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The disagreement that currently exists regarding the calculated and experimental values of the triton binding

energy (ET) and the doublet scattering length ( a) is analyzed in considerable detail. Using the unitary pole
approximation, which has previously been tested with great success, we have calculated EI and 'a for a large
class of realistic potentials. The results show that the one-boson-exchange potentials (OBEP) give in general
—1 MeV more binding for 'H and correspondingly smaller 'a than the local hard- and soft-core potentials. This
difference is shown to be partly due to the fact that the OBEP have in general smaller deuteron D-state
probability, and partly due to the fact that they fit the 'So n-p rather than the p-p data. Finally, we

demonstrate that the correlation between ET and 'a, predicted by Phillips on the basis of separable potential
calculations, has validity for the more realistic interactions.

~NUCLEAR STRUCTURE 3H; calculated binding energy, doublet scattering
length. Faddeev approach, realistic N-N interactions.

I. INTRODUCTION

V(x) = Vc (r ) + Vr (x)S» + V» L S + V~~ (r)L» + V»,

where L S and S» have the usual meaning and
where 1.» involves combinations of v, 0„ I', and
(L S)'. The momentum dependent, or nonlocal
term V„~, has the form

v„, = &v,(r)+ v, (r)&'. (2)

Potentials of the Hamada-Johnston and Reid type
are obtained from the general expression (1) by

The binding energy of 'H, predicted by nucleon-
nucleon (N-N) interactions, has been the subject
of intensive study in recent years, and definitive
results now exist for several realistic models. '
These results show that the calculated triton bind-
ing energy (Er) is some 1.5 MeV below the experi-
mental value of E~ =8.4S MeV, and the suggestion
has been proposed that this discrepancy is indica-
tive of a substantial contribution from three-body
forces. However, such a large contribution from
many-particle forces in a system as loosely bound
as the triton seems very unlikely, but if substan-
tiated, would have far reaching implications for
calculations involving heavier nuclei. One question
that has not been adequately studied is the possi-
bility of explaining part of this difference on the
basis of certain premises used in the construction
of most nucleon-nucleon potentials, and it is this
approach that we shall consider.

From basic symmetry considerations, the gen-
eral form of a N-N interaction may be written in
coordinate space to order p' as

assuming a functional form for the Vc(r), Vr(r),
V~~ (x), and V»(x) which involves unknown param-
eters. The numerical values of these parameters
are then determined using the two-nucleon experi-
mental data, in conjunction with the theoretical
one-pion-exchange potential. The momentum de-
pendent term V„~ is neglected in this procedure,
making the resultant potential local in each partial
Nave. It has been clearly demonstrated that this
phenomenologicel approach allows the existing
N-N data to be quantitatively described with the
only remaining uncertainty being the type of core
used to parametr ize the short-range interaction.
Typically, we can have soft-core, super soft-core,
or hard-core potentials corresponding to the de-
tailed behavior at short distances. In this article
we demonstrate that the assumed core is not the
feature of the interaction that can account for the
failure of these phenomenological potentials to re-
produce the experimental triton binding energy and
doublet n-d scattering length.

The remaining assumption to be tested is then
clearly the neglect of the momentum dependence
V». It is quite feasible that while the neglect of
this term allows one to fit the on-shell scattering
data, the resulting potential may not provide an
accurate method of extrapolating the fully off-shell
scattering amplitude or T matrix. This would
then account for the failure of phenomenological
potentials in nuclear binding energy calculations
which depend directly on the off-shell two nucleon
T matrix.

The possibility of testing this conjecture is pro-
vided by the more fundamental theories which at-
tempt to explain the N-N interaction using the
mechanism of meson exchange. In particular, it
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TABLE I. The potentials considered in this investigation of the trinucleon.

Potential Type Abbreviation Reference

Reid hard core
Hamada- Johnston
Yale
Reid soft core
Alternate Reid soft core
Tourreil-Sprung A
Tourreil-Sprung B
Tourreil-Sprung C
Bryan-Scott
Bryan- Gersten
Stagat, Riewe, and Green
Ueda-Green II

hard core
hard core
hard core
soft core
soft core

super soft core
super soft core
super soft core

velocity dependent
veloc ity dependent
velocity dependent
velocity dependent

RHC
HJ
Yale
RSC
RSCA
TSA
TSB
TSC
BS
BG
SRG
UGII

3

5
3
3
6
6
6
7
8
9

10

has been shown that the exchange of pseudoscalar,
vector, and scalar mesons accounts for most, if
not all, of the important features of the internu-
cleon force. ' Moreover, the exchange of the latter
two types of mesons leads to the term V». While
there are still difficulties in giving a precise
formulation of the N-Ã interaction using this mod-
el, problems of unitarization (or cutoff) and the
exact nature of the uncorrelated multimeson ex-
change contribution, several groups have calcu-
lated the nuclear force using the one-boson-ex-
change (OBEP) prescription and the success
achieved is very satisfactory. The number of free
parameters is substantially reduced in compa, ri-
son with the phenomenologica, l models, and good
fits to the phase shifts are achieved. Finally, we

note that the QBEP potentials usually fit the n-P
rather than the P-P data.

Thus, to study the effect of both the momentum
and charge dependence of the N-N interaction on
the three-nucleon system, we have calculated the
triton binding energy and n-d doublet scattering
length for a large class of realistic potentials.
These potentials are listed in Table I, together
with abbreviations which we shall use throughout
the subsequent discussion.

The triton binding energy (Er) has been shown
to depend almost exclusively on the nuclear inter-
action in the 'S, and 'S,-'D„partial waves; the
contribution from higher partial waves amounting
to less than 0.2 MeV. ' The discrepancy between
the calculated and experimental value of E~ is
thus either due to uncertainties in the potentials
used to represent the S-state interaction, or to a
large (1.0-1.5 MeV) contribution from three-body
forces and relativistic effects. In the present in-
vestigation we hope to study the degree of uncer-
tainty due to the 'S, and 'S, -'D, potentials. If this
uncertainty can be reduced, we may get a phenom-
enological value for the contribution of three-body
forces and relativistic effects in the three-nucleon

system. For the following discussion, we denote
the triton binding energy for the 'S, and 'S,-'D,
partial waves as E~.

To calculate E& and 'a for a particular potential
we will use the unitary pole approximation (UPA)
to represent the off-shell two-nucleon T matrix,
and then solve the appropriate form of the Faddeev
equations. This procedure has been shown to be
quite accurate for the Reid soft-core potential and
in Sec. III we demonstrate its accuracy for other
potentials. "" The numerica, l techniques that
allow the UPA to be efficiently utilized in such a
comprehensive calculation are discussed in Sec.
II.

The values obtained for E~ and 'a using the in-
teraction models of Table I are tabulated in Sec.
IV. We find that the difference between the three-
nucleon results for the OBEP and the other (local)
potentials, is mainly due to the difference in the
D-state probability of the deuteron and the 'S, ef-
fective range parameters (i.e., the difference be-
tween n-p and p-p data). We also find that the cor-
relation between Er and 'a (i.e., the Phillips
line" ), shown on the basis of rank one separable
potentials, is also present for the more realistic
interactions.

Finally, in Sec. V we present some concluding
rema, rks.

II. NUMERICAL METHODS TO FORM THE UNITARY POLE
APPROXIMATION

To determine the unitary pole approximation
(UPA) for a particular potential model, it is nec-
essary to calculate the two-nucleon bound state
wave functions in momentum space. In a previous
application of the UPA to the Reid soft-core po-
tential, this was accomplished by solving the ho-
mogeneous I,ippmann-Schwinger equation. " How-

ever, some of the potentials listed in Table I con-
tain a hard core and numerical problems prevent
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us from adopting this procedure. We, instead,
solve the bound state Schr6dinger equation for the
wave function and then perform the necessary
transformation to momentum space. To achieve
this without loss of accuracy, the deuteron wave
function is expressed as a linear combination of
N chosen functions with unknown expansion coef-
ficients which are determined from the Schrodinger
equation. By choosing basis functions with a known
Bessel transform, the transition to momentum
space does not incur any numerical error. This
method is gene rally known as the method of mo-
ments and has been used successfully by Harms
and Newton in obtaining the UPA for the 'S, state
of the Reid soft-core potential. "" Here we gen-
eralize the method to include hard-core potentials
and apply it to the 'S, -'D, channel. Bhatt, Harms,
and Levinger have previously used a similar type
of approach. '

In the following discussion we shall derive all
expressions including a hard-core radius z, . The
corresponding expressions for soft-core potentials
are then obtained in the limit x,-0. The partial
wave Schrodinger equation appropriate to the
S ] Dy channel may be written

with

Goo

0

0 Vo & n00 02 0

~V, V~,

where

3 3
A,g, (pr) = 1+—+, e(qr)'

1
A,(, (((r ) = (i r—e

where the a&, j =1, N are predetermined ranges
chosen so as to enable the sum in Eq. (4) to ade-
quately represent the deuteron wave function. In
practice, these were chosen between 0.7 and 20.0
fm. The lower cutoff is imposed so that the wave
function has the correct asymptotic behavior and
the upper cutoff because the solution was not sen-
sitive to larger values. The coefficients q, in Eq.
(5) are determined from the equation p~(r, ) =0.

Substituting for u, (r) in Eq. (3), the expression
(4), and multiplying both sides by PI(r), then in-
tegrating from zero to infinity, yields the matrix
equation

u, (r) =0 for ~&a, ,

N

u, (r) = —F,

ming

n,'Q,'(r) for r & r„
(4)

and 0.', are the expansion coefficients. The most
convenient form for the functions P~((r) is the usual
Yamaguchi deuteron wave functions whose momen-
tum space form is well known and which have the
correct asymptotic behavior for large r." The ef-
fect of the hard core may be incorporated by the
slight modification

(I)',(r) = e-'~" q',e-'~', -
y,'(r) = 2u, 'A„,(u„r)

—q, [2a~'A, ~, (a, r) —(k~' —a&')a~ rA, ~, (a~ r)]

d2 6
2 2~t2 —ku +~ & = Vil, & +L, r, 3

I=0,2

where l =0, 2 is the orbital angular momentum in-
dex, the deuteron wave functions g, (r) = u, (r)/r,
and the functions V,~(r) represent the partial wave
components of the potential. The expression (3)
represents two coupled equations (l =0 and l = 2)
which are to be solved for the deuteron binding en-
ergy Z, = f(k„' (where k = 5'/M, with M the nucleon
mass) and for the components of the deuteron ra-
dial wave function u, (r). To solve Eq. (3), we ex-
press u, (r) as

&I( )V«'( )&~'(r) "r ~

(G -V+I)a=a (10)

which is now a standard eigenvalue problem with
eigenvalue 1. The two-body binding energy is
calculated by searching for the value of k& satisfy-
ing

det(G —V) = 0

and then a may be obtained by solution of Eq. (10)
using one of the numerous available codes.

It was found that with E =12, the method yielded
comparable accuracy in the binding energy and
wave function as can be achieved by integrating
Eq. (3) using the Numerov method. '8 Furthermore,
the results were reasonably insensitive to the
exact numerical values of the a, and they were dis-
tributed in some convenient manner between 0.7

Equation (6) represents a generalized eigenvalue
problem of the form

Ga=Va,
where the z is a 2N-dimensional column matrix
of the expansion coefficients and the (2Nx2Z) ma-
trices G and V are functions of the deuteron binding
energy E„. This equation is solved numerically
using the artifice of adding I 0, to each side



I. R. AFNAN AND J. M. READ

and 20.0 fm.
For the 'S, state where there is no bound state

we formulate Eq. (6) as an eigenvalue problem of
the form

with the energy fixed at zero. The eigenvalue A. of
Eq. (12) is then calculated from the condition

det(G —A V) = 0 .

S,—D, channel as

(14)

where &, is a projection operator onto the angular
momentum state l and the elements of the strength
matrix C are given by

~rr'=(PrPr ) '&AIVll ltr &

with

In this way we avoid the problem of analytically
continuing the wave function onto the second energy
sheet where the 'S, T matrix has a pole corre-
sponding to the antibound state. '" This procedure
is justified by the proximity to zero energy of the
antibound state (E = —0.064 MeV). Due to the
absence of noncentral forces in the 'S, state, the
matrices in Eq. (12) are of the rank N

Once the deuteron wave function has been calcu-
lated, we may write the UPA potential in the

The matrix elements &gr~ V„)qr, & may then be
written in terms of the expansion coefficients a.',
of Eq. (4) as

&Vr~ Vrr ~ rlrr &
= Q rrr'r Vri rr. ' r

where VIrr are defined in Eq. (8). The form factor
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FIG. 1. The ISO and ~S1-~Dt nuclear bar phase parameters calculated from the Hamada- Johnston potential and its UPA
counterpart.
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~ y & is a two-dimensional row matrix

Ix&=[ix.&ix &1 (16)

equation using the potential of Eq. (14) as

T„,(E) =
~ q &~PS-'(E)~„(yl, (19)

where the ( )(, & are the form factors associated
with the bound state wave functions

where the matrix M(E) is

I(E) =C -'+ P &,(qj G,(E)( )(&&, (20)

= (p'+ ~a') Q ~i 0i'( p)
(17)

g(p) = «~A (p~)ti(&) (18)

and the o. I are normalized so that Q, J, y, (p)p'.
[g(p'+y~a)j 'y, (p)dp=1. The pI(p) areobtainedfrom
the expressions (5) by performing the integral ap-
pearing in

with G,(E) = (Ho —E) ' the free Green's function.
The explicit details required to utilize the above

scheme are given elsewhere. " These include the
numerical values of the expansion coefficients for
each of the potentials in Table I, the explicit forms
of the QI(p), and the analytic evaluation of the in-
tegrals of Eqs. (7) and (20). For r, =0 the y, (P)
are the usual Yamaguchi form factors and all the
relevant formula are well known.

analytically.
The unitary pole approximation to the T matrix

is obtained by solution of the Lippmann-Schwinger

III. ACCURACY OF THE UPA

The input to the bound state Faddeev equations
is the fully off-shell two-nucleon T matrix at neg-
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FIG. 2. The ~SO and 3S&-SB& nuclear bar phase parameters calculated from the Reid soft-core potential and its UPA
counterpart,
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ative energies. Thus, to test the accuracy of the
UPA we need to compare the exact and UPA T-
matrix elements at negative energy. This pro-
cedure has been carried out in some detail for the
Reid soft-core potential and for this potential the
UPA reproduces, with excel. lent accuracy, the T-
matrix el.ements relevant to a calculation of E~~,""
The comparison was also extended to positive en-
ergies and it was shown that the UPA accurately
represents the ho and S, phase parameters. For
our present purposes, we will adopt the latter
procedure. This can be justified on the grounds
that the triton is mainly sensitive to the 'So and
'S, T-matrix elements and if the UPA gives a good
representation of these functions at positive ener-
gy, then it will provide an even better approxima-
tion at negative energy. The reason for this is the
fact that the bvo-body bound state pole dominates
the behavior of the negative energy T matrix and
the UPA reproduces exactly the position and resi-
due of this pole. " Thus, to assess the ability of
the UPA to represent the T matrices derived from

the potentials in Table I, we shall compare the
phase parameters in the important 'S, and 'S,-'D,
channel. s.

Because many of the potentials in Table I are
similar in their analytic form, we have chosen to
present here a comparison of the UPA and exact
phase parameters for one of the potentials of each
type. The results for other potentials of similar
construction exhibit identical behavior. " In Figs.
1 to 4 we compare the exact and UPA phase param-
eters for the So and S~- D, states obtained from
the H J, HSC, TSC, and BS potentials. The over-
all agreement of the 'So and 'S, phase shifts, par-
ticularly at low energies, ensures that the UPA
will give a good representation of the negative en-
ergy S-state T-matrix elements and thus of the
trinucleon binding energy. ' For the HJ potential,
the UPA fails to reproduce the sign of the 'D,
phase shifts, indicating that the UPA is more at-
tractive in the D wave than the original potential.
The sign of the 'D, phase shift is correctly repro-
duced for the TSC, BSC, and BS potentials, sug-
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FIG, 3. The ~80 and 38&-3D& nuclear bar phase parameters calculated from the Tourreil-Sprung potential (model C)
and its UPA counterpart.
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gesting that the UPA wil. l be an accurate approxi-
mation for the D-wave negative energy T matrices
derived from these models. To see the ef", ,oct of
too attractive a, 8 wave in a, triton calculation, we
note that the approximation of Hhatt 8t al. when ap-
plied to the BSC potential predicts a large positive
B phase shaft whereas theUPAfor thzs same po-

tential correctly reproduces the sign of these phase
shifts. '"'"'" This is basically the main difference
between these two Rpproximations Rnd the differ-
ence of 0.3 MeV in the corresponding values of
Ez*, when compared to the large differences in
the 'D, wave phase shifts, demonstrates that P~
is not particularly sensitive to this quantity. How-
ever a compar1son of the UPA 'D phase sh1fts
with the exact values provides a method of assess-
ing the relationship between the exact and approx-
imate values of E~. Qn this basis, the UPA values
of E~ for the hard-core potentials will. be some
0.1-0.2 MeV higher than the exact values. For
the other potentials we would expect the UPA val-
ues to be very close to the actua, l. values. The UPA

for the GBE potentials in particular represents an
extremely accurate approximation.

Fina. l. ly, we notice that the UPA is not able to
give an adequate representation of the '8, -'D,
coupl. ing constant. This has been discussed else-
where and the conclusion has been made that its
failure is not important in calculating the proper-
ties of the triton. "" The discrepancy in the cou-
pling parameter for the UPA, and in fact for most
separable potentials„can be understood using
some results of Wong, 'o He showed that the low-
energy coupbng parameter (E,.„&38 MeV) can be
predicted from the S~ phase shifts„by writing a
dispersion relation including the deuteron pole and
the one-pion-exchange branch cut. Since the UPA
reproducee the '8, phase shift and the position and
residue of the deuteron pole, the disagreement
concerning the coupling parameter shows that it
ie not able to eimultaneousl. y reproduce the one-
meson bra. nch cut in the mixing ampl, itude. Gf
course, this might have little bearing in a triton
binding energy calculation where we only consider

4 ( ~o)~p —- Exuct 85
«««e 0 PA Q Q
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0$-
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F),b (M@V)
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0.2-.
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FIG. 4. The ~SO ance, ~8&-~D& nuclear bar phase parameter@ calculated from the Bx'yan-Scott potential and its UPA
coUDtex'pax't.
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ergy, in Fig. 5 we plot the exact and UPA off-
shell T-matrix elements for E = —1 MeV.

To have a direct verification that using the UPA
in the Faddeev equations is an accurate calcula-
tional procedure for the three-nucleon bound state,
in Table II we compare the UPA values of E~ with
exact calculations of other authors. Some of these
calculations have made use of the potential in all
partial waves while others use the 'S, and 'S,-'D,
channels only. The agreement between the UPA
resul. ts and the more exact calculations are very
good. For all potentials compared the difference
is less than 0.2 MeV, Thus for the purpose of the
present study, our calculation procedure should
certainly be accurate enough to study the discrep-
ancy of about 1.0 MeV in the triton binding energy.

IV. RESULTS

-0.2—
I

1.0

$(frn )

I

2.0
I

3.0

the fully off-shell two-nucleon T matrix at nega-
tive energies, whose only analytic structure is the
deuteron pole." To show that the UPA represents
a much better approximation of the off-shel. l two-
nucleon T matrix in the S-D wave at negative en-

FIG. 5. A comparison of the exact and UPA values of
the off-shell bvo-nucleon T-matrix el.ements TO2(p, 0; E)
for the S&-3D& channel of the Reid soft-core potential.
The center-of-mass energy E =-1.0 MeVand the momen-
ta k = 0.1553 fm '.

Over the past decade there has been an exten-
sive study of the three-nucleon system using sep-
arable potentials. The results of these calcula-
tions have shown that the triton is mainly sensi-
tive to the deuteron observables and to the S-state
effective range parameters. ' ' Although the
one-term Yamaguchi potentials used to establish
these results may be considered unrealistic for
their lack of short-range repulsion, we would
stil. l expect these studies to have some relevance.
Thus, in Table III we tabulate the S-state effective
range parameters and deuteron observables for
the potentials of interest. ' " A detailed examina-
tion of Table III shows clearly that there is con-
siderable variation amongst the different interac-
tions. Thus we find all the OBEP give a 'So scat-

TABLE II. A comparison of the UPA values for the triton binding energy with results of
other calculations.

Potential Z*, (UP+ E Method Reference

Hamada- Johnston

Reid soft core

Tourreil-Sprung A

Tourreil-Sprung B

Tourriel-Sprung C

6.96

7.15

7.52

7.62

7.42

6.5 + 0.2
6.7
7.0'

7.02 b

6.7'

7.75+ 0.5
7.64'

7 71b

7.46b

var iational
var iational
Faddeev

r space
T-matrix

perturbation
Faddeev

q space
var iational
Faddeev

r space
Faddeev

r space
Faddeev

r space

22
23
24

12

26

25
24

' All partial waves included.
Only the So and 3S~- D& partial waves included.
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TABLE III. The low-energy parameters for the poten-
tials of Table I.

TABLE IV. The triton binding energy and n-d doublet
scattering length for the potentials of Table I.

as &s
Potential (Me V) (fm ) (%) (fm) (fm) (fm) (fm) Potential

E
(Me V) (fm)

RHC
HJ
Yale
RSC
RSCA
TSA
TSB
TSC
BS
BG
SRG
UGII

2.2246
2.2689
2.1888
2.2246
2.2246
2.2237
2.2284
2.2241
2.1977
2.3006
2.3344
2.7105

0.277
0.284
0.276
0.280
0.276
0.261
0.261
0.278
0.258
0.275
0.270
0.259

6.50 5.40 1.72
7.02 5.38 1.75
6.95 5.45 1.75
6.47 5.39 1.72
6.22 5.39 1.72
4.43 5.50 1.85
4.25 5.50 1.86
5.45 5.48 1.83
5.47 5.39 1.70
5.06 5.42 1.84
4.58 5.39 l.85
4.6 5.10 1.83

-16.7 2.87
-16.7 2.83
-17.4 2.92
-17.1 2.80
-17.1 2.80
-17.3 2.84
-17.3 2.84
-17.3 2.84
-22.9 2.64
-23.7 2.75
-32.3 2.66
-25.5 2.76

RHC
HJ
Yale
RSC
RSCA
TSA
TSB
TSC
BS
BG
SRG
UGII

6.96
6.96
6.73
7.15
7.32
7.52
7.62
7.42
7.94
7.81
8.31
8.83

1.97
2.04
2.10
1.80
1.68
1.46
1.38
1.52
1.10
1.43
1.14
1.59

tering length (a,) of - —23 fm in agreement with
the n-P scattering length, while the other poten-
tials have a value of a, -—17 fm, a reflection of
the fact that they were fitted to the P-P scattering
data. The sensitivity of Er to the singlet effective
range parameters has most recently been studied

11.0—
+ Afnan et al.

e Phillips

'+

d IETI

P dP
=-0.4 Mev

Cll
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C
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d IET I
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l l I I

2 4 6 8

DeUteron p- state probability ('/o)
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FIG. 6. The dependence of the triton binding energy on
the percentage D state of the deuteron. The upper curve
was constructed using the published results of Phillips
Qef. 13) and the lower curve from the results of our cal-
culation using the one-term 3S&-3D& potentials of Afnan
et al. (Ref. 34) with the ~SO potential of Phil, lips.

by Gibson and Stephenson, "and van Wageningen
et al."using separable potentials. They find that
E~ increases very little when a, goes from -17 to
-23 fm. On the other hand E~ is very sensitive to
the singlet effective range (r, ).

Another outstanding variation in Table III is the
D-state probability of the deuteron which varies
from 7% for the HJ potential to 4.25% for TSB po-
tential. Phil. lips" has shown, using Yamaguchi po-
tentials, that E~ and 'a are sensitive functions of
this parameter. We illustrate this variation in
Fig. 6 with Phillips's original. results and our cal-
culations using the potentials of Afnan, Clement,
and Serduke. " These latter potentials may be con-
sidered more realistic than the standard Yamagu-
chi form since they contain significant repulsion
in the 'D, state. We observe that a decrease of 1%
in P„ leads to an increase of 0.4-0.6 MeV in E~,
when all other parameters are fixed. We shall use
these results for subsequent analysis of our three-
nucleon results for the different potentials consid-
ered.

In Table IV we present the results for the bind-
ing energy of 'H and the n-d doublet scattering
length using the potentials in Table I. We observe
that most of the hard-core potentials bind the tri-
ton at around 7 MeV and predict a scattering length
of close to -2 fm. The soft-core potentials, the
RSC (E*= 7.15 MeV), and RSCA (E*=7.32 MeV)
give slightly more binding but not sufficient to
make any major change to the estimated contribu-
tion of three-body forces and relativistic correc-
tions. The difference in E for these very similar
(RSC, RSCA) potentials is due to their different
D-state probability.

To estimate the effect of the D state on E~, we
have calculated the trinucleon binding energy with
'So RSC and S,- D, RSCA potentials. In this way
the only change in the input is the 'S,-'D, channel
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TABLE V. The sensitivity of Ez to the D-state proba-
bility of the deuteron is illustrated by replacing the RSC
by RSCA in S~- D~ channel.

P~
(%) (Mev)

RSC
RSCA
RSC
RSCA

RSC
RSC
RSCA
RSCA

6.47
6.22
6.47
6.22

7.15
7.32
7.15
7.32

keeping the 'So unaltered. The resultant triton
binding energy is 7.32 MeV as compared to 7.15
MeV for the case when the RSC potential. is used
in both 'So and 'S, -'D, channels (see Table V). If
we attempt to explain this difference as due to
changes in the deuteron properties and 'S, effec-
tive range parameters we find that dE~r/dP~-0. 6
MeV, since all the other parameters with the ex-
ception of Q~ remain the same. This result is con-
sistent with those obtained using separable Yama-
guchi potentials (Fig. 6). We note that although
the UPA may introduce an error as large as 0.15
MeV in E*, the error in &Eg (the change in bind-
ing energy by changing the 'S, 'D, pote-ntial) is
much less. This reduction in error is due to
(i) the 'SD potential being kept the same and thus
not contributing to the error; (ii) the RSC and
RSCA potentials being very similar in form. Thus
one would expect the error due to the UPA to be
approximately the same. This is illustrated in
Table V where we replace the RSC 'So by the RSCA
potential. Finally we observe that the RSCA poten-
tial with a smaller deuteron D-state probability
has also a smaller quadrupole moment (Table III).

The value of 8* for the Tourreil-Sprung models
TSA (E*=7.52 MeV) and TSB (E*=7.62 MeV) are
definitely in closer agreement with experiment.
This increase in binding of about 0.5 MeV com-
pared to the RSC potential can be due to their low
D-state probability (4.43 and 4.25/o), which would
be consistent with the results of separable poten-
tials. However, both of these potentials have a
quadrupole moment for the deuteron Q, =0.261 fm',
which is small compared to the experimental value
of Q„=0.287 + 0.002 fm'." The Tourreil-Sprung
model C (TSC) tries to remedy this small quadru-
pole moment by increasing its value to Q~ =0.278
fm2. In the process the D-state probability in-
creases to 5.45% and the triton binding energy
(Eg ) decreases to 7.42 MeV.

From the above results for the Reid and Tour-
reil-Sprung potentials we conclude: First, that
E* increases by 0.4-0.6 MeV for each 1/0 de-
crease in the deuteron D-state probability. Second,
for potentials of this form (i.e., local in eachpartial

wave) adecrease inthedeuteron D-stateprobability
leads to a corresponding decrease in the quadrupole
moment. " Thus tofit the latest value of Q~ =0.287
fm' we expect a D-state probability of 7% or more
for the Reid type of potentials and possibly 6.5/o

for the Tourreil-Sprung super soft core. Such
high D-state probabil. ity will result in a triton
binding energy of close to 7.0 MeV, leaving a
discrepancy of 1.0-1.5 MeV compared to the ex-
perimental. value. Finally we observe that for
both the Reid and Tourreil-Sprung potentials, as
the D-state probability decreases the doublet n-d
scattering length decreases and at the same time
approaches the experimental value of 0.65' 0.04
fm

We now turn to the three-nucleon results for the
one-boson-exchange potentials in Table IV. %'e

observe that for these potentials E~= 8.0 MeV,
considerably higher than the value obtained for
either the Reid or Tourreil-Sprung potentials.
Furthermore the n-d doublet scattering lengths
are closer to the experimental value. Thus for
these potentials the contribution from three-body
forces and relativistic effect need not be as large.
To see if this is a real effect, we need to examine
the effective range parameters and deuteron ob-
servables for these potentials (Table III).

From Table III we see that with the exception of
the Ueda-Green (UGII) potential, which gives a,

deuteron binding energy of 2.71 MeV as compared
to the experimental value of 2.2246+ 0.0005 MeV,
there are bvo distinct features these potentials
have. First, their 'So effective range parameters
fit the n-P data (a„~ = —23.715m 0.015 fm, x„~ =2.73
a 0.03 fm)" rather than the n-n data (a„„=—16.4
a 0.9 fm, r„„=2.84+ 0.03 fm),"which both (Ihe
Reid and Tourreil-Sprung potentials are fitted to.
Second, the OBEP seem to achieve higher values
of the quadrupole moment with a low D-state pro-
bability. More important, if we compare the
Bryan-Scott (BS) and Bryan-Gersten (BG) poten-
tials, which are similar in their form, we find
that BG has a D-state probability P~ = 5.04% and

Q, =0.275 fm', while the BS potential gives P„
= 5.47/0 and Q„= 0.258 fm'. In other words, the
BG potential has a larger quadrupole moment and
a smaller D-state probability than the BS potential.
This is a feature that was absent in both the Reid
and Tour reil-Sprung potentials. "

In an attempt to understand the difference of
-1 MeV in E*between the results for the RSC and
OBE potentials, we have calculated the triton bind-
ing energy for different combinations of 'So and
'S,-'D, potentials. These results are presented in
Table VI, where we have also included the 'S, ef-
fective range parameters as predicted by the uni-
tary pole approximation. On comparing the differ-
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TABLE VI. To demonstrate the sensitivity of Ez to

So effective range parameter, we take different So

potentials keeping the S~- D~ fixed.

3 3si- zi as 's E, (MeV)

RSC
RSC
RSC
RSC
BS
BS
BG
BG

RSC
RSCA
BS
BG
BS
BG
BG
RSC

1702
-17.1
-23.0
-23.8
-23.0
-23.8
-23.8

17+2

2.71
2.67
2.67
2.72
2.67
2.72
2.72
2.71

7.15
7.15
7.52
7.42
7.94
7.81
7.81
7.52

ent cases in Table VI we find:
(a) The triton binding energy decreases with in-

creasing 'S, effective range (r, ) as predicted pre-
viously on the basis of separable potentials. "'"
However, if we assume for the moment that the
UPA are just rank one separable potentials, then

the change in Eg with r, (&EP/br, ) varies any-
where from zero to -2.2 MeVfm '. To understand
this variation in (&E„/4r, ) we have examined the
'S0 Kowalski-Noyes zero energy half-shell function

[f(P, k) =(Pf t(k )f k)/(kJ t(k )J k) for k=0] for the
potentials in Table VI. We find that the BSC and BSCA
have the same half-shell function. On the other hand,

the BS and BG half-shell functions differ particu-
larly for momenta P less than 2 fm ' by as much

as 5-10%%uq. If we compare two Yamaguchi poten-

tials with different values of x, we find differences
comparable to those obtained in comparing the BS
and BG half-shell functions. This difference in

off-shell behavior and variation in (&Ez/&r, ) sug-

gests that part of the sensitivity of E* to x, may

be due to off-shell behavior.
(b) The binding energy of 'H increases by -0.3

MeV if one fits the n-P rather than the n-n (or
Coulomb subtracted P-P) scattering length. This

change in E* is achieved by keeping the 'S, -'D,
potential fixed, and taking either the RSC or BG

potential in the 'S0 channel. The off-shell effects
are not as important in this case because both Sp

potentials have almost the same zero energy
Kowalski-Noyes half-shell function for momenta

less than -2 fm '. If we compare the value of E~
obtained with RSCA and BS 'S, potential, the varia-
tion in E~ is slightly more. But then, these two

potentials have slightly different off-shell behavior
even for momenta less than 2.0 fm '.

(c) Finally, we see that changing the 'S,-'D, po-
tential from the RSC to the BG we gain 0.3-0.4
MeV in binding. This is mainly due to the smaller
D-state probability of the BG deuteron. Although

this variation is smaller than one would expect
based on the results of separable potentials, we
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FIG. 7. The calculated values of the triton binding

energy Ez plotted against the calculated values of the
n-d doublet scattering length 2a, for the potentials of
Table I. The points designated PD3, PD4, PD5.5, and

PD7 refer to the potentials of Ref. 34, and the experi-
mental point (: =:)is included for comparison.

should note that the RSC and BG 'S,-'D, potentials
give slightly different deuteron binding energy and

effective range parameters.
Finally in Table IV we have included the three-

nucleon results for the potentials of Stagat, Biewe,
and Greens (SRG), and Ueda-Green'0 (UGII). Here
we find that the UGII potential, with a deuteron
binding energy of 2.71 MeV, overbinds the triton
with E*=8.83 MeV. This clearly illustrates that

any potential that overbinds the deuteron will give
even more binding in a many-nucleon system.
Similarly, the results for the SRG potential can
be questioned due to the large singlet scattering
length (a, = —32.3 fm), and a slight overbinding of
the deuteron (E~ = 2.33 MeV).

On the basis of calculations using separable po-
tentials of the Yamaguchi form, Phillips has shown

that the n-d doublet scattering length 'a and triton
binding energy E are not independent quantities,
but rather related by the so-called Phillips's line. '
If this result holds in general. for all nucleon-nu-
cleon interactions and is not particularly affected
by three-body forces and relativistic effects, then

a correct determination of the triton binding ener-

gy should ensure a correct value of the doublet
scattering length. Recently, Brayshaw has argued
that all the information on the N-Ã T matrix to be
gleaned from n-d scattering is contained in the
value of a.' If the results of Phillips and Bray-
shaw are combined, then it seems all the informa-
tion one hopes to gain about the N-N interaction
from the trinucleon will be present in the triton.

To illustrate the validity of the Phillips's line
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for the potentials considered, in Fig. 7 we have
plotted the binding energy of 'H as a function of
the n-d doublet scattering length 'a. We find that
the majority of potentials lie along a band running
parall. el to the Phillips's line obtained using the
potentials of Afnan et al.34 The main exception is
the UGII potential which predicts erroneous values
for several of the low-energy two-body parameters.
Thus, our results suggest that the Phillips's line
also has validity for realistic interactions pro-
vided they predict the correct deuteron properties
and effective range parameters.

OBEP give a reasonable vat. ue of the quadrupole
moment (0.275 fm') maintaining a low (5/g) D-state
probability. More important, if we compare Q„
and P~ for the BS and BG potentials (Table III),
we find that within an OBEP model one may be
able to increase the quadrupole moment to the
present experimental value (Q„=0.287+ 0.002
fm'), "yet maintain a low (-5%) D-state proba-
bility. This in turn will give us more binding
in 'H than the present -7 MeV for the BSC. If at
the same time we distinguish between the n-P and
n-n interaction we may be abl. e to reduce the con-
tribution of three-body forces and relativistic ef-
fects to -0.5 MeV.

(ii) Comparing the results for the different po-
tentials and taking into consideration the effective
range parameters, we find the three-nucleon re-
sults are not particularly sensitive to the short-
range behavior of the N-N interaction.

(iii) The correlation between the triton binding
energy and n-d doublet scattering length (Fig. 7)
is valid for most of the potentials considered.
This result was in a way expected considering the
fact that all the potentials have a one-pion-ex-
change tail, and thus the same long-range behav-
ior. In fact the requirement of one-pion-ex-
change tails determines the half-off-shel. l 7 ma, -
trix near the on-shell region which is most im-
portant for three-nucleon calculations. This is
illustrated in Fig. 8 where we present the 'So zero
energy Kowalski-Noyes half-off-shell function for
the different interactions. We find that all agree
for momenta P& 2 fm '; the only exception is the
BS potential. . However, if one replaces the BS by
the BG potential then the agreement for p& 2 fm '
between the different potentials is much better.
This difference between the BS and BG half-shell
function might be due to the fact that the BS uses
a different w-N coupling parameters (g„'=12.5 as
compared to 14.0) in defining the one-pion-ex-
change potential.

V. CONCLUSION

The main conclusions that may be inferred from
the present investigation of the binding energy of
3H and the n-d doublet scattering length using a
variety of reals itic interac tions are:

(i) The difference in the results for the different
potentials can be explained on the basis of differ-
ent deuteron observables and 8-wave effective
range parameters. For example, the difference
of -1 MeV in E~ between the results for the RSC
and BS potentials can be attributed to differences
in the deuteron D-state probability and 'So effec-
tive range parameters. We also observe that the
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