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The concept of rearrangement energy in nuclear particle removal. is careful. ly defined by
specifying several. energies associated with the process and its analysis. Connection is
made between the present definition and closely related concepts apt to be confused with
"rearrangement energy" so defined. Remarks are made concerning the implications of rear-
rangement to analysis and interpretation of experimental data.

NUCLEAR STRUCTURE Nuc1ear rearrangement energy theoretica11y defined
and differentiated from related energies. Reaction theories examined re-

garding rearrangement.

I. INTRODUCTION

The phrase "rearrangement energy" has been
much used and its meaning much discussed in that
literature involved with the relationship between
single-particle energies and particle removal.
There, nevertheless, appears to remain some
confusion which I hope will be reduced by the fol-
lowing formal discussion of the subject. It appears
that the difficulties may stem from the use of simi-
lar words for closely related but distinct concepts.
This is true of the terminology applied to both
theoretical and experimental aspects of the phe-
nomena.

In Sec. II, three distinct energies are defined
and relationships among them are developed. The
rearrangement energy is defined as the difference
between two of these energies. The other differ-
ences are also examined. In Sec. III the ideas of
Sec. II are applied to several special cases, and
contact is made with rearrangement related phe-
nomena treated in the literature. These include
removal energy shift discussed by Koltun' and
Brandow, ' the "rearrangement energy" of Brueck-
ner and Goldman, ' and the "rearrangement energy"
of Weisskopf and of Meldner and Perez. ' Section
IV includes remarks concerning the implication of
rearrangement to the analysis of experimental data
in different direct reaction models. The conclu-
sions are then summarized in the last section.

(~- i) g.s.
—+~ g.s. ~

It is positive (e, is negative), and is associated
with the exact eigenfunctions of the exact Hamil-
tonian

abc) =z(c&. (2.2)

(c) Centroid energy 8," (=——e,"). This is the hy-
brid quantity, taken to be the expectation value of
the exact Hamiltonian with respect to that config-
uration obtained by removing the model single-
particle state from the exact state 4:

may become equal. These energies are
(a) Single-particle energy e„. This energy is the

eigenvalue of a one-body Hamiltonian H, = T+ U,
which is associated with a one-body eigenfunction
Q„(r) Obv. iously, both e„and Q„(r) are model
quantities depending on the form chosen for the
one-body potential U. In the following discussion
we shall think of e, as being associated with the
highest filled level (Fermi level) in an independent
particle model based on H, . The quantity e, is
thus negative.

(b) Threshold separation energy b, (=——e, ). '
This is an experimental quantity and is defined as
the energy difference between the ground state of
an (2 —I)-body system

~ n, ) and the ground state
of the neighboring'-body system ~4),

II. ENERGY DEFINITIONS AND RELATIONSHIPS

Let ps define three energy quantities associated
with particle removal. One is a purely theoreti-
cal, or model, quantity; one is an experimental
quantity; and one is a hybrid between model and
physical quantities. In a particular limit all three

(2.3)

Here H, ~C), and E~ are physical quantities, while
a„annihilates the model state Q„.

In examining the relationships among these quan-
tities, we shall work with an exact Hamiltonian of
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the form:

H =Ho+ H„ (2.4a)

by the expression above. It should also be noted
that

~, =8," —8,&0, (2.11)
Ho= ~ ~o,anae, '~ (2.4b) where the inequality follows immediately if a„le)

is not an eigenstate, but is distributed over states
having E„&E„,.

In summary we have found

n U pa~ay, (2.4c)

&n, j„e& (2.12a)

where U is the one-body potential providing e and
We then obtain the following energy difference

which we label 6,:

(2.5a)
nO aK4

j „=[II„a„]. (2.5b)

~ (z„-z,) l(nl a„le& l'

&e lata„le&
(2.6)

The hole configuration is distributed among the
eigenstates l n& according to the spectroscopic
amplitude as folloms:

Note that since e„is arbitrary (by virtue of the
choice of single particle potential U) 5, can be of
either sign. If Uis "badly" chosen, i.e., has
little to do with the structure of l

C &, then 5, will
be large.

We shall next consider the centroid energy which
can be expressed as

&4 a'.j.e&

(e a~a e) (2.12b)

e, —eK = 5, —52=63~ 0. (2.12c)

The quantities defined here are schematically rep-
resented in Fig. 1.

Clearly, if it were the case that H equaled H„
then jK would vanish as would all of the energy
differences 5 and we would have the equality of the
three energies c.

We are now in a position to define the rearrange-
ment energy. By judicious choice of Uwe can
minimize 8," with respect to a variation of Q„, and
also make 6, vanish bringing the model single-par-
ticle energy equal to the negative of the centroid
energy. We then define the corresponding 53(=5,)
as the rearrangement energy. This represents the
positive energy difference between the hole "en-
ergy" and the (A —1) ground state energy. This
definition of rearrangement energy corresponds
to that of Weisskopf4'7 in considering the relaxa-

&nla„le& =
K

Vhth this, we see that

(e atj„c&
&e ata, e&

'

(2.7)

(2.8)

)(nla„l@) l

V8f'SUS

Energy

A second energy difference 6, can now be defined,

(elan j.le&,
(elata le&

(2 9)

(In Sec. III we shall show that in the Hartree-Fock
scheme 5, vanishes. )

Finally, we examine the third energy difference
6„which is a combination of 6, and 5„

En,
s

~PC

„(z„-z„.) l&nla, le& l'
s c (elata le& ss (2.10a)

6, =5, —5, ~0. (2.10b)

It is clear that 6, is greater than or equal to zero
FIG. 1. Energies and energy differences defined in

the text.
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For these cases the average energy particle must
be greater than the Fermi energy. This is an ex-
tension of an apparent paradox discussed some-
time ago by Bethe' who commented on the equality
of e,„and c&.

III. EXAMPLES AND ILLUSTRATIONS

In this section we evaluate the expressions de-
veloped in the preceding section for certain as-
sumed forms for IC) and H. We also relate our
quantities to those already studied in the litera-
ture. We have already indicated that if H =H„ then

EK 6c (3.1)

A. 4 as Slater determinant

Let us assume that IC) is a single Slater deter-
minant. It follows that

tion of the hole configuration into the ground state.
[Note that the hole configuration will actually
evolve into a set of states of the (A. —1) system. j

At this point let us consider the relationship be-
tween the Fermi energy (eF) and the average en-
ergy per particle (eA). If we associate eF with e, ,
wefind e, &eF from Eq. (2.11). This result is at
variance with a recently published comment of
Harada. ' The relationship between e„ i.e., &E/
4A, and e,„, i.e., E(A)/A, depends on the details
of nuclear binding. For heavy nuclei e„ is gener-
ally less than c, and no definite inequality between
e., and eF follows from Eq. (2.11). For light nu-
clei, however, 6 v is often greater than 6, . In that
case

(2.13)

~ l&2hlpli. I+& I

g

p l&2h lp I
P'a,

I

2hIP 2 1P ~K
(3.4)

Furthermore, this expression indicates an obvious
interpretation for 5„ the rearrangement energy.
The quantity (8; —8, ) is a difference between an
"approximate" and an exact energy for 8„,if a, I 4)
is used to approximate wave function for In, ). In
Eq. (3.4) we have obtained the second order per-
turbation form for this difference.

B. Removal energy shift

In the event that the exact I4) is not a simple
Slater determinant the use of the Hartree-Fock po-
tential will lead a nonzero 6, . In other words, one
can calculate, using Eq. (2.9), a difference between
the hole "energy" and the model single-particle
energy. Koltun has referred to the former as the
mre (mean removal energy), and the difference
between this and the model single-particle energy
as proportional to "removal energy shift. " Koltun
following Brandow has shown that a self-consistent
poten'=ial can be chosen which will provide model
single-particle energy identical with the mre, so
that 6, vanishes.

If the state 4 is not a single Slater determinant
then it will be possible to add, as well as remove,
a particle from the state K. This possibility un-
derlies the discussion of Baranger, "who intro-
duces a double centroid energy composed of one
contribution for removal, and one for addition:

=+[(IPII'I&) (IPI&I&I))&CIat8ayIC»

—(al Ul a) . (3.2)
&+li.".IC»

(3.5a)

(3.5b)

Therefore if U is chosen as the Hartree-Pock po-
tential 6, vanishes.

Let us next evaluate 5,(5,), the rearrangement
energy, under the assumption that 4 is a Slater
determinant and U is the Hartree-Fock potential.
The quantity 6, differs from zero to the extent that
two-hole-one-particle components exist in I n, ).
Let us calculate the strength of these components
to lowest order (assuming I no) is predominantly
a one-hole state),

&4 li'. 12hlp& (3.3)—CI, +fp

This gives the following positive expression for

He defines a double centroid,

gK& —~(g)g& ~e~o«+ [I fy(g)I g K «d

and finds

s,"' =- e, —&cl(a'„f,)lc».

(3.6)

(3.7)

(3.8)

Baranger argues that there is an appropriate
choice of a single-particle potential which mini-

In this formulation one might define another dif-
ference between centroid and single-particle en-
ergy,
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mizes P9,
" and causes 6, to vanish.

In a different context this same effect has been
discussed by chemists with regard to electronic
level energies. " In their language it is the ener-
gy difference between Hartree-rock energi. es and
that of "natural transition orbitals. "

In each case the energy difference 0, is purely
a function of one's model and represents no physi. -
cal process. It should not be confused with the
rearrangement energy defined Rbove .

II, Brueckner rearrangement

One source of confusion surrounds the relation-
ship of. rearrangement energy Rnd the rearrange-
ment potential V„of Brueckner and Goldman (BG).'
In using the Hrueckner techniques one must work
with model wave functions Rnd a model Hamilto-
Qian K. Let us use the BG single-particle Hamil-
tonian including the rearrangement term V~ to
find single-particle energies Rnd wRve functloAs„

The last term on the right hand side is given by

& I
" '

I
&- «elÃle&4 gy AKgy 4' (3.13)

k'sx )x, 2 kg
(Q S .a

i~=I.- v~, &~]

(3.14a)

(3.14b)

(3.14c)

&el ~~(x"-Ee)~~le& =- e~+(&I v~l &) .

The term (Xl V~IX) is repulsive. It is associated
with the rearrangement potential. Combining Egs.
(3.15) and (3.13) we obtain

and is attractive. It represents an extra binding
energy arising from the increased two-body po-
tential to be used when X operates on the hole con-
figuration rather than state 4 .

We treat the first term in Eq. (3.12b) as we did
Eq. (2.3), giving

Vfe shall use a basis of these states below. Let us
use the following form for the many-body Hamil-
tonian:

,—;(~lv„l~)— «x
Furthermore, it can be shown that

(3.16)

x =x'~+ ~x (S.ioa)
5&e

I
Z

I e)
Ss),

(3.17)

X'.&'& = T+I7.'.

Z=+ —P (o'.PIK(4 ) ly5)et at8c~az,
2

(3.10b)

(3.10c)

Therefore, with the single-particle states obtained
usmg V~ we have &, ' =eq, and 62 vam. shes. '

U we had assumed 4 to be a Slater determinant
of single-particle states obtained from a potential
lacking V~,

——(a, a, —(ela„a; le)) . (3.10d)
5(4 IZle&

In X~", the two-body K matrix is that one charac-
teristic of the density of 4, and

(7+U")X, —e„X.,
we would have found

(4 Ia,|I(X"-E~) a„le& =- e„.
Then the centroid and e„differ as shown:

(s.is)

(3.19)

(elxle) =&elx'& Ie& . (s.ii)

&."'=&el~~(x-Eo)~~ le )

8,"=-(4 la'„(x'"-z,,),agle&+&ela~ sxa„le& .

(s.isb)

The additional term 4X is required to change the
strength of the effective two-body interaction K
when X operates on a state with density differing
from that of 4.

%e next consider the centroid energy within the
Brueckner context:

5(4 IZ Ie)
C (3.20a)

5(elZ Ie) (3.20b)
6n„

In other words, 5, is 5(elKle&/5n„. This difference
between centroid energy and the single-particle
energy arises from the "poor" choice of single-
particle potential-one lacking V~. The energy
shift 5(elKle&/5n„seems to be of the 5, ("re-
moval energy shift" ) type discussed above. This
energy should not be considered a rearrangement
energy, '""as defined in this paper, for it is not re-
lated to the difference between the A. —1 particle
ground state Iri, & and the hole configuration aqle&.



It can be made to vanish by the pxoper choice of
single -particle potential.

D. Rearrangement energy and reaction tme

Meldner and Perez' have defined a rearrange-
ment energy which is identical to the one used in
this paper. Theix definition is in terms of cen-
troids (differing from ours), related to measured
quantities:

„C„(~,~)N„-E,)
gc„(~,~)

(3.21)

where C„(z, 7) is tbe observed strength for going to
state ~n) by the removal of a particle from state z
which takes place over a time 7' (w- 0, sudden; v'

-~ adiabatic). The weights C„(g, v) can be taken
as o„(v, E„„„~)which is the cross section for going
to state ~n), with tbe removal of a particle from
state z involving available energy E...;~ (E.„~-0,
adiabatic, E...,i-~, sudden). Clearly as E., i-0,
only the state

~ n, ) can be formed so that

in some detail and explore the relationship be-
tween experimentally obtained spectroscopic fac-
tors„various approximate reaction models, and
the phenomena of rearrangement or redistribution.

As a concrete example, let us consider an
(e, e'P) knockout reaction. We assume that the
electron only interacts once with an A. -body nu-
cleus, and that this results in the removal of a
proton from the single-particle state Q„(r). Fur-
thermore, let us assUme that the removal occurs
by means of a potential of the form V,5(r —r, ).
1 et Us also assume that resulting final states of
our system can be asymptotically specified by the
momentum of the removed particle k~ and the ei-
genstate of the A. —1 system ~n). The amplitude
for tbe knockout is then (k~ k,'n~ T~k,4), where we
neglect recoil of the target. Clearly, energy con-
servation restricts tbe states

~
n) which can be

populated by the reaction. . We indicate the exact
scattering state of a proton and a (A. —1) system
in state ~n), by ~n, k,'&-&), and

(k,'k,'nir jk,C) = g ~„„.(k,', k,', k, )(n'(a„iC) „

gw MP(E 0) E E —g (3.22) (4.1)
OQ theotherhand, for E„,q- ~ it can be argued that

o.(K, E...u-") ~ l(nl~„l p) I', (kl kl k )
—P gg(-) (y)elj(/Ie —QJ) ' tP(~)d'2~

n Ag, rf'

(4.2a)

gKMP(E qp) gK (2.24)

The difference between the MP centroids at the two
energy (time) extremes MP call the rearrange-
ment energy. This difference is (e, —e,'), and is
the same as our definition of rearrangement ener-
gy. In Sec. IV, I will consider the effect of the
speed of the reaction from a different point of
view.

IV. REARRANGEMENT AND THE ANALYSIS OF
EXPERIMENTAL DATA

The conc6pt of rearrangement ax'1868 1D the ex-
perimental context where it is observed that the
strength with which various final target states are
populRted 1D particle exchange, ox knockout, xeac-
tions depends on the total energy involved in the
reaction, or the "speed" of the reaction. Meldner
and Perez following the general time dependent
approach of Pauli" have discussed this. The in-
tuitive pi.cture applied to the process is as follows:
ID R slow~ ol' adiabatic~ removal of R QucleQD fro1Tl

an A. -body system the reaction would lead to the
ground state of the A —I system. Whereas, for
rapid removal it would lead to R one-hole configu-
ration, Rnd hence to R dlstx'lbutlon of elgeDstRtes
of the A —1 system. I shall examine this situation

0*.,', ,'. (&) =&nk,' '
l
0'(~) ln'), (4.2b)

being that part of the wave function with the target
in state ~n') which asymptotically has the target in
state ~n), and a proton in momentum state k~.

The expression in Eq. (4.1) includes the spec-
troscopic amplitude (n'~a„~4) which gives infor-
mation about the relation of the eigenstates ~n')

and ~C). This is the quantity which was used in
the discussion of earlier sections. The amplitude
T gives a measure of the strength with which state
ln) is popula«d by th«nockout. ft depend»n the
enexgy of the reaction. The spectroscopic factor
is, Gn the other hand, independent, of the energy Qf

the reaction. The matrix M„„, which connects
quaQtltles coQtalQs inf QrmatlQQ CQQcerQlQg

the redistribution of the strength in the course of
the reaction.

The x'eactlon can be viewed 1Q th6 follow), ng way:
(a) A hole is created in the single-particle state k
with a well defined distribution into eigenstates
~n) of the A —1 system; (b) through final-state
interactions between the A. —1 system and the re-
moved particle, the strength is redistributed
among the states

~
n) to achieve tbe final strength.

For the case Qf adiabatic removal, Rll the stxength



WILL IAM A. FR IEDMAN 12

&ajar„jC& =g M„„.-'(n'j 7 je), (4.3)

where only states jn'& having nonzero values for
&n'ja„jC& need be considered. The success or
failure in obtaining reliable values for &nja„j4&
thus depends on the model used to construct M„„..

Ne next examine various models for M„„.and
determine their ability to obtain valid spectro-
scopic factors.

is sent to the ground state. At the other extreme,
if the removed particle never interacts with the
system, then the strength is essentially that as-
sociated with the hole configuration. One experi-
mentally measures quantities related to (kt k,'nj 7 j

k,C ), and then with a reaction model for M„„.tries
to obtain spectroscopic information by unfolding
the effects of the final state interactions. Sche-
matically,

the case that

&nja„jc&'""'=5„,„&n,ja„jc&. (4 7)

The correct size of the spectroscopic factor can
now be obtained through the effect of the imagi-
nary part of the optical potential. If the hole con-
figuration were spread among several states jn&,

then distorted wave Born approximation (DWBA)
would have a chance of giving correct relative
spectroscopic factors only if the off diagonal ma-
trix elements in M„'„"i"were small, and the DWBA
(through the complex potential) were to approxi-
mate the diagonal ones. The former condition is
most likely to hold at high energies where the
probability of redistribution within a finite range
of states is small. At very high energies the na-
ture of the distortion will probably be primarily
one of the absorption of plane waves. In that case
the DWBA may do quite well.

A. Plane wave Born approximation

In this approximation

M„„(kp0,', k, ) ~ V, 5„„ig„(k~+k,' —k, ), (4 4)

C, Coupled-channel Born approximation

This model gives

where Q„ is the Fourier transform of the hole
state. This model completely ignores redistribu-
tion. It assumes that the scattering state which
asymptotically has the target in state j n), has the
target in this state everywhere in space. Let us
assume, for example, that the exact spectro-
scopic amplitudes were given by

&ajar„jC»'""'= n„„&n,ja„jC& . (4 5)

Then, the reaction amplitude (n, j TjC) (the strength
for going to jn, &) would depend on the extent to
which jn,kI, ~& contained the state jn, & near the
target. Since plane wave Born approximation
completely ignores the redistribution, it yields
a spectroscopic factor j&n, ja„jC» j2 which is much
too small.

B. Distorted wave Born approximation

In this model

(a'a'a ) t,f y",', '(ale'' ' ' "y„(r)a'& .

No explicit redistribution is included but, within
the framework of the optical model, collisions
leading from the asymptotic target state to other
target states are taken into account by the absorp-
tion of the imaginary potential. In this way a wave
function which asymptotically has th. e target in
state jn, & will have diminished probability of hav-
ing it in this state near the origin. Consider again

~(khaki

k ) ycc~ ~(y)ei(k@ &e~ ' "p (/)d yOpn, n

(4.8)

Here, explicit redistribution is allowed, and one
consequently has the best chance for obtaining re-
liable relative, as weQ as absolute, spectroscopic
factors for those cases in which the off diagonal
elements of I„„.are not small.

In summary the extent to which the model M„„
approximates the exact one will determine the re-
liability of spectroscopic factors. Thus, even in
an "adiabatic" reaction in which all the strength
goes to the ground state, one may find spectro-
scopic factors which reflect the "sudden" hole
strength distribution if the correct&I„„. ' is em-
ployed~

&&j~„jC&=M„„-'(n,j Tje). (4.9)

It is evident that, for very low energy reactions,
the DWBA (diagonal treatment) will fail. This is
not surprising.

The job for a reaction theory, regarding spec-
troscopic information, is to undo the physical re-
arrangement which has taken place. It must set
the system back to the condition which prevailed
at the creation of the hole. Clearly, in certain
cases coupled-channel calculations offer the only
hope for this. While &nja„jC» itself does not de-
pend on the "speed" of the reaction, (n j 7 j4) does,
and so too does the degree of difficulty in obtain-
ing a reaction theory which provides reliable spec-
troscopic factors.
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V. CONCLUSION

We have tried to clarify the definition of rear-
rangement energy by defining three distinct ener-
gies: (a) single-particle model energy, (b) hole
configuration energy, (c) threshold separation en-
ergy. We have established specific expressions
which can be used to calculate the differences
among these.

We have defined the rearrangement energy as
one of these differences. This definition is in line
with the concept of the relaxation of a hole config-
uration to the ground state, as suggested by Weiss-
kopf. It is also the same as the definition more
recently suggested by Meldner and Perez. We
suggest that this energy may be viewed as the dif-
ference between an exact and an "approximate"
energy for the ground state, and hence estimated
by simple perturbation theory. We have shown

that the average energy/particle (e,„) must be
greater than the Fermi energy (eF) if e,„& e, (the
case for many light nuclei); while e„may be
smaller than cq if e,„& e, (the case for most heavy
nuclei).

We have made a distinction between the rear-
rangement energy and the "removal energy shift"
discussed by Koltun and others, and have shown
that the BG rearrangement energy falls into this
later category.

Our discussion of the relationship between re-
arrangement and experimental spectroscopic fac-
tors has shown that reaction models must "undo"
the rearrangement if correct spectroscopic fac-
tors are to be found.

I wish to thank G. J. Wagner and C. H. Blanchard
for stimulating discussions on the matters con-
tained herein.
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