = [(M„—Mv)2 —2M„E„b —(M„,)~] /2k —1,

(c)

N

where k is the center of mass momentum and E„b
is the laboratory energy. The nearest branch
points correspond to diagrams of Figs. 1(c) and

1(d). Figure 1(c) depicts the transfer of a con-
tinuum state, characterized by a branch point
with a minimum value of u =u, , and a"left-hand"
branch cut (i.e., cos8( —1 along this cut}. In
the cos6I plane the branch point is

cos 8„=[ (M ~ —M „)2—2M «E„b —u, ] /2k2 —1.
(4)

The "right-hand" branch cut has a branch point
given by the form factor [Fig. 1(d)] with a
fixed I value t, . The branch point is thus

cos8, = —I +t, /2k2

FIG. 1. Origin of nearest singularities in the scatter-
ing amplitude. The pole for cos~) 1 arise from com-
pound states (a) and transfer processes (b). The left-
hand cut in cos& arises from continuum transfer (c) and
the nearest right-hand cut from nucleon-nucleon scatter-
ing (d}. Meson degrees of freedom are not explicitly
shown.

and cos6I&1 along this cut. Details of the singu-
larity structure will be given in another publica-
tion. " They are not needed to understand the
present work.

The method of maximal convergence of Ref. 3
for the nuclear problem consists of mapping these
two branch cuts onto an ellipse as described in
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Ref. 2. As a result, the only singularities within
the ellipse (for no Coulomb interaction) are the
transfer poles, so for the case of a single pole
of the type shown in Fig. 1(b)

(8)

Spectroscopic Factor =OP (8a)

where g'(()) is regular except for the cuts. The
residue of the pole I" is given by the amplitude
of the asymptotic part of the wave function which
describes the relative N- (4. —N) system, i.e. ,
defining & as the relative coordinate between the
N and (A —N) system, the asymptotic wave func-
tion of the system in the A —N, N channel as
~-~ is given by

y„(2) = xe '"/2 [-&,x]', (7)

where l is the orbital angular momentum, J the
total angular momentum, and X the spin wave func-
tion. The spectroscopic factor is

where k, w, and q are as previously defined. Note
that )(2 = —2i2B/k2, where B is the N- (A —N)
binding energy in the A nucleus and p is the re-
duced mass. The expression for the integral over
Coulomb wave functions is considerably more
complicated for nonzero orbital angular momen-
tum. In that case the integral (9) contains a &, .
Expressions for integrals of (e ""/&)&,„over
Coulomb wave functions have been given, "with
expressions becoming rapidly complicated as 3

becomes larger. Here we need only the I =0 re-
sult, but the extension to 1+0 does not present
an essential difficulty. From E(I. (10) one sees
that the effect of the Coulomb distortion of the pole
can be quite simply represented by the Coulomb
distortion factor p(E) in this approximation.

B. Case of p- He elastic scattering

The P-'He system exists in. a singlet and
triplet state so that the unpolarized cross section
is given as

S C)".gP (8b)
with

(()) = If'I '+f'*f"'+f'f' "*+ "(()) (ll)

I s(c ) p(B)1 s

with

(10a)

The result (8b) can be understood from the ex-
pression (7) by recognizing that the vertex A =N
+(A —N) is essentially the Fourier transform of
the wave function (t)„(N,A —N), and that the Fourier
transform of Yukawa e ""/& has a pole at k'+((2
=0. In other words, "for the case l =0

K'V

~FS cr. Iim (k2 + I(2) e-ik' ' r etk' rrfsy
%~K

(9)
The form (9) is a useful one for obtaining the

Coulomb correction to the residue of the pole.
More precisely, in the presence of the Coulomb
interaction a cut develops at that point. The resi-
due of the pole is modified, so that even if one
can successfully extract the residue, it is nec-
essary to reinterpret the result. Just as in the
DWBA, one can do this by using Coulomb wave
functions, i.e. , the plane waves e'~' ' and e '" ' '

are replaced by appropriate Coulomb wave func-
tions in the integral (9). This has been carried
out explicitly in Ref. 14, and the explicit modifi-
cation of the spectroscopic factor for the cross
section If'(')I' has been given in Ref. 18. One
finds for elastic scattering, if the orbital angular
momentum is zero,

fs(c)
sit'ss'ez'

~s(c) g
~ i's'~', is~

exp(()) fccfs(c ) fcfs(c ) S
I fc

I

2 —S exp(0)

is treated as in Ref. 6. One looks for the coeffi-
cients A; in the expansion

P
k'(cos() —cos()p)2S'"P(()) =P A(i)P;(cos()),

in a representation of channel spin S, orbital
angular momentum, and total spin ~ and projection
M. Because of the cross terms f'*f"~f f'(')s

8(c)Zthe amPlitudes fr's'u', rs arrre needed for the anal-
ysis. For other reactions, such as spin flip,
elastic, pickup, and so forth these terms are
not present since f' cannot contribute and one
deals solely with o'(')(8). For the present case
of elastic scattering a phase shift analysis is
needed for the cross terms. We can treat this
case as a test of the method for handling Coulomb
corrections and extracting spectroscopic factors
by using the extensive phase shift analyses which
have been carried out previously. Then using
experimental cross sections for v(&), the expres-

sionn

esrr( s-e)
p

tan Q = —2k/I(,
(10b)

(13)
where P, (cos()) are polynomials orthogonalized
over the data. The latter are defined in the stan-
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dard way by

g w „P„(cos8„)PS(cos8„)=&„8 (14)
3.2-

2.8-
in which the cos6)„are the experimental angles
and the weights ~„are given by the errors. The
mapping technique involves the replacement

cos 8-Z (8),
where Z(8) is chosen' to map the cuts described
in the last section onto an ellipse, with the branch
points cos6j„and cos6I, the terminuses of the major
axis. The parameters A, are extracted from
which one obtains" the spectroscopic factor:

k'(cos 8 —cos 8~ )S (8)cos 8-cos 8, = 3.8%4p(E).

24-

2.0-

l.6-

l.2-

IO I2 I4 I6 I8 20
EI(Ib ( MBV }

The units used in Eq. (16) are mb for o'(8) and S(8),
GeV/c for &, and GeV/c for X. It is convenient
to introduce the dimensionless spectroscopic factor
IC~' of which Kim and Tubis' have discussed the
various results. The relation between the param-
eters X and C as defined in Eq. (7) and Hef. 4,
respectively, is"

(17)

where B is the deuteron-nucleon binding energy
in 'He.

III. RESULTS AND CONCLUSIONS

In this section we give the results of the analysis
of P -'He elastic scattering.

Elastic P-'He scattering data which is used here
has been obtained for energies between 4.00 and
19.48 MeV, ""and phase shifts have been deter-
mined for the energies 4.00, 5.51, 6.82, 10.77,

FIG. 2. The quantity ~C~ 2, defined in the text, ex-
tracted from the data from Wisconsin (Ref. 23) (O),
Hice (Ref. 24) ( ), and Los Alamos (Ref. 25) (&). Each
point corresponds to an analysis at a fixed energy with
the mapping procedure used for results along the upper
curve (M) and without our mapping for results along the
l.ower curve (NM). All Coulomb effects are neglected.

and 19.48."'" Using a Bessel interpolation from
these known phase shifts to find phases for the
energies 4.55, 6.52, 7.51, 8.51, 9.57, 10.38, and
11.48 MeV, we find that one can adequately fit the
experimental cross sections. Although it is not
possible to find accurate phase shifts for 13.6 and
16.232 MeV using this method, phases which most
nearly reproduce the data for these energies can
be used. This is adequate because the Coulomb
subtractions become unimportant for energies
greater than ™10MeV.

The results of the analysis are shown in Figs.
2-5. At each energy the point shown is the value

3.2- 3.2-

2.8—

2.4-
OJ

2.0- 2.0—
0 o0

I.6-

NM l.2-

2 4 6 8 10 12 I4 I6 I8 20
lob (Mev)

I I I ~ I I I

IO I 2 l4 16 l8 20
E„b(Mev)

FIG. 3. The same as Fig. 2 but with a subtraction of
the Coulomb scattering, including crows terms with the
strong amplitude (see text).

FIG. 4. The same as Fig. 2 but with the Coulomb dis-
tortion of the pole term included. Coulomb scattering is
neglected (see text).
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3.2-
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2.8-

24-

2.0-

I.6—

1.2-

I a

2 4 6 8 10 12 14 16 I 8 20

E1&b (MeV)

FIG. 5. The same as Fig. 2 but Coulomb scattering and
distortion both included. The result labeled I, ( C~2
= 2.85 + 0.07, is the final result of the paper.

of the spectroscopic factor 1C1' [ defined in Eq.
(17)] which is found by an analysis of the angular
distribution as described in Sec. II. For com-
parison with the theoretical values2'4 and the
dicussion in Ref. 4, we use the experimental value
of 5.49 MeV for the binding energy J3, rather than
the value 4.47 MeV [ in Eq. (17)] which was used
in Ref. 6 to compare with the Kim-Tubis result.
In each figure the like drawn through the points
is by eye and labeled M and NM corresponding
to the results obtained with the mapping procedure
and without, respectively.

Figure 2 shows the value of 1C1
' derived direct-

ly from the experimental cross sections with and
without the mapping but without any Coulomb cor-
rections. These results are just those of Ref. 6.
The energy dependence of 1C~' shows that the meth-
od is certainly not adequate below 10-15 MeV and
casts doubt on the results even at 15-20 MeV.

The effect of the Coulomb scattering (but not
distortion of the vertex) is shown in Fig. 3. The
results in that figure are obtained by using the
modified cross section S(8) of Eq. (12), but
neglecting the Coulomb modification of the pole
term [taking p(E) =1 in Eq. (16)]. The energy
dependence of the ICE' remains, and in fact, is
even a little stronger than before this correction.
The effect of the Coulomb distortion at the pole
term is shown in Fig. 4, which is obtained from
the results shown in Fig. 2 simply by multiplying
each value of C1' by the Coulomb distortion factor
p(E) [Eq. (10)]. The resulting spectroscopic fac-
tors become approximately energy-independent
above 8 MeV; however, there is still a consider-
able energy dependence below that energy.

The final results, including both the effects of
Coulomb scattering and Coulomb distortion of the
pole are shown in Fig. 5. Here one uses the modi-
fied cross sections (12) and includes the Coulomb
distortion factor p(E). Using a cos8 analysis (no
mapping) the spectroscopic factor still has an

energy dependence and is considerably too small.
With the mapping procedure, however, one obtains
an essentially energy-independent result. This
means that the cut contributions which are pro-
ducing the difference between the M and NM re-
sults have an energy dependence.

The error bars which appear in Figs. 3 and 5

are derived from the estimated errors in the com-
puted phase shifts"' "as a consequence of the
errors in the cross sections. They do not reflect
further errors which arise from the fitting pro-
cedure used to extract the spectroscopic factors.
Thus these must be regarded as the minimum
errors in the spectroscopic factors at each point.
From Fig. 5 curve M we conclude that the 'He

P+d spectroscopic factor ~C~' is 2.85 +0.07.
The numerical value of this result is in agree-
ment with the value of 2.86 +0.03 obtained by Kim
and Tubis. 4 However, there is some ambiguity
in this comparison as these authors obtained a
binding energy of 4.47 MeV in their calculation,
which they used in finding 1C1 '. Note also that
in Ref. 6 the binding energy B of Eq. (17) was
taken as 4.47 MeV to obtain 1C1' from 121 (which
is unambiguously defined), so that our present
result is actually about 10' larger than without
Coulomb corrections (compare Figs. 2 and 5).
Our results are consistent with Lim, ' but smaller
than Borbely et al.9' "

From the results in Figs. 2-5 it is seen that
while only the complete analysis yields the energy-
independent 1C1' of Fig. 5, the use of the Coulomb
distortion factor p(E) and optimal expansion leads
to an unambiguous value of ~C1' which is correct
for energies & 8 MeV (Figs. 4 and 5). This sug-
gests that for elastic scattering on light nuclei it
is possible to treat Coulomb effects by the Cou-
lomb distortion factor, including Coulomb scat-
tering. This most certainly would not be true for
heavier nuclei, where the Coulomb scattering is
large, and one needs a representation for the
amplitude in order to calculate the cross terms.

We conclude that one can satisfactorily include
Coulomb effects and extract spectroscopic factors
for charged particle reactions by using the analytic
properties of the amplitudes in the cos6 plane.
The results are most promising for transfer reac-
tions where one does not need cross terms with
the Coulomb amplitude. The present work sug-
gests that one can directly extract spectroscopic
factors from the experimental data in such cases.
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