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Two methods of calculation of the Brueckner correlated wave function are suggested for the Bethe-Goldstone
equation defined with the propagator Q/(co+ QTQ). The first method generalizes the Goldhammer-Pintar
approach and is applicable when the energy denominators of the reference and exact propagators are different.
The difference is treated as a perturbation. The second method consists in a direct inclusion of a harmonic
Pauli projector. The only approximation is an arbitrary energy cutoff N in the oscillator basis. Equations to
be solved are written for partial waves. They are integral equations similar to the Schrodinger equation plus a
set of linear algebraic equations. They are solved for a separable potential and transformed into differential
ones in the case of a local potential. The number of equations is given and the error is a priori estimated
using qualitative arguments.

NUCLEAR STRUCTURE Two methods for solving Bethe-Goldstone equation
suggested.

I. INTRODUCTION

Goldhammer and Pintar' (GP) have recently
found a new method for the calculation of the cor-
related wave function in the Brueckner theory.
They used the reference spectrum method and en-
ergy denominator of the form &+8„ i. .e. , the defi-
nition of the reaction matrix

G, = V- VA G, A =Q/((o+H, ),
where Ho is an unperturbed (e.g. , harmonic) two-
particle Hamiltonian, Q is the Pauli projector on

particle-particle states, and &&0 is a parameter
equal to the negative of the value of the so-called
starting energy.

The idea of the method is to use the projector
P =1 —Q instead of the original Q projector of
Pauli. GP get a simple equation for the correlated
function. The solution is expressed as a sum of
reference functions. The coefficients in the sum
are obtained by inverting the matrix of the overlap
integrals.

In our work, the idea is applied in the case of
the energy denominator of the form &u+QTQ, which
corresponds to the definition of the reaction ma-
trix'

G = V —VA(v, Q)G, A(v, Q) =Q/(v+QTQ) .

(2)

The reasons for using such a type of the propagator
modification in the definition (2) are given, e.g. ,
by Baranger. ' lt seems that the recent calcula-
tions' of the third order diagrams' contribution to
the energy of finite nuclei indicate the importance
of self-consistent potential U insertions in higher

orders of the perturbation series, thus providing
arguments in favor of the definition (2), where
such diagrams are partially summed up. The
main trouble in using the definition (2) is of a tech-
nical nature and a new method is therefore desir-
able.

There are two methods suggested in our paper.
The first uses the GP equation, where the neces-
sary input functions are still fairly complicated.
By means of the reference spectrum equation,
those input functions are given in the form of a
perturbation series. This method is described in
Sec. II and may be adequate for comparisons of
the definitions (1) and (2) or for approximate cal-
culations.

The second method does not use the reference
spectrum approach and is described in Sec. III.
The resulting equations are very similar to the
equations of GP. The correlated function is ex-
pressed as a sum of functions that are very similar
to the reference functions. The expansion coeffi-
cients are obtained by solving a set of linear al-
gebraic equations where the coefficients are again
simple overlap integrals. Thus, the method can
be considered as a counterpart to the GP method,
adequate when dealing with a,n equation of type (2)
instead of type (1).

II. REFERENCE SPECTRUM METHOD FOR

CORRELATED FUNCTIONS

A. Goldhammer-Pintar approach

The correlated function
l g) is defined in the

Brueckner theory by the relation
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where V is a potential,
I cp& is the two-particle un-

correlated wave function, and the reaction matrix
G satisfies the equation

G=V —VAG, A=A'. (4)

The propagator A is equal, in the case of GP, to
A, from Eq. (1).

In the GP paper, the reference spectrum meth-
od is suggested for calculation of the function

I g&.

The starting point is the reference equation

G, = V- VA,G„A,=A, , (5)

A, -A= PA, (6)

must be fulfilled, where P= 1 —Q =P, c I y,.&(y,. l

is a projector defined in the two-particle uncor-
related function basis

I cp;& and C~ is a corres-
ponding set of indices.

The usual reference spectrum equation

G =G, —G(A —A, )G, (7)

where the propagator is chosen in the form A,
= (&u+H, )

' and the corresponding correlated refe-
rence function

I g, & is supposed to be known.
From the more general point of view, the propa-

gators A and A, can be quite arbitrary and only
the relation

P =lim P„, -P„=-Q I (p, &(q. ,
i Ecp(N)

In the region of convergence, i.e. , for sufficient-
ly large N and i E C~(N) —Cp(N —1), the influence
of the projector

&N —&N -Z—
f' ECp(iV) - Cp(N-1)

on the result should be negligible. This influence
could be roughly measured by the ratio g of the
number of functions Iy,.&, iEC~(N) —C~(N 1) to-
the number of all basis functions with the same
quantum numbers. In the case of the magic nuclei
and harmonic oscillator basis, this ratio is given
in the Appendix. It is proportional to N, there-
fore the expected convergence properties should be
quite good. This qualitative argument could be af-
firmed by the results of some computations with
an analogical approximation of the Pauli projec-
tor. '

B. Generalized GP approach

It can happen that Eq. (5) with the propagator
A, is still difficult to solve and that we want to
start with the reference equation

for the reaction matrix implies

AG =A,G, —(1 —AG)PA, G, ;
4l.e.,

(8)
G„= V —VA„G„, A„=A„' 4A, .

Let us define the operator D by the relation

A„—A, =A„DA, .

(12)

(1 A,G,) I (p,.&
= (1 —AG)P(1 —A, G, ) I y, &

for i H Cp. We can use the correlated functions

I g;& and rewrite Eq. (9) in the form

(9)

I 4& &(gz I 4 & & (10)

which is the form given by GP' ltheir Eq. (15)].
Thus, only the functions

I (,& with jaC~ are pres-
ent in Eq. (10), not being coupled with

I P, ), l HAEC~.

From (8) we can also derive the relation

Then we can proceed in an analogous way and de-
rive the necessary formulas to obtain the functions

I g, & from the previously known Ig„&. First, let us
introduce the operator 0 (wave operator) by the
relation

G, = G„—G„(A, —A„)G, ,

gives us the equation

(15)

(14)

The reference spectrum equa. tion of the type (7),

I&C
(1+Q„A„D)0, = Q„(1+A„D), (16)

jcCp

which defines the remaining functions
I g, &, l QC~

in terms of the functions
I g, &, i&CJ, .

The infinite set of Eqs. (10) should be truncated.
We define the finite subset of indices Cr(N)CC~.
such that limCP(N) = C~ for N- ~ and obtain the
correlated functions

I g, & from Eq. (10) as a linear
combination of the uncorrelated functions

I P„& by
simply inverting the matrix (y, I g„&, i,j HCP(N).
In principle, the approximated Pauli projector can
be given with arbitrary accuracy, because

which can be represented as an infinite system of
equations for the defect functions

I X) =
Ig& —Iy&,

(I + fl,A.D)
I x.;&

=
I x„& .

If we introduce the operator M by the equation

(1+A„V)M =A„

(17)

(18)

then we can eliminate the operator Q„and write
the set (17) in the form

(19)

Taking the operator MD as a perturbation, we
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finally obtain the series

(20)

(22)

Writing (22) in the form of equations for the defect
functions

I x,&&

(~+Qrq+ v) I x.;&=-vip, &, Icc, , (23)

we see that the problem has been only slightly
simplified. On the other hand, the simple form
of the reference equation

(~+T+v)lx, &=vie;& (24)

and insert it into Eq. (10). Thus, the nonzero value
of the difference (13) between A, and A, implies the
need to solve Eqs. (18) and (19) and then to use the
GP equation (10).

Let us illustrate the method in the case of the
definition (2) of the reaction matrix. We intend to
find the solution of the Bethe-Goldstone equation

I q&
=

I v &
-A(~, q) v

I q&

for the correlated function
I g&. We make the

choice

A =A(~, Q), A, = (~+ Qr Q)

which is consistent with the condition (5), so that
we can use Eqs. (10) provided that we know the
solution of the equations

[I+A(~, Q) v]l x& = -A(~, Q)vie& (26)

and multiplying it by the projector P from the left
we get the simple relation

Plx&=o (27)

Multiplying Eq. (26) by the projector Q from the
left, we get another equation,

[&+A(~, Q) v]ql x&= -A(~, Q) vl v», (28)

which is equivalent, together with the condition
(27), to Eq. (26}. Multiplying Eq. (28) from the
left by the nonsingular operator

(uP+ Q((u+ T)Q,

we get an equivalent equation

Q(&+ T+ v)'q I x& = -Qvl g&

(29)

(30)

where all the operators occur in the numerator
only. In that equation we can replace all the Pauli
projectors Q by the expression 1 —P, which yields
the desired formulation of the problem using the
projector P.

We suggest that the set of Eqs. (27) and (30) be
solved in the following way. We introduce the
function

I
X& by the relation

III. DIRECT METHOD FOR CORRELATED FUNCTIONS

A. Equations of the direct method

The aim of the present section is to solve Eq.
(21) in a more direct way than was done in the
last section. We rewrite this equation for the de-
fect function

I x& =
lg& —Iy),

corresponds to the propagator A„= (&u+T) ' in Eq.
(12), so that Eq. (19) can be used instead of (23).
The properties of the usual approximations of
Q" imply that the operator D =QTQ —T can be
treated as a perturbation and the expansion (20}
of the solution of Eq. (23) can be safely truncated.

It remains to find the operator M. The special
choice of the propagators in our case leads to the
simplification of Eq. (18) into

PI»=P(~+T+v)l x&+Pvl v& (31)

(&u+ T + V)M = 1, (25)

so that the problems of numerically solving Eqs.
(24) and (25) are closely connected. If those prob-
lems are solved by some standard technique, '
then the truncated set of Eqs. (10) with the inser-
tion of the truncated sum (20) can be used instead
of Eq. (21).

It is clear that the more accurate calculations
with the expansion (20) will be difficult because of
the presence of the Pauli projector in the defini-
tion of D. This shortcoming will be removed in the
method of the next section. and

(&+T+v)l ~&=-vlq& (34)

and combine this definition with Eq. (30) to form
the equation

(~+r+ v)lx&=-vie&+Pl».

The purpose of such an approach lies in the sim-
plicity of Eq. (32), where the sum Pl x&

ly, &(y;IX& introduces into our solution of
(32) parameters c, = (y; I X& to be determined from
the conditions (27). The parameters c; form an
inf inite set; the truncation introduced by GP can
be used again. We approximate the projector P
in the same way, P= P~ (see Sec. II), so that the
number of parameters becomes finite and equal to
the number of equations in the set (27).

We now write

I x& = l~&+ I p&,

where
I p) =Q«c a,

&
Ip;)c„c,= (y, I W&, and the func-

tions
I «& and Ip, & satisfy the equations
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((d+T +v) I p,.) =
I q), ), i e c~(N), (35) B. An example: equations with a separable potential

&V,. l ~&+ g &V', Ip, )c., =.0, jCC (N).
i CCp(N)

(36)

respectively.
Conditions (27) are now linear algebra. ic equa-

tions for the unknown coefficients c;,
I

i'= Q IZ &D 8&asl & 8=D8 (37)

We introduce into Eqs. (34)—(36) the separable
potential

Thus Eqs. (34)-(36) are equivalent to the original
Eq. (26) with the P=P„app-roximation only. The
defect function is given as a sum (33) of I««) and
the sequence of Pauli corrections

I p, )c, . The set
I p;) is neither complete nor orthogonal (see Ref.
1). These basis functions are the solutions of
Eqs. (35), which are linear equations very similar
to the SchrMinger or reference equations. The
zeroth order approximation I««) is given by Eq.
(34), which is equivalent to the usual reference
Eq. (24). Only the coefficients c; of the expansion
depend on the level N of approximation of the Pauli
projector and are given by the simple matrix in-
version in Eq. (36). The matrix elements in this
last problem are overlap integrals of the functions
I p;) with the uncorrelated functions Iy, ), j eC~(N).
The independence of the values c; on the value N
must be tested numerically by solving Eqs. (36).

Then we get from (34) the solution

I««)= —g &,Ig )E 8&g8ly),

where E 8 is a solution of a matrix equation

Q (&&.s+ Q &.g(~, l", l&', 8&) &sy=».,

and A„= («d+T) ' From . (35) we obtain

I p;)= l —g&„lg )E 8&g81 &, ly;&,
n, s

Equation (36) can then be given the form

(38)

(4o)

g (w;I&, l&,.&&.s(«~le&= p ~, &v;1&,le&-g «, l&, I&DE.s(& el&, l vi&),
n, 8 ]Gcp Cf, a

(4l)

so that the only problem is the computation of the
overlap integrals.

C. Partial wave representation of the equations

Equations (34)—(36) are written in an abstra, ct
operator form. In this section, we intend to re-
write them for partial waves. We use the relative
and center-of-mass impulses k = (k, —k, )/ &/2,

K=(k, +k, )/W2, where k, and k are impulses
of the nucleons. The operator ++T+ V in Eqs.
(34) and (35) is then diagonal in the variable K and
depends only on the K=

I KI value, which can be
treated as a parameter.

The first problem is to write explicitly the func-
tions &k, KI y;). We shall investigate here only the
case of the harmonic Pauli projector. ' Then we
can start with the definition

&k„k. I q «& =&. . , (f,)&. .«, . (~.)&k,/lk«l, k./Ik. II f«;, 1,«(~, )s«J,M;T, T„)., i .E cp (42)

=I „, „,f„,z„,~„s,, z, , M, , T, ,T„].(43)

of those functions in ky and k, variables. Here,
the A„«(k) are functions of the linear harmonic os-
cillator and the coupling of the angular momenta is
given by the schema 1, +1, =7, , 7+S =X. 8, T, and

T, denote the spin and isospin quantum numbers,
respectively. The set C~(N) of composite indices

is, in the simplest case of the He nucleus, re-
stricted by the condition' (2n««+ l««)(2n„+ f,«)=0,
while the parameter N is chosen in the usual way
as the maximum value of the energy quantum num-
ber Iz ——2n, + l, +2n2+ Q &N.

Moshinsky coefficients' M(. . . ) and 6-j sym-
bols' enable us to expand the function (42) in the
ba.sis
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(k, K
) nNlP, ) = R„((k)R~(K)(k/ [ k (, K/ (

K
) ) l, P;),

(44)
P; = [S((j)RJ;M;T;T„].

The expansion reads

(k, K
~ y, ) = Q M„~(l, P (, i)R„,(k)~(K)

(u +T)p i(k)K)

+ g f d( (' ) „',()', ()d , ,'((,, ')d) = rP,. ,'(k, (d ),
o

(49)

where

x (k/[k(, K/[K[[ f, p, ),

where the coefficients

M„„(l,P„i)= (-1)"""'[(2~+1)(2j+1)]"'

(45)
p, I (k, K) = Q R„,(k)R~(K)M„~(l, P, , i) .

Equations (36) become

X'+ P a"c, =0, f+C, (N),
&ccJ (.N)

(5o)

z l
x M~(nlXZ~ n„ l„.n „l„)

S J j
(46)

1A'„@(0, [0(0)ZJ,M, T;T„],i)

(n+',X) I'(n+%+ g+ —,') I'(2)
l2''x""+'z'(n+~2) z'('2+ z+ —,')

( n

(47)

Let us mention that the composite index P,
= [S,(j)ZJ,M;T,T„]has . the components with the
subscript i fixed by the orthogonality of the angu-
lar part of the vectors (42) and (44). The range
of the corresponding quantum numbers is re-
stricted in 'He by the triangular inequalities for
the sets (y, S, J), (l, 2, y), (J, 2, j), and (l, S,j),
where y =max(l„E, ), and by the energy conserva-
tion Iz 2X+1', +2n+ l=2—-n, + l, +2n, + l in the Mo-
shinsky brackets. Symmetry properties of the
Moshinsky brackets' imply that it is sufficient
to investigate y = l„because the y = f, case differs
only by the factor (-1)'.

Now, Eqs. (34) and (35) can be written for par-
tial waves in the form

((u + T)z,s(k, K)

can be easily tabulated.
In simple cases, it is advantageous to derive the

explicit expressions for M„z(l, P„i) using the
Trlifaj formula' for Moshinsky coefficients; e.g. ,
in the '8, case we have

where

A = dKK' d 'yf, , K g, , K

and

B '= dKK d '(p~, ,K p]) $,K
0 igi

The quantum numbers M; and T„do not influence
the computed coefficients c; and can therefore
be omitted. The orthogonality of products ((I()&~ y;)
with respect to the quantum numbers T„J,, and

S,. implies the diagonal form of Eqs. (50) in those
quantum numbers, which simplifies the problem
considerably. Thus it is sufficient to substitute
in 'He a new composite index i = [I,y] for the pre-
vious one, Eq. (43). The numbers 0 ~1&N and
0 ~y ~I are defined as I= 2n, + l, and y = l, . The
remaining components of the index (43) are fixed
in the coupled subset of Eqs. (50) and can be varied
independently. Thus, the number of algebraic
equations (50) to be solved simultaneously is equal,
for 'He, to I([N/2]+1}f[(%+1)/2]+1},where [x] de-
notes the integer part of a real number x.

Let us consider the cutoff N= 7 which provides
20 functions

~ y&), i &CJ,(N) and is considered in
GP' to be a reasonable approximation. The error
estimate introduced in the Appendix is equal to
g(1, 7) =0.2 in this case and seems to overestimate
the actual error. Nevertheless, if we use this es-
timate together with the condition &(1,N) &0.05
then we must choose N=19. Even this cutoff pro-
duces the 110x110matrix I3~' in (50), which can
be inverted quite easily on the computer.

+ P J d((*)",, ()', ()(~,'(()d) ~ d'(()d)( O, , , =

s'
D. An example: equations with a local potential

Because the Fourier transform of R„,(k) is pro-
portional to R„,(r), the relative coordinate r can
be used instead of the relative impulse k without
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substantially changing the form (47) of the right-
hand side functions y, , (k, K)- y8, (r, K). The pres-
ence of the 5 function in the local potential opera-
tor enables us to transform the integral equations
(34) and (35) into the differential ones, namely

(+ + T)z,"(r,K) + g V„,(r) z, (r, K)

= —Q V~, (r)rp,~,(r, K) (51)

and

(~+ T)p, ,'(r, K) + g V, ,' (r)p, ,'(r, K) = y, ', (r, K. ) .

gonal) energy denominator &@+@TED

(iii) The possibility of approximation of the
Pauli projector with any degree of accuracy (at
least in principle) makes the method useful for
testing the usual Pauli projector approximations'
which are motivated in a very intuitive way (e.g. ,
diagonal approximation of the matrix Q in center-
of-mass quantum numbers).

(iv) There is an exciting possibility of reaching,
in numerical calculations, the region of stability
of the results when changing the cutoff parameter
N-N+1, etc. This would mean that the results
correspond to the exact Pauli projector (11).

(52)

The methods of solving these equations are stan-
dard. ' The form of Eq. (50) does not change, be-
cause the integration variable $ can be interpreted
as a coordinate r.

APPENDIX

We can write

+N +N- j.
i&Cp(N) - C~(N-1)

IV. CONCLUSIONS
iGC p(N™) CU (8 &)

(A1)

The proper treatment of the Pauli exclusion prin-
ciple in the Brueckner theory of finite nuclei is
accompanied by considerable numerical difficul-
ties. The Goldhammer-Pintar approach' simpli-
fies the correlated wave function problem in the
case of the energy denominator &+B,which is
diagonal in the single particle basis. The first
method suggested in this paper generalizes the GP
approach for the more general. . propagators and
treats the diff erence of the energy denominato rs
as a perturbation. Therefore, this method is ade-
quate for the approximate calculations and com-
plements the original GP method.

Second is a direct method of solving the Bethe-
Goldstone equation for the correlated function with
an exact (harmonic) Pauli projector and the energy
denominator &u+QTQ In the prac. tical calculations,
the infinite harmonic oscillator basis must be
truncated by means of the energy cutoff N. This is
the only approximation used. Some a priori argu-
ments can be given in favor of the second method
even before it has been numerically tested.

(i) The formal analogy exists between GP and
our method, so that the applicability range of both
the methods will probably be the same.

(ii) The main advantage of the correlated func-
tion calculations lies in the decoupling of the equa-
tions. Inthe GP equations only hole-hole and hole-
particle correlated wave functions are coupled
[cf., e.g. , Eq. (10) in Sec. IIB]. In our equations
there is no coupling of correlated functions at all.
This direct approach —without recourse to the
reference spectrum method —gives about the same
number of equations as GP, though we solve a
problem with the much more complicated (nondia-

where
~ y,.) are the functions (42), C~(N) is the set

of indices (43), and C~(N) is its subset defined by
the restriction'

2n, + l, & F or 2n, + l, & F. (A2)

In the case of magic nuclei 'He, "0, and "Ca, the
number F is equal to 1, 2, and 3, respectively.
The parameter q, is equal to 1 or 0.

Let us denote by n(N) the number of all possible
functions A„...(k, )R„, (k, ) for which 2n, + l, +2n,
+ I, =N and by n(E, N) the number of the same func-
tions with the restriction (A2). It is easy to derive
the explicit form of these numbers. We have

n(1, N) =2[—,'(N+2)], n(2, N) =2N+2,

n(3, N) =4[—,'N]+ 2N+ 2

for N&2(F —1) and

n(2M) = (M+ 1)(M+2)(2M+3),

n(2M+1) =-,'(M+1)(M+2)(M+3) .
(A4)

P(I, N) =
(M+2)(2M+3) '

12(2M+1)
(M+1)(1lf+2)(2M+3) '

12(4M + 1)
(M +1)(M+ 2)(2M+ 3)

for N =2M &2F —1 and

(A5)

According to (Al) and (42), the ratio g(F, N)
=n(F, N)/n(N) is equal to the ratio of the number
of nonzero values q(~ to the number of all paramet-
ers q;"~ at given N From (A.3) and (A4) we get
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6
(M+2)(M+3) '

12
(M+2)(M+ 3) '

12(2M+1)
(M + 1)(M + 2) (M + 3)

(A6)

for N =2M+1&2(E—1). For N c2E —1 we have

g(F, N) = l.
It is clear that the closer the value g approaches

zero, the less influence the operator (Al) exhibits
in the corresponding vector space. The value g

can be used as an error estimate in the approxi-
mation Q= 1 —PN of the Pauli projector.
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