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Coulomb effects in high energy charged hadron-nucleus collisions are studied in a formalism which is exact
within the framework of multiple diffraction theory and takes into account the extended charge effects of the
incident hadron and the bound protons. Several more approximate but simpler formulas are also considered
and their accuracy discussed. Results are extended to include heavy-ion collisions in the optical limit of the
Glauber theory and in the Chou-Yang model. Applications are made to the proton-deuteron elastic and
elastic plus quasielastic scattering measurements below 70 GeV to extract the ratio of real to imaginary part
and the slope parameter of the proton-neutron elastic scattering amplitude. The results are compared with
those from dispersion relation calculations and from earlier analyses. Approximate analytic formulas derived
for p-d scattering give results almost identical to the more exact expressions. For nucleus-nucleus collisions
the Coulomb effects are found to be important over a rather wide range of momentum transfers.

NUCLEAR REACTIONS d(p,p), E=10-70 GeV; calculated ¢(E, 6) in Coulomb-

nuclear interference region; deduced p-n scattering amplitude parameters.

2¢, N1, 2%Pb(p, p), E=1.04 GeV, 2C(*?C,1%C), E=2.1 GeV/nucleon; Coulomb
effects, calculated o(8).

I. INTRODUCTION

The study of Coulomb effects is of considerable
importance for the accurate description of charged
hadron-nucleus collisions and for the investigation
of hadron-nucleon interactions by means of such
collisions. At very small momentum transfers
the contributions of the Coulomb interactions and
of the strong interactions to the scattering ampli-
tude are comparable, and hence the differential
cross sections are quite sensitive to the interfer-
ence between them. Information regarding strong
interactions, such as the real part of the strong
interaction amplitude, can be extracted from the
analysis of the interference region. Since direct
hadron-neutron scattering experiments, for the
most part, are not feasible because of the unavaili-
bility of neutron targets or the scarcity and short
lives of most elementary particles, small angle
hadron-deuteron scattering is of particular inter-
est. Hadron-deuteron scattering experiments can
be used together with hadron-proton measure-
ments to extract information about the hadron-~
neutron amplitudes via a multiple scattering
theory. Such analyses can be performed by
means of the Glauber theory.'*? In the past,
additional approximations and simplifications
were made in the analyses®'* of proton-deuteron
scattering data to obtain proton-neutron scatter-~
ing parameters. It is desirable to investigate the
accuracy of these analyses, since a detailed know-
ledge of the hadron-neutron amplitude is of funda-
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mental importance in nuclear and particle physics
studies.

Recently, extensive proton-deuteron elastic
scattering experiments between 10 and 70 GeV
were performed at Serpukhov® down to very small
angles and additional small angle experiments are
being carried out at Fermi National Accelerator
Laboratory (FNAL) between 50 and 400 GeV.
These measurements will be used to extract the
relevant parameters in the proton-neutron scatter-
ing amplitudes. Since the high energy diffraction
theory has generally proven to be quite accurate
at small angles, it is appropriate to use it in un-
dertaking a more careful study of Coulomb-nu-
clear interference and to analyze the p-d measure-
ments.

One can also hope to learn about hadron-nucleon
interactions from the study of collisions of hadrons
with other nuclei. For example, the minima which
occur in hadron-nucleus elastic scattering inten-
sities are quite sensitive to the ratio p, of the real
to imaginary part of the hadron-neutron forward
elastic scattering amplitude and hence the experi-
mental data in that region can be used to deter-
mine p,. As pointed out by Czyz, Lesniak, and
Wolek,® Coulomb effects play a significant role
near the minima; hence they must be carefully in-
cluded. The Coulomb effects are expected to be
even larger in heavy-ion collisions. Since such
experiments are being planned at the Berkeley
Bevalac, the detailed investigation of Coulomb
effects in such collisions is of current interest.
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226 VICTOR FRANCO AND GIRISH K. VARMA 12

In this paper, therefore, we also consider heavy-
ion collisions and include the contributions due to
the Coulomb interaction.

In Sec. II, we present theoretical expressions
for elastic and elastic plus quasielastic differen-
tial cross sections for charged hadron-deuteron
scattering. Our analysis is exact within the frame-
work of the diffraction theory and we explicitly in-
clude the charge distribution effects of the inci-
dent hadron and the bound proton. We briefly de-
scribe some additional results which are slightly
more approximate but significantly more simple
in form and extremely easy to use in the analysis
of data. In Sec. III we extend the formalism to in-
clude scattering by other nuclei and consider some
approximate models due to Bethe” and to West and
Yennie,® as well as an approximate phase formula.
In each of these approximate models, Coulomb ef-
fects are assumed to originate from the nucleus
as a whole rather than from each individual pro-
ton. In Sec. IV we include the extended charge
Coulomb effects in nucleus-nucleus collisions.

A comparison of the various approximate expres-
sions with the more exact results is given in Sec.
V and their accuracy is discussed. In Sec. VI we
describe the deuteron form factor used in our
analysis. We then apply our results to extract

the ratio of real to imaginary parts of the proton-
neutron elastic scattering amplitude from the pro-
ton-deuteron elastic scattering measurements in
the energy region 10-70 GeV and from elastic
plus quasielastic measurements at 19.3 GeV/c.
We also estimate the slope parameter for the
proton-neutron elastic scattering amplitude. We
compare the results with those obtained from the
approximate formulas discussed in Sec. II, with
the results obtained by Beznogikh et al.,* and with
some dispersion relation calculations. We also
discuss briefly the possible effects of inelastic in-
termediate states on our results. We summarize
our results in Sec. VIIL.

fects explicitly is given by

II. HADRON-DEUTERON COLLISIONS

In the multiple diffraction theory of Glauber, the
scattering amplitude operator for scattering by
deuterons is given by®

- ke ae B > -
F@ %)= [ & Pr,6, 5%, M

where Z & is the incident momentum, #q is the
momentum transfer, b is the impact parameter,
and § is the projection of the internal deuteron
coordinate T on a plane perpendicular to k. The
profile function I'; for the deuteron is given by

T,(®, 8) =1 - exp[ix .0 - 38) +ix, 6 +25)] , (2)

where x, and ¥, are the phase shift functions for the
scattering of the incident hadron by the neutron

and proton, respectively. At high energies, we
further assume® that

X% ®) = Xxc®) +x,5(0) , 3)

where Y. is the phase shift function for the Cou-
lomb scattering from the proton and ¥, is that
for scattering by the strong interaction alone. If
we separate out the Coulomb phase shift function
x2' due to a point charge, we can write

xc(®) =x& ®)+xE(®) (4)

where x5 denotes the correction to the Coulomb
phase shift function due to extended charge effects.
(In Appendix A we calculate x5 explicitly for a
specific charge distribution of the incident parti-
cle and the target proton.) Letus write the hadron-
nucleon profile functions as

T,0)=1-eX® jon ps (5)
and also write
ri)=1-e%6®, i-pt E. )

There are many ways of separating point charge
and charge distribution effects. For example, one
way that exhibits various multiple scattering ef-

r,b,3)=r2+rk + T+ Ty = T8(T,s +Ty) = T I, = D E(T Y + T, +T,) + T T, T,

+r"5‘"(r‘fgr‘,,s+r‘*3r,,+r,,sr‘,,) - I"‘ét]f‘gl"psrn s

where the argument of T', is b — 45 and the argu-
ment of all the other I'’s is b +33.

The terms involving a single I" can be viewed as
representing single scattering by the interactions
denoted by the subscripts or superscripts, while
a product of I'’s corresponds to multiple scatter-
ing. The effects of charge distribution are em-~
bedded in the 2nd, 8th, 9th, 10th, and 12th through

(M

15th terms. The 2nd term represents single scat-
tering by the extended charge corrections to the
Coulomb field. The 8th, 9th, and 10th are double
scattering terms. For example, the 10th term
represents double scattering by the extended
charge corrections to the Coulomb field and by the
neutron. The 12th, 13th, and 14th terms have sim-
ilar triple scattering interpretations; the last
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term can be thought of as quadruple scattering by a point Coulomb field, the extended charge effects of
the Coulomb field, the proton strong interaction, and the neutron. In the absence of an extended charge
distribution, I'Z vanishes and Eq. (7) reduces to the results of Ref. 9.

Another way of writing Eq. (7) which is more convenient for numerical evaluation is*

-

T,0,8)=T2®+38) + e XBCHODER | 17)

> 1> >

+e%e®H [T, (B +43) + T,( - 48) - T, (B + 55T, (b - 55)] . (8)

For a screening radius R and ¢> 1/R, we have'

2({b)=2n1n(b/2R), b<R

(9)
=0, b>R,
where n =e?/fiv and v is the relative velocity between the projectile and the bound proton in the target.
For R of atomic dimensions, this is valid for Z2¢%>> 107 (GeV/c)?. Using Egs. (6) and (9) we obtain
Ezk; eia'gl"%‘ ®)d% = - 2Y;—ZZEexp{— 2i[n In(gR) — arg'(1 +in)]}
=exp(- 2in In(2kR)]f & (q) ,
where we have defined the Coulomb amplitude for a point charge as
(q):-—- e exp{-— 2i[n In(q/2k) — argl'(1 +in)]} (10)
with I'(z) being the gamma function
Hadron-nucleon profile functions are related to hadron-nucleon scattering amplitudes by?
- 1 I P .
@) =5 [ e Fr@ata, j=n,ps.
Using this relation together with Eq. (1) we obtain
e e (G, 8) =gt T2 {f Bla)+i [ (ab)TEG)(kb)™ ab
1]
1 > T . S
+eri(q—q ) b(kb)zln zxc(b) [];s(q')‘f'fn(q’)e‘q s ]dzq/dzb
+§EZ§ e'(q q'-q") b(kb)Zzn 1 zxc(b)fps(’/ fn("u dzqdzq”dzb} . (11)
r
We will omit the phase exp[2in In(2kR)] from The differential cross section for elastic scat-
now on as it does not contribute to physically tering by deuterium is given by
measured quantities. do
We point out that the scattering amplitude for <Zﬁ> =|F ()%, (12)
hadron-proton scatteringf,(ﬁ) can be obtained as ol
a special case by setting § and f, equal to zero in where the elastic scattering amplitude is the ex-
Eq. (11). pectation value of F,(q,§) in the deuteron ground

state and is given by

Fu@ =il Fi@ )11 =G| 78 (@) +i f Toad) DT )b 4 [ 6= B g B0, a%q a |

+7471?f e S pine KV S - )@ D d%

8773k fe.(ﬁ -qr-am-% b(kb)zm ’Xc(b)S(% )fps d )fn(&” Yd2q'd2q" d?b . 13)
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Here S(q) is the form factor of the ground state
|7) of the deuteron.

If we parametrize the hadron-nucleon scattering
amplitudes by

- a2
fi@)y=c;e ¢ /2,
(14)
j=n,ps

then Eq. (11) simplifies to

with

c;=ko;(i+p;)/4m ,
where 0; are incident hadron-nucleon total cross
sections and p; are the ratios of real to imaginary

parts of the forward hadron-nucleon elastic scat-
tering amplitudes, and if we also define

T(b) = (kbY*reiXaM b | (15)

F,@,3)=ea"72 { FB(q) +i f Jy(gb)(kbY2™ 1 TE(b)db + (c, /a,) f J,(gb)T(b)e™""1*% b
0 4]

>
> 18

(e /e [ g
V]

n

. w -
ic,C -2 z
e ot [T ([a- 2
Anlp 0 a,
where
> 8

2)1/2 X

q-— |=(¢*-2iq-5/a,- s%/a,
a"

q-= )b) T(b)e™""2anqp

b )T(b) exp[- (a, +a,)b%/2a,a, ] } s (16)

In this and future equations we suppress the subscript s in ¢,; and a,;. For hadron-nucleon amplitudes
given by Eq. (14) and a deuteron form factor given by a sum of Gaussians

- 2 2
S(g) =), ae™t,
i

17

the expression for the elastic scattering amplitude can be reduced to one dimensional integrals and is giv-

en by

Fa@)= | FB@+i [ " T(@b) (P TED ) + (c, /ay) f " I TG s |

—B:q2 -B;q2 242 :
X Z ae B ja /4+C" Z (aj/Aj)e Bja®/4,B %a%/24;
i i

X [f JO(G,-qb/Aj)T(b)e"’z’“fdb +(ic,,/ka,,)f JO(qub/Aj)T(b)e'”j”z’“japdb:] , (18)
[+] 0

where Gj=a,+B;, A;j=G;+8;, and H;=A; +a,.

For the special case of point charges, x’é vanishes and Eq. (18) can be evaluated analytically to yield

Fa(g)= [f5(q)+(2a,)"T(1 +in)c,e™ %"/ F, (= in; 1;a,q4%/2)] Y a,e™Bi/4

+ E aje'sj“z/“(zAj)i"c,,I"(l +in)

J

J

; in 2,2
x{e‘“""z/lel(— n;1;G,4%/24A,) +~ C"(—“ﬂ> exp[(Bf-apan)qz/ZHjLE(- in; 1, %51 >} ; (19)

B H\H;
which is a simple generalization of the results of
Ref. 9 to the case of the deuteron form factor giv-
en by Eq. (17).

We can obtain an explicit expression for x5(b)
by considering the incident hadron and the bound

T2AH,

proton to have Gaussian charge distributions. If
thezrzespective charge form factors are given by
e /% and e~ we obtain'®'!

X6(0) =nE\[b*/(c* +d?)], (20)
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where E,(x) =- Ei(- x) is the exponential integral.
This result is derived in Appendix A.

Since Eq. (18) requires numerical integration
for its evaluation, it will be convenient to also
consider an average phase approximation which
leads to analytic results. For this approxima-
tion,'? the scattering amplitude operator for had-
ron-deuteron collisions is given by

FP@, ) =e 4 2] £,@) + e sy, @)

- > y
P : 1
+eld S/ze'anfn((i) +m e{xcpn

x [ T (G TV G- TN
(21)

where Xcp, Xcn, and Xgp, are average values of the
Coulomb phase shift functions. Analytic expres-
sions for them are derived in Appendix B for the

ground state expectation value of F;" reduces to

case of Gaussian charge distributions for the in-
cident hadron and the bound proton. The Coulomb
amplitude may also be written in an analytic form
as

fel@) =fE (DF(@)F,(a) » (22)

where f%(q) is given by Eq. (10) and F,(g) and
F.(q) are the electromagnetic form factors of the
proton and the incident hadron. The result that
the Coulomb amplitude is proportional to the form
factors of the colliding particles can be easily de-
rived in the Born approximation. However, fo(q)
given by Eq. (22) is more general as it has the
correct phase in the point charge Coulomb ampli-
tude. In Appendix B we show that this result can
be derived from the more accurate Coulomb am-
plitude, given by the first two terms in Eq. (11),
by dropping terms of O(n?).

For deuteron form factors given by Eq. (17) and
hadron-nucleon amplitudes given by Eq. (14), the

i - - - £C,C - a
F¥(q)=[fc(q) +e*Xer cpe aya2/2 +e'Xenc e ,,qz/z] E ae Bja%/4 z LoiXcpne =0+ an)a®/s E [Tjexp[(ap -a,)?q?/8H,],
- i

J

Below 2 GeV, charge exchange effects are im-~
portant and it is straightforward to extend this
formula to include them. The final expression
is given in Appendix C.

Measurements of the sum of p-d elastic and
quasielastic (i.e., deuteron breakup) scattering
have also been used® to obtain values for p,. The
angular distribution for such processes is given
by

<%%>sc=f2 |<f|Fd(q..,§)l ’L)lz (24)

At high energies we can neglect the energy dif-
ferences between the final states of the deuteron,

J

we obtain

ao

i

(23)
and the completeness relation
Do lrXfl=1 (25)
f
can be utilized to yield
do iy (2]
(%) -tir@si . 20

This expression can be evaluated using F,(q,3)
given by Eq. (11) but the result is a tediously long
expression involving double integrals and an in-
finite sum. We shall write down the result in the
average phase approximation where one can ob-
tain an analytic result. Using F, (4, §) in Eq. (26)

( do ) = 1fo(@) + € %0nfyy(@)] 2 + | £(@)]? + 2Re[ fo(g) + ¥ Xcofyo(a)] *

B2 LC,C —a.q? Q; 4242
X [eiXCnfn(q) Z aje Bja? | Il; n giXcpng =pe?/2 Z }T]eap q /zliju

J

i
H;

+9 Re{ [eixenf, (q)] *ZC;CP eiXcpn @=ma?/2 Z -oﬁednzﬂzlﬂﬁ}
i J )

+IL';:2/L exp[- a,2,9°/(a, +a,)] Z zﬁfé—aﬁm . "
i
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III. HADRON-NUCLEUS COLLISIONS

The amplitude for elastic scattering between hadrons and nuclei with mass number A is given by!

A

. A
k "... - - - > - > - - ->
Fii(q)=25;f3'q b ;"(fl’,_.,rA)63<A ! 2 rj> {1_ II [1—Fj(b_sj)]}¢i(ru'--yrA)drl"'drAdzb ) (28)
i=1 y

i=1

where y; is the ground state wave function of the
nucleus and the other symbols are defined as in
Sec. II. Since we will only be comparing theoret-
ical expressions to exhibit the charge distribution
effects and since accurate wave functions are
needed only to reproduce the details of the struc-
ture in the differential cross section at large mo-
mentum transfers, we will assume that the nu-
cleus can be described by a simple independent
particle model where each nucleon is represented

r

by a Gaussian, i.e.,

A
[4(Fy oo, Fo) B= T L 0sGDI2

A - — 22
- H Qdp3/2p—0%r , (29)
i=1

where a is related to the rms radius of the nu-
cleus.
Now, using the Gartenhaus-Schwartz transfor-

mation®™ to eliminate the 6 function, we obtain

>

ik 3 Z - - Az -
Fou(@) =2 k() [ &F {1— J § RENIRES ACEERIERY § REHIFES WM ¢n>} d., (30)
p=1 n=1

where Z is the atomic number of the target nucleus and K(q) = gi?/44a?

. Again by writing
> > P L% b > ; iy > >
1",,(b—s,,):I‘é‘(b—sp)+e'>‘%(b WITED - 5,) + et XeP=), (5 -35,) (31)
we obtain

<¢>,,|[1-r,,(ﬁ-g,,)](¢p>:(zaR)-2f"e'a2b2[r(um)lpl(inu;1;a2b2)-fw e~xi" PE(VX /)l (2abV )dx
o

_ Ue(in—aipe) f e-xxineixg(\/?/ oc)Io(zab\/}‘)e-x/zapazdle
(4 ] ’

=(2kR)7%"4,(b) , (32)

@[l -T,B=-3)] ¢y =1~ 0n(1 = ip,,)< o?

57 %a a2+1>exp[— a?b?/(2a,0% +1)]

=A,(0)- (33)

T

of Eq. (30) we obtain

F. (q) = g2inZ In(sz)K(q)
it

Equation (30), as it stands, converges very slow-
ly and hence is not well suited for numerical eval-
uation. It can be made to converge rapidly by sub-
tracting out the Coulomb amplitude due to a point

nucleus of charge Ze. The Coulomb phase shift X f fg'z(q)_ikf ) [4,(0)%A,()4%
function x85(b) due to the point nucleus is given by* 1 0 {
x25(0) =2nZ In(b/2R) . (34) = DN ab)b db

By adding and subtracting ¢iX8z in the integrand (35)
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where f8%(q) is given by Eq. (10) with # replaced
by Zrn. Now the phase factor can be dropped as it
does not contribute to the cross section.

If we consider the special case where the inci-
dent hadron and the bound proton are point charges,
A, (D) can be evaluated analytically and is given by

A,(b) = (£/a)tne= " D(1 +in)

x [LFl(z’n +1; 1; a2p?) - 2L =)
4na,

zapaz ) int1 ) . 2apa4b2
><(2(1,,(12 +1 oFy (m L1 (20,07 +1) >] .

(36)

This case has been considered in detail by
Lesniak and Lesniak'* for light nuclei.

Another way to include the Coulomb effects is
by means of an approximation where one consid-
ers the Coulomb phase to originate from the nu-

plitude is given by

cleus as a whole rather than from each individual
proton in the target. In that case the total phase
shift function for the nucleus can be written as

X tor ) = x85(B) + xE,(B) + x.B) , 37)

where xs(E) is the strong interaction phase shift
function for the nucleus and xZ,(b) is the correc-
tion to the Coulomb phase shift due to the extended
charge of the nucleus. One way to write the pro-
file function for the nucleus is then

T,0) =[1 - 82D |4 X8 DI _ oixEx(D)]
(38)
+explix8y®) +ix5,0)] Tsb),
where
T,(B) =(¥; {1 - exp[ix,(6,5,, ..., 5)1Hy;) .

This can be rearranged for convenience in nu-
merical evaluation and the elastic scattering am-

Ful0) =K@ (&) +i [ (4741 = EO 1= T, 0)] Hao)ad) (39)

where we have again dropped an unimportant over-
all phase factor.

Another formula which has been frequently used
is that due to Bethe” who showed that, under cer-
tain assumptions, the elastic scattering intensity
for charged hadron-nucleus collisions may be
written as

TGRSR LR (40)

where f,(q) is the strong interaction amplitude and
f.(q) is the Coulomb amplitude of the nucleus
(apart from its phase). The amplitude f,(g) in-
cludes the electromagnetic form factor of the nu-
cleus. The relative phase ¢ was given by

dr—2 1n(aq/1-06) ’

where a is related to the strong interaction radius
of the nucleus. Using relativistic methods, West
and Yennie® obtained for the relative phase
¢p~=2In(a’q)-C (41)
with
a'=3(a®+R2+R2)Y?, C=0.571...,

and where the charge form factors of the incident
and target particles are given by ¢RI gng
e~F2"?/2 For the case of point charge particles
incident on a point nucleus, this reduces to the
phase given by Bethe.

IV. NUCLEUS-NUCLEUS COLLISIONS

The Glauber theory has been extended to deu-
teron-deuteron collisions'® and to heavy-ion col-
lisions in general.'®'®* For heavy ions the full
Glauber multiple scattering series reduces to a
simple form only in the “optical limit,” where the
numbers of nucleons in the colliding nuclei are
large. In this limit, for collisions of nuclei with
respective mass numbers A,, A, and atomic num-
bers Z,, Z,, the profile function is given by'®

Ty ay(b) =1 - g™ H14200) (42)
with

)= [ a*sa?s'p, BTG -3+50,6)  (43)
and

Pay,a,8)= f P4y, 4,z

where I'(d) is the nucleon-nucleon profile function.
By taking Fourier transforms, C(b) can be re-
written as

CO) =grz [ a2ae™Ps, @S- ,
(49)

where the SA',(q) are the form factors of the two
nuclei and f(q) is the nucleon-nucleon scattering
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amplitude. If the form factors are given by
e R1%%/4 and e R2%%/4  regpectively, and f(q) is
given by the usual high energy parapmetrization
of Eq. (14), we obtain
C(p) =S et
" (45)

R*=R*+R,*+2a,

where 0, a, and p are average nucleon-nucleon
parameters defined as in Sec. II. An expression
very similar to Eq. (44) is also obtained in the
Chou-Yang model” (or the coherent droplet mod-
el). We can formally obtain the result of the Chou-
Yang model by noting that if the sizes of the nuclei
are large compared to the range of nucleon-nu-
cleon interactions, the nuclear form factors will
go to zero much more rapidly than the nucleon-

full scattering amplitude is given by

3 N in ixE
FAIAZ(Q)=K12(CI)<f-thIZZ (q) +i f (RbY2inZ1Z2* 11 — ¢ X8z,22

(4]

where
K, (q) =explq?[(R2/4A,) + (R,2/4A,)]}

is the center of mass correction and fglez(q) is
given by Eq. (10) with # replaced by Z,Z,n. A
similar formula was given by Czyz and Maximon®®
where the Coulomb phase shift function was given
as a seven dimensional integral. However, we
point out that for collisions between light nuclei
where the charge form factors can be approxi-
mated by Gaussians (or sums of Gaussians), the
Coulomb phase shift function incorporating the ex-
tended charge effects can be evaluated analytically.
In Appendix A we show that x’é,lZz(b), which is the
correction to the Coulomb phase shift function due
the the charge distribution of the colliding nuclei,
is given by

nglzz(b) = Z,ZnE\[b*/(R > +R,?)] . (48)

With this result the numerical integration in Eq.
(47) is straightforward. The problem of slow con-
vergence of the integral (due to large impact pa-
rameter scattering by the Coulomb interactions)
has been removed by subtracting out the point
charge Coulomb scattering so that the integrand
in Eq. (47) vanishes for large impact parameters.

V. COMPARISON OF THEORETICAL EXPRESSIONS

In this section we compare the various approxi-
mations discussed in the text with the more exact
results. Throughout our analysis the proton
charge form factor is assumed to have the form

nucleon amplitude f(g) and Eq. (44) can then be
approximated by

c®) L [ a20e s, @S, (<D . (40)
In this model one can take the view'® that x
=A,A,0( +p) is a free parameter not related

to the nucleon-nucleon amplitudes. Imx may

be estimated by nucleus-nucleus total cross sec-
tions, while p or Rex can be determined by fitting
the scattering data. The most significant effect of

:p is on the diffraction minima of the cross sec-

tions, and since the Coulomb effects are impor-
tant near the minima they should be included in
analyses which determine p or Rex.

The extended charge Coulomb effects can be in-
cluded by a formula similar to Eq. (39) and the

=T O ) (47)

r
e™°*®/4 The value of ¢ is taken to be 0.66 fm
which corresponds to a rms radius of 0.81 fm.
This value fits the experimentally observed form
factor in the region 0.001< -£<0.011 and also
0.001=< —¢<0.05 (GeV/c)? which are the momentum
transfer regions in which we perform our analysis
of the pd data.

We first consider the elastic scattering of pro-
tons by deuterium. The form factor used for the
deuteron is a sum of Gaussians fitted to form fac-
tors obtained from “realistic” deuteron wave func-
tions and will be described in detail in Sec. VI.

In Fig. 1 we show the percent error in the pd dif-
ferential cross sections near the interference re-
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FIG. 1. Percent error in angular distributions for p-d
elastic scattering at 20.5 GeV/c for the formula used in
Ref. 4 and for the point charge solution of Eq. (19) com-
pared to extended charge result given by Eq. (18).



gion, for the point charge solution given by Eq.
(19) and for the formula used in Ref. 4 in an analy-
sis of p-d data. The “exact” values of the cross
sections are obtained from Eq. (18). The error in
the average phase approximation of Eq. (23) is ex-
ceedingly small in this region and hence is not
shown. The maximum error in the formula of
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FIG. 2. Percent error in differential cross sections
for p-nucleus elastic scattering at 1.04 GeV for the
approximate formulas discussed in the text compared to
the extended charge result given by Eq. (35). The fig-
ures correspond to (a) p-12C, () p-%8Ni, and (c) p-28Pb
scattering.
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Ref. 4 in the interference region is ~4.6%. For
—t=<0.1 (GeV/c)? the error in the point charge ap-
proximation is <0.5%, while the error in Eq. (23)
is even smaller (50.1%). However, near the mini-
mum in the differential cross sections [-#~0.33
(GeV/c)?], the error in Eq. (23) is as large as
~22%, while the error in Eq. (19) is only ~2%.

For even larger angles, the error in the Coulomb
amplitude due to the point charge approximation
increases, but Coulomb contributions themselves
become unimportant compared to nuclear contri-
butions. The errors in Eqs. (19) and (23) depend
negligibly upon the energy, while the error in the
formula of Ref. 4 increases slightly with energy.

The reason for the increase in the error of the
point charge solution with the momentum transfer
is that the large angle scattering results from
small impact parameter collisions where the point
charge assumption starts to break down. On the
other hand the error in the formula of Ref. 4 is in
some measure due to the assumption that xg,, Xcg,
and Xc,n, are all equal to 0.06 (at 70.2 GeV/c, for
example, their values are, respectively, 0.086,
0.098, and 0.085), but is mostly due to the Coulomb
amplitude in which Bethe’s phase has been used
incorrectly. We point out that Bethe’s phase is the
relative phase between the Coulomb amplitude
(without its phase) and the strong interaction am-
plitude for the hadron-nucleus collisions, and it
should not be present in the formula of Ref. 4
which has been obtained from a multiple scattering
series where the strong interaction terms are al-
ready modified by a phase factor arising from the
Coulomb interaction. The correct Coulomb ampli-
tude that should be used is given by Eq. (22).

We next consider scattering by other nuclei. In
Fig. 2 we show the percent error in the differen-
tial cross sections obtained from the various ap-
proximate formulas compared to the “exact”
Glauber result given by Eq. (35). In Fig. 2(a) we
show the results for p-'2C elastic scattering at
1.04 GeV. For -t=0.01 (GeV/c)? the error in
the approximate formula given by Eq. (39) is
<0.8%, while the formula given by Eq. (40) [ to-
gether with Eq. (41)] has errors of 1.5%. But at
the larger momentum transfers the errors are as
large as ~14 and 45% for the two expressions.

We find that the assumption of point charge for
each proton in the target [i.e., Eq. (36)] is quite
accurate except at the diffraction minima. At
1.04 GeV, the percent error in this approximation
is 1% near the minimum. However, at energies
where the real part of the nucleon-nucleon ampli-
tude is very small, almost the entire contribution
to the cross sections near the minima is from the
Coulomb scattering and the error in the point
charge solution is larger. This error also de-
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pends on whether the Coulomb interaction is at-
tractive or repulsive. For example at 180 MeV,
the error at the first diffraction minimum in
n~-*He scattering is ~3%, while for 7*-*He scat-
tering it is ~8%.

In Figs. 2(b) and 2(c) we show the results for
p-°°Ni and p-2®Pb scattering at small momentum
transfers. We note that Eq. (40) becomes worse
than it was for light nuclei, with rather large er-
rors even at small momentum transfers. For
-1<0.01 (GeV/c)? the errors are ~8% for p-Ni and
~30-80% for p-Pb. However, in this region, the
approximate phase result of Eq. (39) does reason-

ably well with errors <1 and 4% for the two nuclei.

Near the first diffraction minimum, the error in
Eq. (39) is ~7% for both nuclei but increases at
the other minima. For example, at —{~0.25
(GeV/c)® the error in Eq. (39) for p-Ni scattering
is ~23%.

It is interesting to note that treating the protons
as point charges instead of extended charges in

VICTOR FRANCO AND GIRISH K. VARMA
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the exact Glauber series leads to a greater rela-
tive error in the scattering from deuterium than
from other nuclei. The reasonfor this is that
since in the heavier nuclei there are many protons
close together, the point charge protons are
smeared over the nuclear volume when the ex-
pectation value in the nuclear ground state is
taken, and the result of smearing the extended
charge protons is not much different. This is not
true for the deuteron which has only one proton
and is a loosely bound system. However, since
the Coulomb effect itself is much smaller in deu-
terium, the point charge assumption does not lead
to much error in the cross sections.

Among the other simpler formulas, the approxi-
mate amplitude of Eq. (39) is reasonable for small
angles but leads to appreciable errors near the
diffraction minima. At these larger angles one
must consider the interference of Coulomb effects
with strong interaction effects of each nucleon
separately instead of considering the over-all Cou-
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FIG. 3. The invariant differential cross section for 2C-!2C elastic scattering at 2.1 GeV/nucleon with and without
Coulomb effects and for different values of nucleon-nucleon parameters.
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lomb phase resulting from the nucleus as a whole.
Equation (40) is good only for light nuclei at very
small angles. Its derivation uses the average Cou-
lomb phase shift of nuclear scattering evaluated at
q =0 and neglects terms of O(Z%:?). It can be im-
proved!! by introducing the q dependence of the
phase but the formula will still be inaccurate for
collisions where Zn= 0.1. We should mention, for
completeness, that Coulomb effects can also be
included by means of the optical limit. However,
it was pointed out by Lesniak and Lesniak' that
this approximation leads to significantly lower .
cross sections at large angles compared to those -
obtained from the full Glauber series with the as-
sumption of each proton in the target being a point
charge. Since we find that this point charge as-
sumption is fairly accurate (except at the minima
when the real parts of nucleon-nucleon amplitudes
are small), our conclusions for the case of light
nuclei are very similar to those of Ref. 14.

Since data may be forthcoming for '*C ions at
2.1 GeV/nucleon, we have investigated the Cou-
lomb effects for 2C-'2C collisions at that energy
using Eq. (47). We show in Fig. 3 that the Coulomb
effects are important over a wide range of momen-
tum transfers. They dominate at —¢< 0.003
(GeV/c)? and at the diffraction minima. However,
even at the subsidiary maxima, they increase the
cross section by ~15-20%. If the data near the
diffraction minima are used to extract p or Rex in
the Chou-Yang model, the Coulomb effects will
play a crucial role. For example, we note that a
purely nuclear cross section with p~-0.4 corre-
sponds to nuclear plus Coulomb cross section with
p~0 near the first minimum. We should also men-
tion that if the full Glauber series were used in-
stead of the optical limit for the nuclear cross
sections, since the former are generally lower
for light nuclei, the Coulomb effects would be
even more important. Also, Coulomb effects are
larger at lower energies.

As pointed out in Sec. IV, the Chou-Yang model
is essentially equivalent to the optical limit of
Glauber theory. In fact Eq. (46) in the Chou-Yang
model leads to the same result as Eq. (45) with
a=0. To test the sensitivity of the cross sections
to this assumption, we have plotted the cross sec-
tions with a =0. We find that the curves are very
similar except that the positions of the minima
are slightly shifted. (However, the curve of Fig.
3 with a =0 still has the center of mass correction
in it. This correction factor is not present in the
Chou-Yang model.) This indicates that the nu-
cleus-nucleus amplitude is not very sensitive to
the g dependence of the nucleon-nucleon ampli-
tudes. As discussed in Sec. IV, this is due to the
fact that because of the large size of the colliding

nuclei, the form factors are sharply peaked in the
forward direction and pick up only the very small
g behavior of nucleon-nucleon amplitudes. Now
this also implies that a weak g dependence of p
should not have much effect on the nucleus-nucleus
amplitude. Hence, assuming p to be a constant,
we show in Fig. 4 the ratio of real to imaginary
part of the *C-'2C nuclear scattering amplitude

at 2.1 GeV/nucleon for small momentum transfers.
Again we notice that results are very similar if
we set a=0.

VI. ANALYSIS OF p-d SCATTERING DATA

We first describe the deuteron form factor which
will be used in our analyses. We note that the ex-
tended charge expressions derived in Sec. II are
relatively easy to evaluate for deuteron form fac-
tors given by a Gaussian or sums of Gaussians.

In order to both preserve this ease in numerical
evaluations and have an accurate form factor, we
have fitted sums of Gaussians to form factors
given by realistic deuteron wave functions. The
first wave function we choose is that obtained from
the hard core potential of Reid'® which is fitted
accurately to the nucleon-nucleon (NN) phase
shifts up to 350 MeV. Our second choice is the
wave function obtained by Humberston'® by slightly
modifying the Hamada-Johnston'® potential to give
the observed binding energy of the deuteron. Since
both these wave functions are obtained from hard
core potentials, we also consider a wave function
due to Bressel and Kerman'® which is obtained
from finite soft core potentials that reproduce the
NN phase shifts very well. All these wave func-
tions have a small admixture of D state. We ob-
tained the form factors from these wave functions
by numerical integration and we fitted sums of
Gaussians to them. A sum of Gaussians which is
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FIG. 4. The ratio of real to imaginary part of 12C-12C
elastic scattering amplitude at 2.1 GeV/nucleon.
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TABLE I. Results for p, and a, from the analyses of pd data. The second and fourth columns give the values of p,
obtained by X? fits to the p-d elastic scattering data using either Eq. (18) (extended charge) or Eq. (23) (average phase)
and point charge Eq. (19) with assumption a,=a,. The fifth column gives the results of Ref. 4 and the sixth column
gives the result when the formula of Ref. 4 is used with the form factor given by Eq. (49). In the seventh column, we
list the values of a, obtained by using the values of p, from the second column as input. The results at 19.3 GeV/c are
from the analysis of p-d elastic plus quasielastic scattering data and are given in the third and eighth columns.

a

n
Py Pn [(GeV/c)™?] a,
P Eqgs. (18) Pn Pn Pn Ref. 4 with Egs. (18) [(GeV/c)™?]
(GeV/c) and (23) Eq. (27) Eq. (19) Ref. 4 Eq. (49) and (23) Eq. (27)
11.2 —-0.29 —0.28 —0.21\ -0.26 7.3
15.9 -0.50 —-0.49 -0.38 —0.46 7.0
19.3 -0.32 10.25
20.5 -0.48 —-0.47 -~0.35 -0.44 6.5
26.5 —0.45 —-0.44 -0.35 —-0.40 7.2
34.8 -0.38 -0.37 ~0.25 —-0.34 8.3
48.9 -0.33 —0.32 -0.14 —0.28 8.3
57.2 —0.36 -0.35 -0.20 -0.31 8.7
60.8 +0.06 +0.06 +0.14 11.7
64.8 -0.05 —0.04 +0.13 +0.03 9.3
70.2 -0.24 —-0.23 -0.04 -0.18 8.4

consistent with each of the three form factors is
given by

S(q)=0.34¢"141+5¢% 1 0 58¢~26+1¢2 10 08¢~ 155  (49)

with ¢ in GeV/c.

In the interference region —¢=< 0.01 (GeV/c)?,
the form factor S(3¢) given by Eq. (49) agrees
with those given by realistic wave functions to
better than 0.2%. For larger momentum trans-
fers 0.01s —#=<0.21 (GeV/c)? it agrees to within
2.4%; but in this region the values of S(3¢) given
by the Reid and by the Bressel-Kerman wave func-
tions themselves differ by ~3%. The region where
the form factor given by Eq. (49) differs signifi-
cantly from that given by the above wave functions
is at large momentum transfers. However, since
the deuteron form factor is sharply peaked in the
forward direction, the contribution from this re-
gion to the scattering amplitudes is negligible.

We can now utilize the proton-deuteron elastic
scattering data obtained at Serpukhov in the energy
range 10 to 70 GeV to extract proton-neutron scat-
tering parameters such as p,, the ratio of real to
imaginary part of the forward proton-neutron elas-
tic scattering amplitude, and a,, the slope param-
eter. We do our calculations in two steps. For
the purpose of calculating p, we restrict the anal-
ysis to small momentum transfers —¢<0.011
(GeV/c)? since beyond this the interference effects
are negligible and also because we assume a con-
stant phase for the hadron-nucleon strong inter-
action amplitudes (i.e., the same value as at ¢=0),
an approximation which becomes less accurate

away from the forward direction. We first calcu-
late p, by assuming that a,=a,. Then using this
value of p,, we can use the larger momentum trans-
fer region —£< 0.05 (GeV/c)* to calculate a,,.

Using this value for a,, we can then recalculate

p, and perform this iteration until p, and g, do

not change in value.

In our calculations the values of a, are taken from
Ref. 20, p, from Ref. 21, and values of ¢, and
0, are from Ref. 22. At any particular energy we
have interpolated between the experimentally mea-
sured values if necessary and the actual values
used in our calculations are given in Ref. 10. For
the calculation of p,, the angular distribution ob-
tained from Eq. (18) was fitted to the proton-deu-
teron data by minimizing the x* with p, being the
only free parameter. The values of x* per data
point in these fits vary from 0.6 to 2.5 and the
typical error bars for p, are ~+0.07 which also
include the effects of varying the various experi-
mental parameters that we used within their sta-
tistical errors. It also includes an uncertainty of
~+0.01 obtained by varying our Gaussian form
factor of Eq. (49) to fit more closely the form fac-
tors given by the Reid hard core and Bressel-
Kerman wave functions. The systematic errors in
P, can be as large as +0.13, the main source being
the proton-deuteron elastic scattering data.*

In Table I, we list the values of p, obtained from
various formulas by assuming a,=a,. The second
column gives the results obtained from the ex-
tended charge expression Eq. (18) and also from
Eq. (23). These two formulas yield the same re-
sults to two significant figures. The fifth column
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gives the results of Beznogikh et al.* who used a
formula similar to Eq. (23) in their analyses with
the deuteron form factor given by

S2%(3q) =exp(-25.9¢> +60q?) . (50)

There is a significant difference between the two
values of p, which is not only due to the different
formula but also due to the difference in the form
factors used. The deuteron form factor given by
Eq. (50) is a fit to the numerical values of $%(3q)
obtained by fitting the formula of Ref:-4 to the pro-
ton-deuteron cross section data for 0.002 s—¢=<0.17
(GeV/c)? from 10 to 26 GeV with the assumptions
that p, =p, and a,=a,. In order to isolate the ef-
fects of the form factor, we have repeated the
analyses of Ref. 4 with the deuteron form factor
given by Eq. (49). The results are given in the
sixth column and we find that the use of a more
accurate form factor leads to a difference in p,
of ~0.1 on the average. We should also point out
that even though data exist at 60.8 GeV/c, they
were not used in Ref. 4 for calculating p, and
a,. The fourth column in Table I shows the re-
sults for p, obtained from Eq. (19) (point charge).
If charge exchange effects are included (using the
formula given in Appendix C), we find that p,
changes by <0.01 at these energies.?*

We can now use the value of p, obtained from Eq.
(18) to calculate a, by analyzing the data for 0.002
< —£<0.05 (GeV/c)®.. Again Egs. (18) and (23) give
identical results and the values of a, are listed in
the last columns of Table I. One can now perform

an iteration to recalculate p, and then a, but the
values change very little because p, is relatively
insensitive to variations in g,. In our ¥? fit for a,,
the ¥ minimum varies from 1.0 to 2.3 per data
point and typical results of our y? fit to the data
are shown in Fig. 5. The error bars in a, in Ta-
ble I are ~+1.5 and include the error due to the un-
certainty in p,. The smaller values of g, compared
to a, are surprising since direct measurements®®
of a, (from n-p scattering) and of a, at larger mo-
mentum transfers seem to agree with each other.
However the value of g, is quite sensitive to the
input value of a, in our analyses. If the values of
a, are lowered, the values of a, increase by rough-
ly the same amount. The input values of a, that we
have used are from Ref. 20 and are slightly higher
than the recent FNAL measurements in the over-
lapping energy region.

Since all the above results are based on the ex-
periments of the same group, we have also used
the elastic plus quasielastic scattering data at 19.3
GeV/c of Bellettini et al.® to extract p,. Using Eq.
(27) with input parameters again from Refs. 20-22
(with values given in Fig. 6) we find p,=-0.32 and
a,= a,. The fit to the data is shown in Fig. 6. If
we use the same input parameters as used in Ref. 3
[o, =0,=38.9 mb, a,=a,=10 (GeV/c)™?, p, =-0.33]
we find p,=-0.25. In Fig. 7 we show for compari-
son our calculated results for p, together with dis-
persion relation calculations by Barashenkov and
Toneev®® and also by Carter and Bugg.?’

We should point out that our theoretical results
for p-d scattering do not include the effect of in-
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FIG. 5. Differential cross section for elastic p-d scattering at 11.2 and 64.8 GeV/c. The data are from Ref. 5 and the

curves correspond to Eq. (18).
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elastic intermediate states®® (for example, an N*
can be created coherently in the nucleus and then
decay back into a proton) on the elastic scattering.
The Glauber approximation can be extended to in-
clude these effects.?® But quantitatively reliable
calculations of these effects are lacking because
they depend critically upon the phases of the pro-
duction amplitudes which are not well known. On
the other hand, rough estimates of the effects that
are not included in the Glauber approximation can
be obtained from the p-p, p-d, and n-p total cross
section measurements. Let us define the experi-
mental cross section defect in deuterium by

50exp =0pp T0pp =0pqg
and the inelastic cross section defect by
60'inel = 56exp - 50’"“ )

where &0, is calculated from the double scatter-
ing term of the elastic scattering amplitude in the
Glauber approximation. By using experimental
data wherever they exist at roughly the same ener-
gy,?*3° we find that |80y |~0.1+0.9 mb from 15
to 35 GeV. (For example, near 34 GeV, 604,
=3.16 mb and using the deuteron wave function
given by the Reid hard core potential we find that
50, =3.05 mb.) Since the effect of these inelastic
processes on the invariant differential cross sec-
tion (do/dt),, in the forward direction is roughly
proportional to (60y,,/47V7%)?, these effects are
quite small compared to the statistical errors in
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FIG. 6. Differential cross section for p-d elastic plus
quasielastic scattering at 19.3 GeV/c. The data are
from Bellettini ef al. (Ref. 3) and the curve corresponds

to Eq. (27).

the p-d data and hence should have very little ef-
fect on our results. However, for much higher
energies the intermediate production processes
may have significant effect.

VII. CONCLUSIONS

Since Coulomb-nuclear interference studies are
important for obtaining p, and a, indirectly from
p-d scattering measurements, we have examined
various approximate results together with the exact
results in the diffraction theory. We find that the
average phase approximation Eq. (23) gives results
almost identical to the more accurate expressions
given by Eq. (18) and together with Eq. (27) for
(do/dS),., provides simple analytic formulas for
the study of p-d elastic and elastic plus quasielas-
tic scattering. In this approximation one can eas-
ily include the effects of the quadrupole deforma-
tion of the deuteron, the momentum transfer de-
pendence of p, and the spin-dependent effects
which are important at medium energies. Using
the experimental p-d measurements from 10 to 70
GeV, we have calculated the parameters p, and
a, for the p-n forward scattering amplitude. Our
results differ significantly from those obtained in
the analysis of Ref. 4.

For hadron-nucleus scattering, we find that the
formula given by Bethe and subsequently modified
by West and Yennie gives reasonable results for
light nuclei at very small angles. The approximate
phase result of Eq. (39), where the Coulomb ef-
fects are considered to originate from the nucleus
as a whole, works well for all nuclei at small an-
gles but gives too large a cross section in the vi-
cinity of the diffraction minima. However, if the
Coulomb effects are incorporated in each proton
in the Glauber series, then the assumption of point
charges for the bound protons and the incident had-~
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FIG. 7. Results for p, together with the dispersion
relation calculations of Refs. 26 and 27.
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ron is much more accurate than the previous ap-
proximations. Nevertheless, as mentioned in Sec.
V, at the diffraction minimum this approximation
can lead to errors ranging from ~0.5 to ~8% de-
pending on the charge of the hadron and the real
parts of the hadron-nucleon amplitudes. There-
fore in any analysis of the experimental data on
hadron-nucleus scattering, to obtain the real parts
of the hadron-nucleon amplitudes the “exact” Eq.
(35) should be used.

In the case of heavy-ion collisions, the Coulomb
effects dominate at small angles and at the diffrac-
tion minima; furthermore they contribute signifi-..
cantly even at the maxima, increasing the cross
sections by ~15-20% for 2C-*2C collisions. We
have shown that it is straightforward to include
extended charge Coulomb effects at least for colli-
sion between light nuclei. We also find that the
nucleus-nucleus amplitude is affected very little
by the momentum transfer behavior of the nucleon-
nucleon amplitudes so that the Chou-Yang model
gives results very similar to those of the Glauber
theory in the optical limit, except for a slight shift
in the positions of the diffraction minima in the
differential cross sections.

APPENDIX A. COULOMB PHASE SHIFT FUNCTION FOR
EXTENDED CHARGES

If both the incident and target particles are con-
sidered to be point charges, the Coulomb phase
shift function is given by

X% (6) =21 1n(b/2R), (A1)

where 1 =2,Z,6*/fiv.

If the target particle is considered to have a
charge distribution given by p,(¥), the Coulomb
phase shift function becomes

e fon(G)en, oo

where § is projection of T onto the impact param-
eter plane and 7% =s® +2%, if the z axis is taken to
be the direction of the incident beam. Assuming

Xl(b =

p,(F) = Zyen™¥2c™2e "¢ | (A3)
Eq. (A2) gives, upon straightforward integration,
X1(0) =xE(0) +nE,(67/c%), (a4)
where E,(x) ==Fi(-x) is the exponential integral.®!
If we further assume that the incident particle

also has a charge distribution which is given by
p,(T), then the Coulomb phase shift function be-

comes
- |D+3|
Xc(b) = pl(r)1n<—2R—— d*r
e o (B g
If p,(¥) also has a Gaussian form, given by

p,(®) =Zle'fr":‘/zd'ae"z/"'2 s (A6)
equation (A5) becomes

Xc(0) =x5(0) +nE (6°/d?) +I,, (A7)
where

'6 =2
I=n"%2d3 [ &R, ('—Zﬂ—)dﬁy. (A8)

With changes of variables and upon performing
the angular integration, this leads to

2 o 2 o =1
jsz%ne‘bz/dzj; e~xPy < ;ZC x>dxf ———et dt,
x

(A9)

where I, is the modified Bessel function.
Changing the order of the integrations, this can
be cast in the form

”f ———dt[l J<222t,§5>:l, (A10)

where
Ty =1=-e [ @ V3D, (A11)
0
Equation (A10) can be rewritten as

©0 00 (,‘2 b2
Iﬁnf dpf e""[l-J<——zt,—-2ﬂdt. (A12)
1 0 d?"’d?/.

Utilizing the result®

= L, ] g-br/(p+D )
e 1 -J(y,x))dy =———~ A13
fo [1-J(y,0]dy =y, (
we obtain
- ° -o%u/ P+ D du 14
I T’_Lz,cze u(u +1)° (A14)
If we let b®u/d?(u +1) =¢t, I, may be written as
v2/d? et
I,= f ar’— (A15)
s71 b2 /(% +d%) t’

which upon substitution into Eq. (A7) yields the
final result

2
Xc(d) =x5(d) +nE; <c—sz(F> . (A16)
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APPENDIX B. AVERAGE PHASE SHIFT FUNCTIONS

The scattering amplitude operator F,(§,3) for
the deuteron, given by Eq. (11), is an exact expres-
sion within the framework of Glauber theory. How-
ever, it leads to Eq. (18) for elastic scattering
amplitude which requires numerical integration
for its evaluation. The result for elastic plus

factor)

quasielastic scattering, involving double integrals
and an infinite sum, is even more complicated. In
this Appendix we obtain an approximation to Eq.
(11) which leads to analytic results for both elas-
tic and elastic plus quasielastic scattering by deu-
terium,

In terms of profile functions, Eq. (11) can be
written as (apart from the unimportant phase

Fu(@,8) =% 72 1) i [ afanrE@)espan| o
o

+%f d2bet O BgixcBs i [T, +38) +T,(® - 33) - T, (B +33)r, [ - $3)]. (B1)

Since for high-energy hadron-proton scattering
n is small (for example for 7*-p or p-p scattering
n< 1072 at medium and high energies), we can
write, to O(n),

TZ(b) =1 — explinE, (b2 /r?)]
= —inE,(b%/r%), r*=c®+d?, (B2)
where we have assumed that the form factors F, (q)
and F,(q) for the incident hadron and the bound pro-
ton are given by e~#¢*/4 and ¢~*¢*/4  respectively.
The Coulomb amplitude in Eq. (B1) is then given
by
fola) =7%a) + f To(ab) (kB [ —inE (6% /7%) )db .
3]
(B3)
The integration can be performed by expanding

the Bessel function in a power series and we ob-
tain

in+
fola) = o) + 2T

ZL (= 1)™grP"T(in+m +1)
XmX—(:J 2™t in+m +1)T(m +1) ° (B4)

For f2(q) given by Eq. (10), by dropping terms
of O(#?) we obtain

Fola) =F2(a) [1 D> (-1)'"“%{—{—;?——}
=f%t(q)e-a2r2/4
=f2(@)F.(9)F,(q) . (B5)

The last three terms in Eq. (B1) can also be ap-
proximated. In these terms since the strong inter-
action profile functions become negligible for im-
pact parameters which are larger than the sum of
the deuteron size and the hadron-nucleon interac-

f

tion radius, the long range part of the Coulomb
interaction has little effect; and over the range of
impact parameters where these terms are not neg-
ligible, the Coulomb phase shift varies slowly. We
can therefore use Coulomb phase shift functions
averaged over the appropriate profile functions
and the deuteron ground state. They are defined
as

(i1 S xe®B)Tpu(B,)d 4 )

Xep (ilfr,s(brp)dzb[i> ) (B6)
Gl xe®p)T,(B,)d% i)

Xon =G TG (B7)
=<i , IXC(BP)FPS(BP)FH(En)d zb '2> (BB)

Xeen =" (4] [T,®,) T, B i)
where b, =b +38§, b,=b- 135, and |i) refers to the
ground state of the deuteron. We will evaluate
Xcpns Which is the most complicated of the three,
explicitly. For nucleon-nucleon amplitudes given
by Eq. (14), we obtain

T,(B) =d ™/, (B9)
T,,() =d,e /%, (B10)

where d, and d,; are constants. By means of the
relation

Jlo@) a2 =1 [ e F Fstarata,

(B11)

where ¢(T) is the wave function for the deuteron
ground state, we may express yc,, as

Jo Xe®)e™ b ab [T e g (qb)S()a da

Xepn = w 2
4 J)” Slghemone g ag

(B12)

For the special case in which the form factor is
a sum of Gaussians, as in Eq. (17), x¢,, reduces
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to

Xen/A) ;" xo®) expl~t*(a,™ +4,7)/2 b db
a,E(a,/H,) ’

]

Xepn =

(B13)

where A; =a, +2B; and H; =a, +a, +2p;.
With f2 as defined in Eq. (10), the phase shift
function xc(b) for Gaussian charge distributions

Eqs. (A3) and (A6) is (see Appendix A)
Xc(b) =2n1n(kb) +nE, (6% /7%), (B14)

where 7? =c® +d® and n=Z,Z,e* /iv. To evaluate
Xcpn With this expression for x.(b), we note that

fw e-rbz[zn In(kb) +nE, (b2 /r*)]bdb
=§)—/{ln[k2(r2 +y™]-c}, (B15)

where C is Euler’s constant, C =0.577... . Using
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this result in Eq. (B13) we obtain

ny, aH, " In[F#(* +2a, AH,™*)
- _
Xcpn E aiH,'l nC. (BIG)
i
In a similar fashion we find

Xop =1 In[F(* +2a,)] - nC, (B17)
(B18)

Xen=n 3, a,In[?(2 +24,)] -nC.
:

Using these approximations for etxe®p in Eq. (B1)
together with Eq. (B5), we obtain as an approxima-
-tion to Eq. (B1) the result

F(, 3) =e-iq-?/z c(q) +é_ﬁfdzb eiE-E
x[eXerT, (B, +et e, (B,)

->

- e*XemT, (b,)T,(B,)]
which leads to Eq. (21).

(B19)

APPENDIX C. CHARGE EXCHANGE EFFECTS

In this Appendix, we show that the effects of charge exchange in collisions of hadrons of isospin 3 with
deuterons can be easily incorporated in the average phase approximation. Since we are considering elas-
tic scattering where no net transfer of charge occurs, we have to allow for a pair of successive collisions
with two cancelling exchanges of charge. For elastic scattering, therefore, Eq. (21) can be rewritten®® as

F3(q) =S(=30) o (@) + &' Xcrf, (@] + e Xonf,(@)S(33)

+aietom [ S@ALf G +TVHET~T) +£, 8 48 Va8 = T~ 1o +3) (B - D)%,

(c1)

where f£,,(q) =f,5(q) - f,(g). Using the forms for S(q), f,,, and f, given in Sec. II, we obtain, upon integration,

the result

F3(@) =[f5(@) +€Xerf, (q) + & Xerf(@)] 3 ajemPre/2
i

[ - 2 a —a)g? g - a
+—eiXcpn [26,,6‘,,6 (ap+aple®/8 Z 21 plap=ana®/8Hy _%(sze % /4+C,,2e apq /4) 2 or N
k H, — H,

i

(C2)
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