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Hing W. Ho, M. Alberg, and E. M. Henley
Physics Department, University of Washington, Seattle, Washington 98195

(Received 27 January 1975)

We examine the role of Galilean invariance in a nonrelativistic theory of pions and nucleons. We define a
nonrelativistic pion-nucleon interaction h as one which in perturbation theory gives the same matrix for a
physical reaction as the limit of small nucleon velocities of the relativistic matrix. The latter matrices are
always Galilean invariant, but this does not require that h be Galilean invariant. If pion emission or
absorption occurs from a nucleon moving in a potential, then the Galilean correction term can be shown to be
ambiguously of order v/c or of order v'/c . We show that h cannot always reproduce the nonrelativistic limit

of a relativistic matrix. Finally, we suggest that pion production by nucleons on nuclei with excitation of
giant dipole and quadrupole states may be particularly sensitive to the presence of a Galilean correction term
in the production matrix.

NUCLEAR REACTIONS Nonrelativistic form of pion-nucleon interaction.

I. INTRODUCTION

By this time a considerable number of papers
have been written about Galilean inva, riance (GI)
of the pion-nucleon interaction. There are two
reasons why we join the venture. The first one
is that we believe that previous articles are in-
complete, so that their interpretation may be dif-
ficult and even confusing. The second reason is
that we would like to propose possible tests of
Galilean invariance.

The relativistic pion-nucleon interaction can be
of the following types':
(a) pseudoscalar coupling

H„N =ig y'V, , d3X;

(b) pseudovector coupling

3
H'» = G Q gy~y" T,$V»Q;d3x,

i=i
(2)

where P, ( are nucleon field operators and Q is
that of the pion. The pseudoscalar interaction is
preferred generally because it is a nonderivative
one and is renormalizable. On the other hand, the
pseudovector coupling is suggested by soft pion
and par tially conserved axial-vector current
(PCAC) theories. ' As pointed out by Dyson and

by Foldy, ' the two interaction Hamiltonians are
equivalent to first order in the coupling constants
if G=g/2M.

It has been pointed out by Barnhill' that the
nonrelativistic (NR) reduction of the pseudoscalar
Hamiltonian is not unique if it is carried out to
first order in g with the neglect of relativistic

terms of order M '. To this order, the NR limit
is often written as'

H„»= — g d'x g o V~v, gQ&7r N 2M

This form, with A. = i and p, -q, the pion energy,
is obtained directly from Eq. (2). In Eq. (2) p,

and M are pion and nucleon masses, respectively,
V~ operates only on P whereas V„and V» operate
on ( and gt, respectively. The nonuniqueness re-
sides in A. which is an arbitrary number; it was
shown by Barnhill that the NR interactions with
different values of A. are related by canonical
transformations. Thus, if the NR wave functions
are transformed by the same unitary operator,
the physical results remain unchanged despite the
"ambiguity. " The latter comes about from the
different order in which the tuo required Foldy-
Wouthuysen transformations can be carried out.
The normal first-order transformation' gives to
order g

H „=— g d' ft( 'V„P+y Q)g,
i

(4)

where / =8'/at and o'~ is the Dirac spin operator.
This semirelativistic form shows the equivalence
of the interactions given by Eqs. (I) and (2). If
both initial and final nucleons are free ones, then
the result of the nonrelativistic reduction of the
last term of Eq. (4) is equal to the last term of
Eq. (2) if q, = p, and A. = I. This value of A, is said
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to make the NR interaction Hamiltonian Galilean
invariant. Physically, the ambiguity arises be-
cause pion emission (or absorption) can occur
only if at least one of the particles is not on its
mass shell —i.e., is not free.

Recently, the notion of GI for a theory of non-
relativistic nucleons interacting with relativistic
(or nonrelativistic) pions has been questioned.
Since the interaction (l)—(4) allows the creation
and destruction of single pions, we are not deal-
ing with a normal nonrelativistic one-particle
quantum theory. Moreover, as first pointed out
by Bolsterli et al. ,

' the NR reduction of Eq. (l)
depends on whether the potential in which the
nucleon is assumed to move is a relativistic
scalar or the fourth component of a relativistic
four-vector. This feature can be brought out also
by rewriting Eq. (4) as

2~ = Q 0 v '( 24&+ 2~4&)Tgk.KN 2~

The second term clearly indicates that the Gali-
lean correction is proportional to the relativistic
velocity operator n. The nonrelativistic reduc-
tion of this term is known to depend on the off-
mass shell behavior of the nucleon. '

As already B.rgued by Eisenberg, Noble, and
Weber, it is not the nonrelativistic pion-nucleon
interaction Hamiltonian which must satisfy GI,
but only the physical transition matrix element,
since it is the latter which is the NR limit of a
measurable relativistic quantity. We will demon-
strate this feature explicitly, but in doing so we
sha. ll not restrict ourselves to a nucleon moving
in a potential; indeed, the nucleon may be free.
For a nucleon moving in a potential, there exists
an obviously preferred frame and, as argued by
Friar, ' the GI correction term in the NR matrix
element is actually of order v'/c' in this case,
where v is a nucleon velocity. By contrast, if the
pion emission occurs in the presence of the field
of another meson or photon, the GI term is of
order v/c, but the nonrelativistic effective pion-
nucleon interaction generally is not well defined.
In particular, there is also a Barnhill-type am-
biguity in the NH effective pion-nucleon interaction.
We shall demonstrate these features in the next
section. Throughout the remainder of this paper,

p~ r'q

IC

I'IG. 1. The pion-nucleon vertex.

we shall consistently keep corrections of order
v/c to the dominant terms, but generally discard
relativistic corrections, i.e., those of order
v2/02

II. EFFECTIVE n-N INTERACTION

We make use of perturbation theory to define
a.n effective nonrelativistic pion-nucleon inter-
action. We will show that the form of the inter-
action to order v/c depends on the off-mass shell
behavior of the meson or nucleon; however, the
matrix element for the physica1 process remains
Galilean invariant independent of this arbitrari-
ness.

The pion-nucleon interaction is responsible for
pion emission (absorption) as illustrated in Fig. l.
One of the particles shown must be off-mass shell
since it is not possible to conserve both energy
and momentum in the emission (absorption) pro-
cess.

Consistent with the usual definitions of non-
relativistic potentials, we define an effective non-
relativistic interaction as one that in perturbation
theory gives the same matrix element as the non-
relativistic limit of the relativistic scattering
matrix. Consider a pion-nucleon system together
with one further field (e.g. , electromagnetic, nu-

clear, etc. ) represented by H'; the Hamiltonian
for such a system can be written as

(6)

where II0 is the free nucleon and pion Hamiltonian,
H'„'~=—h is the effective interaction at the vertex of
Fig. 1, and H' is the additional interaction with
the other field. We stress that H' need not be an
external potential; this interaction serves to bring
the nucleon or pion back onto its mass shell. To
first order in h and 0', the nonrelativistic matrix
for a reaction involving both of these operators is

0 - 0

Our definition of 0'„'~ does not imp1. y that it or
H' is weak or that Eq. (6) is to be solved in per-
turbation theory; indeed one advantage of a NR
treatment is the availability of distorted wave-
Born-approximation (DWBA) methods. II'„f~f =h
represents, rather, an expansion in powers of
M ' of the relativistic Hamiltonian which gives
identical answers to that obtained with Eq. (6) if
perturbation techniques are used.

In the comparison of the relativistic and non-
relativistic matrices, it must be realized that
there also occur recoil corrections of order v/c.
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FIG. 2. Typical Feynman diagrams for physical pro-
cesses which involve the effective pion-nucleon interac-
tion with a virtual pion. (a) Scattering by an external
light particle, e.g. , photon. (b) Scattering by a poten-
tial. (c) Pion absorption by a nucleus (potential scat-
tering). (d) Nucleon-nucleon scattering.

itly by Eq. (4) or (5) and shows the disadvantage
of Eq. (3). There P =+iq, P, where q, is the time
component of the pion four-momentum, has been
approximated by sip P. However, whereas q, (the
energy of the virtual pion) vanishes to order M '
for all situations of physical interest [except that
represented by Fig. 2(b)], g does not do so. Cor-
rections to Eq. (8) are only of order v'/c2 and are
thus relativistic ones. For the exception [Fig.
2(b)] where the pion interacts with a potential, the
GI correction is also of order v'/c' as shown in
Sec. IIB, below [see Eq. (12) and beyond].

B. Nucleon off-mass shell

It is the propagator (E Ho) ' i-n Eq. (I) which
contains recoil corrections.

In order to discuss GI we shall consider, sep-
arately, the case of a pion off-mass shell and a
nucleon off-mass shell. We further differentiate
between a nucleon moving in a potential and in the
field of another meson or photon.

A. Pion off-mass shell

The question of GI for the case of nucleons on
mass, but the pion off-mass shell in Fig. 1, has
not been considered by previous authors. Ex-
amples of physical processes where such consid-
erations apply are shown in Fig. 2. It is straight-
forward to show that the effective interaction for
all reactions illustrated in Fig. 2 is

d'x ~o V'„v] (8)

T
h«

H

7r
/
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r

(b)
FIG. 3. Typical Feynman diagrams for physical pro-

cesses which involve the effective pion-nucleon inter-
action with a virtual nucleon. (a) Pion production by an
incident light particle (e.g. , o meson, photon, etc.).
(b) Pion production in a "potential" (e.g. , nucleus).

There is no GI term when the pion is off-mass
shell but the nucleons are free. The matrix ele-
ment for a physical process is nonetheless GI.
This is readily appreciated for nucleon-nucleon
scattering due to one-pion exchange illustrated
in Fig. 2(d).

The lack of a GI term in A, is brought out explic-

The second case of physical interest is when
the nucleon is off-mass shell, but the pion is a
physical one; we consider first eases illustrated
in Fig. 3 in which either the initial 0& final nu-
cleon is off-mass shell. In Fig. 3(a) the particle
of momentum k is assumed to be a meson or
photon. In Fig. 3(b) the nucleon moves in a poten-
tial H'= V. In both of these cases, and for an
arbitrary interaction &', there is a 1:1 corre-
spondence between the nonrelativistic limit of the
relativistic matrix element and Eqs. (4) or (5),
used in conjunction with a nonrelativistic propaga, —

tor, but only if the second (Galilean) term of the
last two equations is included. It is the nonrela-
tivistic reduction of the maA ix for the physical
process which must be evaluated, rather than for
the pion-nucleon vertex alone. Furthermore, if
the interaction H' is a pseudoscalar (e.g. , pion-
nucleon interaction), it is not sufficient to retain
terms of order g in the NR reduction of Eq. (1);
terms of order g2 must be kept 5,io

It is necessary to specify the interaction IJ' to
obtain the effective pion-nucleon interaction h.
The result depends not only on whether [h, H'] =0,
but also on whether II' represents a coupling to a
light meson as in Fig. 3(a) or to a potential as in
Fig. 3(b). To bring out the differences of these
situations we consider three separate examples:
(1) H' is an isoscalar and spatial scalar, (2) H'

is the third component of an isovector and we con-
sider n' emission, (3) H' is an isoscalar but of
the form 7' T, where 7' is the isospin of the nu-
cleus or of the external meson. In each of these
instances we shall differentiate between a poten-
tial and the field of an external meson or photon.

1. H' =isoscalar and space scalar

We assume that the vertex function can simply
be represented by the function f(k). The NB re-
duction of the relativistic matrix represented by
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the two diagrams of Fig. 3(a) is

a q —((u/2M)o (p+p') v q —((u/2M)o (p+p')=a(&)x~; -, . — -- . x,
23/Ico —2p 'q+ p, 2M(d —2p 'q —p

where X is a two-component spinor. In order to
obtain the same matrix for the same diagrams
with Eq. (7) we must choose h as

h= — g d'xgtir V g,. (1 — )v;g. (10)

This equation is analogous to that obtained by Bol-
sterli et al. ' and is not "Galilean invariant, "but
h nevertheless gives rise to the QI matrix element
Eq. (9). The reasons for the difference of h and
Eqs. (4) and (5) or Eq. (1) is that with these equa-
tions the GI terms appear for each of the diagrams
of Fig. 3(a}, whereas the sum of these diagrams
is required to produce the GI of the matrix with
the use of Eqs. (7) or (10).

The difference between Figs. 3(a) and 3(b) re-
sides in energy considerations. For Fig. 3(a) we

assume that the particle represented by the mo-
mentum k and the m meson both have masses much
smaller than that of the nucleon. Energy conser-
vation then gives cu = k, and

Asl ~ re 6 ~ At

By contrast, the potential in Fig. 3(b) can absorb
(or give up) no energy but an arbitrary a,mount of
momentum k. In this case k0=0 and

(12)

Thus, in this case we have ~/M of order P'/M'
= v'/c'. The Galilean term v '(p+p')tu/2M is
therefore of the order of a relativistic correction
to the nonrelativistic interaction o (p+p'}, even
though it appears to be a correction of order v/c
to the pion-nucleon interaction o q. That is, the
ratio of the Galilean correction term eo (p+p')/2M
to the primary interaction term 0 'q is indeed of
order P/M or v/c. It may, nevertheless, arise
from relativistic corrections. If we only keep
terms of order v/c and discard corrections of
order v'/c', then the GI correction term is am-
biguous. This is brought out in an explicit ex-
ample in the Appendix.

Thus, the correction term -&u/2M in Eq. (10)
should not be retained if II'= V since it is of order
v'/c' in that case or one should retain all correc-
tions of this order. In particular the nonrelativis-

tic reduction carried out, e.g. , in Eq. (9}, may
not be unitary to this order.

2. H' ~ r3 and space scalar

For case (2) it is straightforward to obtain the
nonrelativistic limit of Eq. (1) a.s

t o' q —(&u/2M)v (p+p')
2M' —2p' q+p, '

a' 'q —((u/2M)o (p+p')
+

2M+ —2p q —p,
2 X (»)

since (v„rg=0. In this case, the effective non-
relativistic Hamiltonian which gives the same
matrix element is

d x$ r;0' ' V~/) — (V~ —V~)Q( g

3. H' ~ Z, r,.4,. and space scalar

As a last example, we consider an interaction
H' of the form II'~7 4, where 4 is the field of
a particle of isospin unity in Fig. 3(a); 4 is ef-
fectively replaced by the isospin T of the nucleus
in Fig. 3(b). In this third case no solution to h

[defined by Eq. (7)j can be found which reproduces
the NR limit of the relativistic matrix element.
The reason is that II' neither commutes nor anti-
commutes completely with h.; it would be neces-
sary to choose h of the form Eq. (10) for that part
of H' which commutes with Q, v, Q, and h of the
form Eq. (14) for that part of &' which anticom-
mutes with Q, v, @,. There is, however, a more

(14)

which has the appearance of a GI interaction.
If we consider the analogous case for potential

scattering, then the Galilean correction term pro-
portional to &u/2M in Eq. (14) should be dropped
since it is a relativistic correction to an effective
interaction proportional to (t (V„—Vz)(. It is,
however, also a correction of order v/c to the
primary interaction Hamiltonian density propor-
tional to V„P,. Note the ambiguity.
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FIG. 4. Seagull or contact term required to obtain
agreement between the NR matrix and the limit v «c
of the relativistic one.

desirable solution suggested by the requirement
of gauge invariance in case the particle repre-
sented by k is a photon, and by the non-negligible
contribution of intermediate nucleon pair states.
This is the addition of a "seagull" diagram (Fig.
4) to those of Fig. 3. With the addition of this
diagram it is a trivial matter to obtain a Galilean
invariant matrix element as required by the NR

reduction of the relativistic matrix which is

X
6 6II=Z(h)y. -, -,— --, t T+ -, , + P txT q2M&v —2p' q+p' 2M~ —2p q —p' 2M~ —2p' q+)), ' 2M~ —2p q—

(15)

8 =o q — o (p+p')

and t is the isospin of the pion and T that of the
field C. Although this matrix can readily be re-
produced with the addition of Fig. 4, the operator
h' is not unique. Three possible solutions are

h, =Eq. (8),

h'= — (t " (i 7~
&f& &C'd'x, (16a' )2M ~ M

h, =Eq. (14), h,'=+ Jtgt gd'x,

(16b)

h =nh, +Ph~, h' =nh,'+Ph», n+P =1 . (16c)

The solutions given in Eqs. (16) do not exhaust all
possibilities. What these solutions indicate is
that it is not always possible to define a nonrela-
tivistic effective interaction through Eq. (7). In
order to obtain a GI matrix for a physical process
it may be necessary to add a contact term, repre-
sented by Fig. 4, with the field which serves to
bring the nucleon back onto its mass shell. If this
field represents a potential, as from a heavy nu-
cleus, then this contact term is ambiguously a
v/c correction to the dominant meson gradient
term in the interaction and a v'/c correction to
a nucleon gradient term. This ambiguity persists
in the NR reduction of a relativistic matrix as il-
lustrated in the Appendix.

All of the above considerations were carried Out for
a relativistic scalar interaction. They can be repeat-
ed for a four-vector interaction H' =f (y&EPdsx,
for the electromagnetic interaction, or for the time
component of a relativistic four-vector. ' The

N+A N+A+ n. ,

where A is a nucleus. The decomposition of the
DWBA matrix is

3R~R -(y(-)@,( -) ~h~y(+) ) (18)

where 4 ' are nucleon and C ~ pion distorted
waves. With

1
E-~~i~ "t

conclusions reached are identical to those obtained
by our illustrative example. The nonrelativistic
matrix element is always GI; this may be achieved
by an effective interaction of the form of Eq. (8) or
Eq. (14) or may require Eqs. (16). However, if
H'= V, the GI term o (p+p')/2M may be of order
v'/c', as pointed out above.

As indicated in the Introduction, one of the pri-
mary advantages of a nonrelativistic treatment is
that it permits the use of a DWBA development.
It is therefore of interest to examine the appro-
priate operator to be used in conjunction with a
DWBA treatment, For illustrative purposes we
use a potential V:

H'= V= V + Vw'T, (17)

where T is the isospin operator for the nuclear
target. The second term allows analog states to
be excited by the optical potential.

For this example it is not possible to find a
unique form for h to order &u/M. First of all, the
correction term of this order may be considered
to be of relativistic origin as indicated earlier
and shown in the Appendix. Secondly, in order to
obtain agreement with the corrections of order
~/M, i.e., with apparent GI, it is necessary to
include Fig. 4.

For definiteness, consider the reaction
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we obtain the decomposition of K as

1

0 0

OytE ~ +&~ ~ ~ Opt ~ (20)

The various terms of this decomposition are il-
lustrated in Fig. 5. If we assume that t,„t is of
the form

only consider processes in which real mesons are
present in the initial and/or final states. Possible
reactions are

0+ ~~~

then agreement of SK with the NH limit of the
relativistic matrix element to order &u/M is not
possible unless A' is included and terms of order
v'/c' are kept. The effective Hamiltonian is not
definable by Eq. (7) alone.

We believe that the difference between the NR
reduction of the relativistic matrix and the use of
an effective NR interaction Hamiltonian h as de-
fined by us through Eq. (7) accounts for the dif-
ferences obtained by Bolsterli et a/. ,

' Friar, ' and

by Eisenberg, Noble, and Weber. '

III. DETECTION OF GALILEAN INVARIANCE

In the previous section we have argued that any
matrix element which involves the pion-nucleon
vertex should be Galilean invariant in the nonrela-
tivistic limit. When the pion emission (absorption)
occurs from a nucleon moving in a potential, then
the GI correction ~c (p+p')/2M may be relativis-
tic in origin. Nevertheless, such a correction
term occurs together with other terms of order
v'/c' for any physical matrix element. The same
term will occur to order e/c in the NR reduction
of the pseudovector coupling Eq. (2). In this sec-
tion we discuss possible means of detecting the
presence of this "GI" term and argue that pion
production by nucleons may be particularly ap-
propriate.

Since, as shown in Sec. II, no GI correction term
is expected to occur for reactions involving the
production (absorption) of a virtual pion, we need

y+A-m+A',

m+A @+A*)

P+A- m+A'*

-p+ m+A*

n+ m+A'*.

(21a)

(21 )

(21c)

Whereas the dominant contribution to all of these
reactions usually occurs for P-wave mesons, the
"Galilean term" involves the creaction or destruc-
tion of 8-wave mesons. We believe that nuclear,
rather than nucleon, targets are appropriate be-
cause we anticipate that the excitation of certain
states will enhance the effects of the GI term.

Reaction (21a,) illustrated in Fig. 6 has the dis-
advantage that it is dominated by gauge invariance
effects; in particular there is a seagull term [Fig.
6(a)j which produces S-wave pions and which has
its main contribution from the minimal electro-
magnetic coupling required by the gradient cou-
pling - &„Q. The GI contribution is thus but a
small correction to this term due to -VP.

Reaction (21b) involves two pion-nucleon inter-
actions and consequently has pair production (e.g. ,
-fgtQ'gd'x) and other bilinear effects. It has
nevertheless been proposed by Koltun and Nalcio-
glu" that excitation of the giant-dipole resonance
in elastic pion scattering may be sensitive to the
GI contribution.

Because reactions (21c) create single pions we
believe that they are particularly appropriate as a
test of GI. Whereas the dominant matrix element
generally is that for P -wave production, the GI

(c)

l
7T

I
eh

~or
/e'

h &

&~ q7T'

h«

e

Feynman diagrams for pion production in a
DWBA theory. The nucleon optical scattering matrix

pt is represented by a wavy line with slashes.

(b)
FIG. 6. Feynman diagrams for photopion production.

Figure 6(a) is the seagull term.
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contribution produces S-wave pions. . Since the GI
term is proportional to the nucleon momentum
operator we expect it to preferentially excite the
giant-dipole states. If we consider the production
of low energy mesons at incident energies suffi-
ciently small that the nonrelativistic approxima-
tion for nucleons is valid, then the GI term may
be as large as the meson P-wave production con-
tribution. The ratio of the GI to P-wave produc-
tion terms in perturbation theory is of order (P/M)
x(ur/q); the ratio becomes large as q-0. In pertur-
bation theory the effective interaction due to GI is
proportional to p7; and this operator is well known
to have large matrix elements for excitation of the
giant-dipole resonance. The additional proportion-
ality to the spin operator 0 means that the GI term
not only excites 1, but also 2 and 0 states of
even-even nuclei. Such states have been observed
in inelastic electron scattering experiments. "
Classically, these states correspond, for instance,
to the vibrations of protons of spin up against neu-
trons of spin down. The 1 state is a giant-dipole
state, whereas the 2 is a magnetic quadrupole state.

We thus propose that the excitation of giant-di-
pole and quadrupole resonant states in meson pro-
duction at incident proton energies chosen so that
the meson is produced close to threshold (in 8
states) should be particularly sensitive to the GI
term of the production matrix element. We are
presently investigating this proposal in detail with
the inclusion of distortion effects.
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of the authors (EMH) also thanks the Los Alamos
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sions with Dr. M. Bolsterli, Dr. W. R. Gibbs, Dr.
B. F. Gibson, and Dr. G. J. Stephenson, Jr., stim-
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APPENDIX

For simplicity, we consider the first Feynman
diagram of Fig. (3b). If we neglect isospin labels
we obtain

3tt =gf u(P')r', , M-u(P)

= gfu(p')y'~ M u(P) .

Consider Eq. (Ala) which can be written as

DOZ= gfu(p')y'(p '+ y'+M) u(p)

=gf u(p')r'4(u(P)

(A lb)

(A2a)

with

D = (p'+q)' -M' = (p+k)' -M' (A3)

In the limit v«c, D3g becomes approximately

DOE = gfg o q —o ~ (p+p')—
2M

(A4a)

D =gf u(P"')r'(2M +k)u(p)

which for v«c reduces to

(A2b)

DOlt= gfr o q — ' o (p+p') &.
2M

(A4b)

If the particle represented by the momentum k in
Fig. 3(b) were a real one as in Fig. 3(a), k, = |v,
and Eqs. (A4a) and (A4b) are consistent to order
v/c. On the other hand, in Fig. 3(b) k is the mo-
mentum transferred by a potential for which kp 0.
Hence, to this order, Eqs. (A4a) and (A4b) do not
agree. To obtain agreement it is necessary, for
instance, to keep terms of order v'/c' in the ex-

where only terms of (apparent) order v/c have been
retained and f is a NR spinor.

If we use Eq. (Alb) we obtain

pression of Eq. (A2b). With k, =0 this reduction becomes

M,g, g
0' ~ p 0' p 0 ~ k g'po' kv ~ p

&'+M 2M (E'+M) (8+M)2M

~gf~ o' q — +,(p'+ p")+,— o pp' k —ip p'&& k+ o p'p k —o ~ kp ~ p'

= gfK o' q — o' ' (p+p')+ other terms of order up/M g.

Agreement with the reduction of Eq. (A2a) requires
that relativistic corrections be kept in both cases
or in neither case. The second term in Eq. (A4a)

is thus seen to be ambiguously of order v/c or of
order v'/c', depending on how it is obtained. This
occurs because ~(P/M) is also of order P'/M(P/M).
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