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Finite range calculations of light-ion two-neutron transfer reactionss'
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A fu11 finite-range distorted-wave Born-approximation formalism is used to calculate the two-neutron transfer
reactions "O(p, t)"O(g.s.), ' Ca(t, p) 'Ca(g. s.), and ' 'Pb(p, t)'~Pb(g. s.). It is found that the shape of the differential
cross section is well predicted in the forward direction for a11 nuclei studied, but the normalization is given

correctly only for "O.

NUCLEAR REACTIONS O(P, t), E=20 MeV; Ca(t, P), E=10.1 MeV;
t08Pb(p, t}, E =35 MeV; ground state transitions. Calculated e{&).

Finite-range DWBA.

I, INTRODUCTION II. FORMALISM

I ight-ion-induced two-nucleon transfer reaction
data are almost always analyzed with the use of
distorted-wave Born approximation (DWBA) and
the zero-range approximation. Theoretical work
which tests the validity of the zero-range approx-
imation includes the work of Bayman, ' Bayman
and Feng, ' and Takemasa. ' In the first two refer-
ences exact finite-range calculations are per-
formed only for a pure configuration transfer.
The methodology of Ref. 3 also involves a full
finite-range calculation but uses a somewhat un-
physical. Gaussian form for the triton wave func-
tion. The purpose of this paper is to report a
study of two-neutron transfer reactions. A full
finite-range DWBA formalism is used which'al-
lows a coherent sum of all. components of the two-
neutron wave function and also uses a real. istic
description of the triton.

Only ground state transitions in which the target
or residual nucleus is a doubly closed shell nu-
cleus are considered. The configuration space al-
lowed includes all relevant components from the
major shell above (or below} the closed shell nu-
clei involved.

and

p+7 t+8,
T =8+H,
t =p+0,

H =ni+n2 .
For such a process the differential cross section
using DWBA, is

(2.1}

The cal.culational. methods used here are similar
to those of Ref. 4. The distorted waves are ex-
panded in plane waves' "and the single-nucleon
orbitals are expanded in harmonic oscill. ator func-
tions. ' The use of a Moshinsky transformation'.
then allows the DWBA triple vector integral, to be
written as a sum over single integral. s.

A two-neutron transfer reaction can be written
as

with

Ts q „q =C(T„lTr; A'„1Nr)

In the above,

x g f dr~zdi r &(„dx, „id@„„,r,z)x„"N„lx„&v&„[c' ax (4)] all'„' (ra~)xr( r~ ) .k
~as

(2.2)

(2.3)

g~ and p& are distorted waves, the T's are isospin quantum numbers with projections N,

v, „=v„()r„,j )+ v„(r„,, ~), (2.4}
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and

HR —g g /~ll2 HP

"x'i~i "a'a's

[@"1

ill�(r

g ) @"212r2(r R g }] HR [@nllll 1(r g )@ 21242(r g )] HR

[2(1+5„,„5... 5, , ) ]'"
(2 5)

The specific form for the transfer potential used
in the calculations presented later was'

l'. .(&) =" (z'~ &.)

and

rn n rpn rpn rn g . rn g
y p 1 2 1 2

Ir H-2.2(r-rcpt
(Z & Z )

with V0=-481.21 MeV and r, =0.45 fm. Since the
above form is spin independent, only the dineu-
tron singlet spin state is included. The triplet
contribution wouM be expected to be small. ''

In Eq. (2.5), the single-particle orbitals are

It is now desired to transform all coordinates
into those to be averaged in Eq. (2.2). The spatial
part of the single-particle wave function pairs of
Eq. (2.5) are expanded in oscillator functions. '
This gives

C"„"(r,g) = [ g"'(r)zi""(g)]'„

with

y"„'(r) =(z)'u„, (z )I" (r)

(2.5)

(2 7)

[@nlllil(~r~ g )@n2l2J2(r g )] HR

~n ~R C' 1 I l. rn R & ~i

and the A is a spectroscopic amplitude. The co-
ordinates are related by

-1
rpg =rpg+pngmz rHg,

"'""(nR )] "'

(2.9)

r,~ = r~~ +nz~m, r~~,

rpH = - 2(rpn + rpn ) ~

(2.8)

where z and j are 1 or 2, 4 contains a harmonic
oscillator radial wave function (but is otherwise
identical to 4), and the a's are overlaps of 4 and
C. Transforming from j -j to L-S coupling and
performing a Moshinsky transformation' allows

Eq. (2.9) to be written as

[4"1'1'1(r R, g )C "2'2'2(r R, g„)] "R = g g g j,j L S a„- a„-"i
j.S nln~ nii Ng

1
l~ ~ j,

x l2 —,
' j, (nl, NZ, L~n, l„n l Iz. )2

L SJ~~

x [[P (r )g (r )] [zi (g )z) (g )] (2.10)

The triton spatial wave function of Eq. (2.3) is
assumed to be symmetric, have orbital angular
momentum zero, and have the form

a=0.275 fm '
j

b = 1.525 fm ',

r, =0.45 fm,

The p's were taken to have the form
and

c =0.376 .

where

+(Z~
) (&-ar e-b r) jZ 1/ 2

f(z') =1 —exp(-c[( /z'. )'-1]),

The g function was found in Ref. 8 to have a cor-
rect asymptotic form and f takes the wave func-
tion smoothly to zero at a "hard core" radius of
0.45 fm. '
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In order to achieve the stated objective of transforming to the coordinates to be averaged in the DWBA
integral, both the triton wave function [Eq. (2.11)]and the product of the triton wave function and the trans-
fer potential [Eq. (2.4)] must be expanded in oscillator functions. This gives

(2.12)[V„(r„,,)+ V„,(r„+)]p(r„„)p(r„,,)p(r„+) =p(r„„)P [a„-,'a', +a„-"a ][&""(r„,,)P""(r„,~)]', ,
t t

n&n2

where the a's are overlaps between p and Q and the a"s are overlaps between Vp and P. A Moshinsky
transformation now yields, for Eq. (2.12),

p(r„,„)p [a-„~a„'t+a„'-t a„-~-](n't', N'l', O~nf 0, n,'0, 0)[p" ' (r„„)p~ ' (r~z)]o .
n~ n2

(2.13)

Thus, all bound states quantities now contain only
the desired coordinates. The distorted waves may
be transformed into a form in which they contai. n

only r~z and r~„by means of the plane wave ex-
pansions of Refs. 9 and 10. Further, all calcula-
tional techniques of Ref. 10 may now be used and

yield the final form for the cross section given in

the Appendix. The computer program MEHCURY"'"
was modified to perform the numerical calcula-
tions. The modification essentially consisted of
replacing the form factors of single-particle trans-
fer with the series of form factors given by Eqs.
(A9) and (A10).

It should be noted that the amount of computing
required is somewhat independent of the number
of configurations used since the sum over the
quaritum numbers defining each configuration is
done in Eq. (A10). As noted in Ref. 4 only a few
values of l in Eq. (A2) need to be included. In the
results presented later only l = 0, 2 were used
(l = 1 is excluded}. The larger value of l made
only a small contribution to the calculated cross
section. Small values of / imply small values for
8 also through the selection rules on the Moshin-
sky bracket in Eq. (A10). It was also reported in
Ref. 4 that orily a limited range of n and nt are re-
quired. Only n (or n') =0, 1 were used here. Again
-the larger values contributed little to the cross
section.

III. RESULTS

Numerical calculations were performed for (P, t)
reactions on "0 and '~Pb and also for (t,P) on

f„=f1+exp[(r r„A"')—/a„]] (3.2)

and V~ is a Coulomb potential due to a uniformly
charged sphere of radius &,A'". The optical pa-
rameters used for the protons are shown in Table
I and those for the tritons in Table II. Bound neu-
tron orbitals were generated from a potential of
the form

V (,) V,f„(r)+V,
45 2 d f (,)L. S (3.3)

with f„given by Eq. (3.2), r„=1.25, a„=0.65,
~ =25, and V~ varied to give the correct asymp-
totic form. The spectroscopic amplitudes used
[ the A's in Eq. (2.5)] are given in Table III.

In Fig. 1 the differential cross section for "9-
(P, t)"O(g.s.) is shown. Optical parameter sets

"Ca. These three nuclei were chosen because of
the availability of structure information arid be-
cause they might be expected to have fairly simple
shell model. wave functions since the two neutrons
are added to (or taken from} doubly closed shell
nuclei. In the case of 'Ca, full finite-range calcu-
lations have already been done by Bayman' and by
Bayman and Feng' for a single configuration only.
This allowed a check on the numerics. Ground
state transitions only are presented in thi.s paper.

The optical potentials used for the distorted
waves had the form

V(r) =Vc(r) —Vf„(r)-iWf (r)+4ia„W~ fn(r),
(3.1)

where

TABLE I. Proton optical parameters.

Nucleus
and:
set 'c +v Qv H,ef.

18@,pj
18p p2
4'Ca

,208pb

53.6
56.0
53.0
53.4

1.5
1.7
0
5.0

6.0
0

15.5
5.6

1.25
1.25
1.25
1.17

1.07
1.17
1.25
1.17

0.74
0.75
0.65
0.75

l.34
1.32
1.25
1.32

0.64
0.588
0.47
0.66

12
12
13
19
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TABLE II. Triton optical parameters.

Nucleus
and
set av au) Ref.

i6O

"O-T2
4oCa

2o6Pb

170.58
146.8
144.0
167.0

9.75
14.7
30.0
10

1.16
1.4
1.24
1.16

1.16
1.4
1,24
1.16

0.66 1,90
0.44 1.4
0.678 1.45
0.75 1.50

0.8
0.551
0.84.1
0.820

12
12
13
20

P1 and T1 mere used. These sets were found in

the reference cited to match elastic scattering.
It is seen that the DWBA calculations match both
the shape and the normalization of the data in the
forward direction when either a (2s,~,)'-(1d,~,)' con-
figuration space is used or full s-d shell descrip-
tion is included. The use of a pure (1d, ~,)' con-
figuration gives the same shape but underpredicts
the cross section at the forward angles by about a
factor of 3. The second maxima in the calculations
is too small. However, a (2s, ~,)'-(1d, ~,)' configu-
ration space differs from one set of data by about
the same amount as the two sets of data differ
from each other. Backward of -60' the calcula-
tions give a poor description of the data in both
shape and normalization. Over all, the two or the
three component wave .functions give excellent re-
sults in the extreme forward direction but fall off
too rapidly.

In Fig. 2 a calculation for the same process is
shown, but optical parameter sets P2 and T2 were
used. These two sets were found in Ref. 12 to
give the best fit to the transfer data in a zero-
range calculation. The normalization of the full
finite-range calculation of Fig. 2 is as shown. The
optical parameters used, however, do not match
elastic scattering. Also, the calculated cross sec-
tion is much too large in the extreme forward di-

l0.0

—l.o -'
V)

J3
~l

.1

O.I—

I I I

0(p, t) 0(g.s.)
Ep= 20 MeV

0
XXX

l I l

X = Fleming et.al.
P. R.C. IO, IMQ ('74)

e = Pignanelli et. al.
P. R.C.l0, 445 ('74)
(asl/2)2 ((d5/sj2

(2sl/2)2 (ld5/2)2
5/2 2(ld )

(ld 5/2)2

~ ~

rection (compare with Fig. 1). Thus, the results
of Fig. 2 are regarded as no more than a paramet-
rization of the data and are shomn to illustrate
this point.

In Fig. 3, the differential cross section for "Ca-
(t, P)42Ca(g. s.) is shown. The pure configuration
transfer calculation is a repeat of a result in Ref.
1. The use of a single component wave function
gives a cross section strength that is -4(P/a too

TABLE III. Spectroscopic amplitudes.

(1d5/2)

0.952
0.893
1.0

(2P )2

0.22
1.0

0.832
1.0

(2sg/2)

0.270
0.450

(lf7/2)
2

0.97

(2f5/2)
'

0.416

i80

4'Ca

(1f&/2)

0.14

208Pb

(1d,/, )'

0.146

0.11

(3&3/2)
'

0.379

R,ef.

21
22

Ref.

Ref.

O.OI
0 20 40

I

60 80 l00 l20 l40
ecm

FIG. 1. Differential cross section for ~80(P, &)~60(g.s.).
The effect produced by using a one-, two-, or three-
component wave function for ~ 0 is illustrated. The
normalization of the calculated cross sections is as
shown. Optical parameter sets P1 and T1 were used.
Symbols are as follows: x, D. Fleming et al. , Phys.
Rev. C 10, 1350, (1974); ~, M. Pignanelli eta4. , Phys.
Rev. C 10, 445 (1974); —,(2sg/2), (1d)/2)
(2s&/2), (1d&/2), (1d3/2) g p (1d3/2)
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small. Including a full f P-shell configuration' ' '"

space makes the normalization worse by more
than a factor of 2. This is due to the large (2p, &,)'
DWBA matrix element relative to the (1f7~, )2, In-
cluding the entire f Ps-hell takes the transfer
from pure (2p, ~,)2 to almost pure (1f,g, )' (see
Table III). This loss of strength is consistent with
the estimates of Ref. 1. It would probably be pos-
sible to arbitrarily assign weights to the various
f-P components and get the experimental strength.
Without structure justification, this again would
be a parametrization of the data. The point is,
however, that if some mechanism, not included
in Ref. 13, were available that would greatly en-
hance the (2P}2 spectroscopic amplitudes relative
to the (1f)', the normalization problem would be
less or nonexistent.

The shape of the calculated cross section in Fig.
3 has the same characteristics as that of Fig. 1
for "O(P, t)"0 That .is, it fits very well in the
extreme forward direction but falls off too rapidly.

In Fig. 4 the differential cross section is shown
for '"Pb(P, t)'"Pb. The single configuration trans-

fer underpredicts the cross section by a factor of
5.2. A three component wave function gives a
strength about 3 times higher. The shape is in

good agreement with the data. However, only for-
ward angle data are available. The calculated
strength of the transition is too low by about 4a%.

For the three nuclei studied here, full finite-
range DWBA gives an excellent description of the
shape of the forward angle cross section. How-
ever, for the two nuclei where backward angle
data were available, the calculated cross section
falls off too rapidly. The normalization is in ex-
cellent agreement for "O and reasonable agree-
ment for '"Pb, For "Ca, however, the calculated
strength is too low.

IV. DISCUSSION

The two most obvious omissions in the study of
this paper are (1) only a direct one step process
has been allowed, and (2) only a limited config-
uration space was used. Some work has been
done by other authors which allows multistep pro-

I I I

0'(p, t } 0 (g.s.}
Ep = 20 MeV

10.0 I I 1

Ca(t, p) Ca (g.s.}
Et= IO. I MeV

l.o

E

U

b
O

O.l—

1.0—

E

~ O. l

b
U

I

I

I

I

I

l

—— (2p ) N= I 7

( 2p5/2) 2 (pplR)R ( 1
f7/R)2 ( I f 5/2)R

N =4,0

~ 0

~ '

0.01—

~ M. Pignanelli et. al. ;

Phys. Rev. C10,045 (1974)

O.OI
lo 50 50 70 90 I I 0 l 50 l 50

~deg)

0.001
0

I I

50 60
I I I I

90 120 150 180

e
& ~ (deg)

FIG. 2. Differential cross section for O(P, t) 80(g.s.).
Optical parameter sets P2 and T2 were used which were
found in Ref. 12 to give the best fit for the transfer data.
The normalization of the calculated cross section is as
shown.

FIG. 3. Differential cross section for 4 Ca(t,p)-
42Ca(g. s.). The calculated curves are multiplied by the
factor ¹ The data are from Ref. 24. Symbols:
(2P3/2)' ¹~7& —-~ (2P3/g)'s (2Pg/2)' 0-f7/2) ~ (1fy2)'
N =4.0.
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I

Pb(p, t) Pb (g.s.)

E&=35MeV

I/2) 2 (2f5/2i2 (~ 5/2)-2
N = I.6

p-)- N=52

O.0l—

0.001
0 IO 20

I I I I

50 40 50 60

c.m. (deg)
70

FIG. 4. Differential cross section for Pb(P, t)-
Pb(g. s.). The calculated cross sections are multiplied

by the factor N. The data are from Ref. 25. Symbols:
@P~&2&

'
~2f5&2&

'
(3&3(2) '&=~ 6'—

N =5.2.

cesses."" However, the studies use a zero-
range or no-recoil approach. In the work of this
paper a formalism has been used which allows an
exact evaluation of the DWBA integral and which
allows explicit inclusion of multiple two-particle
conf igur at ions.

It was found in Ref. 27 that using a large basis
greatly increased the strength of the cross section
in heavy-ion two-nucleon transfer. The size of
the configuration space allowed here was re-

stricted by considering only the major shell above
(or below) the doubly closed shell nuclei involved.
In the case of 'O'Pb(P, t)'O'Pb, only three of the
six possible two-hole configurations were used.
These three, however, give 97% of the wave func-
tion that results when the full major shell is in-
cluded. " It would thus be strongly expected that
the use of all six would have little or no effect on
the calculations presented here.

It should also be pointed out that a more complete
treatment of the nucleon-nucleon hard core poten-
tial in Ref. 28 found a decrease in the transition
strength for (d, P) reactions. Using this more
complete treatment in the work of this paper
might thus reduce the size of the calculated cross
sections.

With the above points in mind, it is the con-
clusion of this work that the theory tends to (1)
predict cross sections which correctly give the
forward angle shape but fall off too rapidly; and
(2) tend to predict too small a strength but not by
large amounts except for "Ca.

The shape of the cross section is essentially in-
dependent of the configurations used. This is seen
in the results of the last section and is also seen
by comparing the shapes of the form factors
[V(r„„)'sof Eq. (A10)] that enter the calculations.
That is, they have almost the'same shape indepen-
dence of the two-nucleon configuration. This is
also claimed in Ref. 1. It would thus seem that the
only number relevant for two-particle spectroscopy
is the normalization. The independence of the
shape of the cross section to the configuration
space used would indicate that the too rapid falloff
of the calculations would not be improved by a
larger wave function. This may indicate that the
shape can be improved only by including multistep
processes.

The author would like to acknowledge very useful
conversations with D. Hobson, F. Petrovich,
J. Philpott, and K. Kemper. Thanks also go to
D. Robson for reading the manuscript.

APPENDIX

The expression used to numerically calculate the differential cross section is given here:

"'=[4(4m)4]-'E 'E- 'k k-'j -'j -2H(8) (Al)

with

H(9) =Q Q (2 —5„,) C(T„ITr; N„INr) Q Z'PQ(-) 'L, Ig~,"P~,(cos8)
Zs Lg

(A2)
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I~~,
' =l 'p ' Q (-) ~L~L'A, A~C(L, L~p; vpv)Cg, LL, ; 000)C(AqLL~;000)W(L(L, A~A, ;pL)

LpAtApz

P l

A (l —A., ) A., C(g —&,X,A, ; 000)C(l —A, &,A; 000),

A, l( (8- X2)

a'- M'--(a k ) — ' u
' — 'a '0"-'~'k"-"2'

LglLp Lt m'np~p'ntLt Lgl "pp nt I np mt nt np nt

npnt

+y

().„,k„)=Q)(,, j E;„- (q, )Gl , (q, )P;.(u)dp,
nnt

(A6)

(A6)

„,(q, )=4w J-r dr, „(-,(q,r )v-, ,-,(r „)
0.

(AV)

r„~'dr„Rj z (q,r~~)V (r„„)S' L™n q, ,

V ,„((r,„)-=-g (a, a', +a', a, )(n'l, l)I'l, 0~ n,'0, n,'0, 0)u"p (r(~),
n&n2

V' (r„,)= P g P ~„"'„",, j,j,p
nln2N nlll jl n2l2j2

p

2

j, a„-a„-(nl, l(IZ, , p~n, l, , n, l„p)[1+(-1)']

x[2(1+6„,„,6...,6..., )] 'I'u„"'(r„„-)-, (A10)

0

The M" are harmonic oscillator radial. wave functions. A11 other quantities not previously defined are
identical to those in Ref. 10.
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