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Two recent papers are shown to be related, and the unifying ingredient is an energy-dependent Hamiltonian.

NUCLEAR STRUCTURE Energy-dependent Hamiltonian, nuclear charge density, I

meson-exchange currents, relativistic corrections, recoil corrections.

Recently Dress et al. ' have measured the two-
photon capture rate of subthermal neutrons on
protons. Their results are 10"-10 bigger than
expected and have an unusual spectral distribution.
This experiment was performed in response to
the calculations of Adler, ' who suggested that non-
orthogonality of initial and final states could lead
to a much larger result than one would normally
expect. This suggestion, revolutionary though it
may seem, was prompted by the remarks of
Breit and Rustgi, ' who noted that energy-depend-
ent potentials caused by meson exchanges in the
nucleus could modify the conventional orthogonal-
ity relationship. Recently Riska' has pointed out
that the energy-dependent potentials do produce
orthogonal wave functions, but the conventional
orthogonality relationship is modified and depends
on the potential, in agreement with deporest. '

This problem, as emphasized by Riska, is re-
ducible to the two-channel problem. The two chan-
nels for simplicity may be taken to be the "bare"
nucleus and nucleus plus one pion, respectively,
with the channel coupling potential creating and
destroying a meson, which is virtual for the prob-
lem under discussion. As shown by Riska, the
orthogonality problem arises when the equations
of motion for the two channels are reduced to
effective one-channel equations. However, since
the original wave functions were orthonormal,
some orthonormality relations must hold for the
reduced wave functions,

Intimately related to this problem are the con-
tributions of meson exchanges to nuclear charge
and current operators. We follow the nomencla-
ture used in the pioneering work of Chemtob and
Rho' (CR) and illustrate in Fig. 1(a) the "recoil"
contribution and in Fig. 1(b) the disconnected
diagram which leads in perturbation theory to the
"normalization" correction. The meson exchange
in Fig. 1(b) is, of course, responsible for the
nuclear force. Chemtob and Rho demonstrated in
an appendix of their classic paper that the nuclear
wave functions of their model were not normalized
in the conventional manner and a normalization

factor was introduced to account for this. It is
clear from their derivation that their wave func-
tions correspond to an energy-dependent potential
and it is inappropriate to approximate these wave
functions with ordinary Schrodinger wave functions
obtained from energy-independent potentials. Re-
cently, it has been shown' that Fig. 1(b), when

renormalized according to the conventional meth-
ods of time-dependent perturbation theory, can-
cels that part of the recoil term of Chemtob and

Rho which necessitated the normalization factor.
This procedure can be shown to be precisely in
accordance with the requirement that the nuclear

FIG. 1. Recoil graph contribution to meson-exchange
charge or current operator (a) and disconnected graph
(b) which leads to renormalization.
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potentials be energy independent. Since the meth-
od of CR was used recently by Jackson, Landd,
and Riska' to calculate corrections to the deuteron
charge form factor, it is worthwhile to demon-
strate, using a model whose physics is not in
doubt, that the cancellation does indeed take place.

Also related to these problems is the work of
McGee, ' who investigated inelastic scattering of
electrons from deuterons. McGee's procedure
in developing the effective electromagnetic inter-
action between nucleons in a nucleus resulted in
a momentum-dependent charge distribution. We
will show that the definition of the charge density
is not unique and may be chosen to have a momen-
tum dependence similar to McGee's. We will also
show that the form the charge density takes is in-
timately related to the possible energy dependence
of the potential.

Although the two-channel problem is not unfamil-
iar, detailed properties of its solution are prob-
ably unfamilar to most physicists, so we resort
to a two-channel problem which is familiar. The
insight we are seeking does not depend on the de-
tails of the two-channel problem, but on the basic
structure of the problem itself. The Dirac equa-
tion may be regarded as a two-channel problem
which connects positive energy states of the nu-
cleon (or other fermion) to the negative energy
states. The gap between these sets of states is
2m, where m is the nucleon mass, and this is
sufficiently large that an expansion in powers of
(1/m) is efficacious for most applications in
atomic and nuclear physics. The expansion pro-
cedure eliminates the lower two components of
the four-component spinors, which are necessary
for a description of the negative energy states, in
terms of the upper two components, which are
large for the positive energy solutions we will
treat. Equivalently, "'pair" contributions' are
eliminated in terms of effective operators. The
conventional approach to this reduction is the
Foldy-Wouthuysen (FW) transformation" which
produces a two-component wave function and ener-
gy-independent effective Hamiltonian. Our pro-
cedure will yield the same results, and thus con-
stitutes a novel derivation of previously obtained
results, but at the same time will shed light on
the three problems discussed above.

We write the Dirac equation for a particle of
mass m. interacting with a scalar potential Vs and
a vector potential Vv in terms of the upper com-
ponent wave function g, and lower componentwave
function g, for an energy E —= m+ e:

The lower equation may be inverted to produce

1
~ =E+m+V -Vs v

(V~+Vv)g, +o' p Z+ m+ Vs-Vv
(2b)

E
Op p vl

where H, = p'/2m + V„+V, is the nonrelativistic
Hamiltonian. All the terms except the first and
last define the relativistic corrections to H, of
lowest order (r H) and are precisely the same as
those derived using the FWtransformation in Ref.
11. Defining H =H, +~, we can write Eq. (2b) in
the approximate form

1e-H, -+, (,=0,

which is not the Schrodinger equation. It may be
manipulated into Schrodinger form by defining

g
~ = (1 +p '/Bm') P „

so that we obtain finally

(e- H)gz = 0.

(5)

The definition (5) for the Schrodinger wave func-
tion was obtained from the FW transf or mation in
Ref. 12. The charge density may also be obtained
in the same way. For convenience, we examine the
matrix element of an arbitrary "even" operator,
0(x), which does not mix upper and lower compo-
nents. These parts of 0 are 0, and O„respec-
tively. Using Eq. (2a) the matrix element of 0
between states m and n has the form
( m ( 0(yg) =Pt O, tj, „&at 0 g, „

1
4am 0, +g p

Em +~+&s —Vv

1
E„+m +Vq —V„P ~'" ' (7)

The second term in Eq. (2b) is an energy-depend-
ent contribution to the Hamiltonian, AH(e). A
natural, though inadequate, approximation is to
assume e, Vs, Vv«m and replace the bracketed
factor by 2m, resulting in the nonrelativistic
Schrodinger equation for g, . We wish to work to
order (u/c)' past the nonrelativistic approxima-
tion, and to do this it is necessary to expand the
denominator to first order, which yields after
some algebra

(
p p V'V~ o V(v~ —V~) xp
2~ 8m' 8m' 4~'
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For our purposes we may replace each denomi-
nator in Eq. (7) by 2m, while higher-order terms
may be obtained by expanding these factors if
desired:

(mi 0
~
n) = yt, (0, +(p'/8m', 0,)

+[o'p, [0,/8m', o p] j)g,„.
(8)

The charge density is a special case with Oy

=p(x), with p a 5 function. Performing the com-
mutators in Eq. (8), the resulting terms are the
usual Darwin-Foldy and spin-orbit contributions
to the density. ' The FW procedure also produces
these terms, but not the second term. The reason
is the definition in Eq. (5). If we replace P, by
g~ the extra term disappears to order (v/c)'.
The orthogonality relationship is deduced by tak-
ing 0=1:

which shows that the conventional orthonormality
relation is satisfied by g' and the complete wave
function P, while P, satisfies a modified relation-
ship. Indeed, the reason for this behavior is that

$, satisfies an energy-dependent Hamiltonian pro-
blem, while g and g' satisfy an ordinary one.
While it is true that if g is normalized in the
ordinary way, P, is not so normalized, it is not
sufficient to account for this by multiplying P, by
an appropriate constant, ' since the orthogonality
relationship cannot be changed by this device.

This model problem has a one-to-one corre-
spondence to problems involving meson exchanges.
The meson exchange in Fig. 1(b) involves a
propagator while the meson is "in the air" and
this leads to an energy-dependent potential. Simi-
larly, the recoil contribution in Fig. 1(a) involves
two propagators while the meson is in the air and
is identical in form to the second term in Eq. (7).
The formalism with the energy-dependent potential

has, of course, the same difficulties we saw in
Eq. (9), and a recoil term (the Z operator of CR)
analogous to the p' term in Eq. (8). Switching to
an energy-independent potential, which is neces-
sary if we wish to use Schrodinger wave functions
in the calculation, is accomplished by an identity
similar to Eq. (5), which, upon substituting into
the recoil matrix element, cancels the g-operator
term of CR and Ref. 8. The new representation,
unlike the old, has conventionally orthonormal
wave functions. Isotopic considerations plus
other approximations eliminated the analog of
the last term in Eq. (8) in Ref. 8. Thus, their
entire recoil contribution should be dropped.
Finally, we have the novel interpretation of the
Darwin-Foldy and spin-orbit contributions to
the density as recoil corrections,

We also note that if we perform a nonunitary
transformation which reintroduces momentum
dependence into the charge density (i.e., p'
terms), we will automatically change the wave
function which will then correspond to an energy-
dependent Hamiltonian. The charge density of
McGee, ' which contains p' terms, therefore
requires an energy-dependent nuclear Hamiltonian,
and does not correspond to ordinary Schrodinger
wave functions.

In summary, we have solved the nonrelativistic
reduction of the Dirac equation in a.novel way
which allowed us to identify the recoil and
normalization terms of Chemtob and Rho. The
major part of the recoil term, used in the calcula-
tion of Jackson, Landd, and Riska, cancels if we
insist on using energy-independent potentials in
calculating wave functions. The remaining terms
are the well-known contributions obtained by the
FW procedure e. The transformation from an
energy-dependent Hamiltonian to an energy-in-
dependent one restores the orthonormality rela-
tionship from an unconventional one to the usual
one. Finally, the form the charge density takes
depends intimately on the form the dynamics
takes. All of our conclusions are consistent with
the previous work of Feldman, "Blomqvist, '
and others" on the meson exchange problem.
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