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Dynamical modifications of the pion-nucleus optical potential due to binding effects on the
target nucleons are calculated for pions of energies in the range 120-600 MeV. Calculations
are performed using an independent particle model for the nucl. eus; however, a prescription
for incorporation of the Pauli principle is given and its effects are studied. Resulting correc-
tions to the potential are of the order of 50-100% near the (3, 3) resonance and fal. l to negligi-
ble values at energies less than 120 MeV and greater than 450 MeV. Our correction is such
as to increase the nuclear opacity. Pion-nucleus total cross sections and angular distribu-
tions are modified by binding effects by 10-20%. Comparison with r- 2C total cross section
data shows that our theory reproduces well the energy dependence of the correction required
to reconcile theory and experiment, and produces about 50% of the necessary increase in the
magnitude of the theoretical cross section.

NUCLEAR REACTIONS ~2C(m', m); calculated a'z|,'E), E = 120-600 MeV; binding
corrections.

I. INTRODUCTION

Over the past few years, very accurate total
cross section and elastic scattering measurements
for the interaction of intermediate energy pions
with complex nuclei have been made. ' ' These
data provide the best testing ground available for
our understanding of the physics underlying the
construct known as the "optical potential, " in
terms of which such reactions are generally de-
scribed. Such an understanding is essential if
particle-nucleus reactions are to provide us with
otherwise unattainable information about either
nuclear structure' or the interactions with nucle-
ons of short-lived hadronic systems s, io

The construction of the optical potential has re-
ceived an enormous amount of theoretical atten-
tion. " The ancient impulse approximation, "'~ in
which the nucleons on which the beam particle
scatters are treated as free particles, is a basic
ingredient of almost all such calculations. The
purpose of this paper will be to examine the "bind-
ing corrections" to the optical potential which
arise when this approximation is not made. It is
intuitively obvious that for a beam particle (say a
pion) of energy large compared with nuclear bind-
ing energies, the place where the impulse approx-
imation is most likely to break down is at a pion-
nucleon resonance, where the relatively long mN

interaction time enhances the probability of inter-
action of the mN system with the surrounding nu-
clear medium. In fact, it has been known for a
long time that the impulse approximation for 7t-

nucleus scattering at energies near the (3, 3) reso-

nance cannot a Priori be justified. " Quantitative
studies of the problem have been restricted al-
most entirely to the least complicated ease of a
deuterium target. "" Of the two calculations
done in the resonance region, Julius' finds a cor-
rection to the elastic wd cross section of up to 40%
at backward angles, and Myhrer and Koltun" ob-
tain a correction to the md P-wave amPlitude of
14% near the (3, 3) resonance.

For heavier nuclei, the problem of binding cor-
rections has been examined recently by Rdvai22

who constructs an alternative formalism to that
of Goldberger and Watson, "but no results are
taken past the formal stage. Attempts at inclusion
of binding effects appear also in the work of
Schmit" and Kujawski and Aitkin. " Here the in-
fluence of a potential binding the target nucleon is
simu}ated by shifting (by a constant amount) the
energy argument of mN scattering operator rela-
tion to the value for two free particles. This is
the '*quasiclassical" approximation in which bind-
ing effects reduce to a replacement of the wN ener-
gy E by F. —U, where U is the binding potential of
the target nucleon treated as constant. It is diffi-
cult to assess the goodness of this approximation,
especially for light nuclei. We observe, however,
that, as will be discussed below, the largest ef-
fects due to binding corrections are expected to
occur on the high energy tail of the (3, 3) reso-
nance. As can be seen in Fig. 1, this is just where
the agreement of experiment with various theories
uncorrected for binding effects is noticeably poor.
One argument against the use of the classical ap-
proximation is that binding corrections added in
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this way can only zvorseu this agreement. We
shall examine this point more closely in Sec. III.
Outside the framework of the classical approx-
imation, the present calculations represent the
first quantitative evaluation of binding corrections
to the intermediate energy optical potential. '~

We shall see below that modifications of the op-
tical potential due to interactions of the target nu-
cleons are of the order of 50-100% near the (3, 3)
resonance and tend to increase the nuclear opacity.
However, since the theory uncorrected for binding
effects already predicts a very black nucleus at
the resonance, the final effect of binding correc-
tions on m-nuclear cross sections is reduced to
15-20%. It is highly instructive to examine this
point more closely with the help of an extremely
simple picture of m-nucleus scattering. Here we
take the simplest conceivable optical potential,
given by the product of the forward mg amplitude
and the nuclear density (see Sec. II). We then ne-
glect the real part of the m~amplitude, take the
nucleus to be a uniform sphere of radius A and
solve the Klein-Gordon equation in the eikonal ap-
proximation. " The total mA cross section then
takes the very simple form

2 2g" 1
o =2pFil 1-—+ — — 1+—A 2

where x =3Ao, „/4mB' and o,„is the isospin aver-
aged wN total cross section. We can now easily
evaluate the sensitivity of the mA cross section to
the two parameters A and a,„, say, do„„/dB' and
dv, „/do„„, respectively. These two quantities,
respectively, will indicate where one might expect
the greatest sensitivity to (i) nuclear structure
and (ii) dynamical modifications of the optical po-

tential in a more realistic description of the prob-
lem. The two quantities dv, „/dA' and do'„„/do, „
are shown in Fig. 2 as functions of pion kinetic en-
ergy. For orientation purposes, the averaged
cross section —,'(&x„~+o, ~) is plotted as well. We
see that sensitivity to A' (nuclear structure effects)
is maximal at the resonance peak, but that sensi-
tivity to o,„(changes in the optical potential) is
minimal at the resonance peak. In fact, doubling
the mN cross section increases v, A by less than
10% at the resonance energy. Thus if one wants
to test one's dynamical theory of the optical poten-
tial, the peak of the resonance is the seoxsf; place
to look.

Now, whereas the uncorrected optical potential
is linear in the mN scattering amplitude, our bind-
ing correction will be quadratic in this quantity.
Figure 2 then shows that if we contemplate moving
in energy from the (3, 3) resonance upward, the
point at which binding effects will be biggest will
be determined by a compromise as the size of the
effect decreases, but sensitivity to changes in the
optical potential as a whole increases.

We thus expect binding effects to be minimal at
the resonance position, to increase to a maximum
somewhere beyond the right hand wing, and to fall
to zero at high energies. This is indeed what we
shall find. What is far more interesting is that
the discrepancy between the measured mA total
cross sections and all of the theories compiled by
Clough et al. ' to describe them show the same en-
ergy dependence. This is clearly seen in Fig. 1,
which we have reproduced from Ref. 7. It is diffi-
cult to see how this energy dependence could be
produced by some purely structural effect, such
as nucleon-nucleon correlations. "Off-shell effects"
in the lowest order theory could be a viable alter-
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FIG. 1. Comparison of measured charge averaged
pion-carbon total cross sections as a function of energy
with those calculated using the following: —--, Laplacian
model; ——,Kisslinger model; and ' ~ ~, simple density
proportional model. (from Ref. 7).

FIG. 2. The "sensitivity" functions do'~&/dR (solid
curve) and do„z/do'„N (dash-dot-curve) in arbitrary
units as functions of pion kinetic energy. The dashed
curve is the average total. cross section 2(o'~&+o'«).
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native source of the discrepancy. These have,
however, been convincingly shown to be small; in
particular, they appear to affect the m-' C total
cross sections above the resonance by only about
4% at most, "whereas the discrepancy mentioned
above is 10-20%. I/A effects are excluded at the
outset by the data. '

The se observations encourage the view that bind-
ing corrections to the optical potential are, in
fact, a relevant object of study. We turn in Sec. II
to our evaluation of these effects. Our results
and conclusions are contained in Sec. III.

II. OPTICAL POTENTIAL

We shall construct a theory in which the optical
potential reduces in the limit of zero binding cor-
rection to simply the product of the free mN ampli-
tude and the nuclear single particle density distri-
bution [see Eq. (8) below]. We refer to this ancient
result as the "lowest order theory. " It is well
known that gradient and Laplacian terms repre-
sent important modifications of this theory at the
(3, 3) resonance energy. However, for pion kinetic
energies above 200 MeV, we see from Fig. 1 that
these modifications are small compared with the

discrepancy between the lowest order theory and
experiment. In this region we expect binding cor-
rections to provide the dominant correction to the
lowest order theory, and shall. neglect gradient
and Laplacian terms.

where I k, 0& represents the ground state of the
target nucleus and a noninteracting projectile of
momentum k. V' is the scattering operator for
the pion with the zth target nucleon, in which the
latter is treated as a free particle. For the reac-
tion w(k) +N~(p)- v(k') +N„(p'), we have

&
k', p'

I
v'

I k, p &
= 5'(p' +k' - p —k)

x&k, p (2)

A. Lowest order theory

We wish to construct an optical potential V,
' for

the interaction of a projectile, which we take for
definiteness to be a pion, with a target nucleus.
Here q is the incoming pion momentum. We con-
sider first the quantity

&k'I I'&,"I» =- g &k'~f1 I
V'. Ik, fl&,

and the normalization condition

dg = (2m)' —— I) d'k'd'p'5(e, (k') + e„(p') —e „(k) —e „(p)) 5"'(k' +p' —k - p) I &
k', p'

I
T„Ik, p ) I

',
e, (k) e„(P) J

where e;(P) = (P'+m, ')'@.
We treat the nucleus in an independent particle

model, in which case Eq. (1) reads

&k &~' I~&= p] d &&k &+5 & 'I~ I'&, P)-'. ,

x &p„(k+p —k')&p (p), (4)

where &p„ is the momentum space wave function of
the nth nucleon. We neglect the "Fermi motion"
in the matrix element by setting p =0 there, and

assume that the matrix element is slowly varying
in Ik —k'I compared with &P

("large nucleus ap-
proximation") so that Eq. (4) reduces to

(k'
I l«,"Ik) = Q &k, 0I T.lk, 0&F.(k- k'),

where E is the single particle form factor.
Transforming to coordinate space and writing F
as the Fourier transform of the single particle

probability distribution n give s

&r'I l"',"Ir&=(2v) ' Q J~d'k'd'kd'r" &k, oIT. Ik, 0&~„(r")e'""'e '"'e"" ""'".

In the high energy approximation we assume
that the optical potential is small compared with
the asymptotic pion energy. In this case the pion
momentum is modified only slightly from its as-
ymptotic value a,s the pion traverses the nuclear
medium, and we replace &k, QIT Ik, 0) by

& q, 0
I T

I q, 0& in Eq. (6), giving

&
r'

I
v&,"Ir) =5&3'(r —r')(2m)'

x p &q, OIT„Iq, 0&n (r).

We define V&0'(r) as the coefficient of the 5 function
in Eq. (t). If we average the forward scattering
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B. Binding corrections

IT cf

FIG. 3. Binding correction to the ~N amplitude used
in constructing the optical potential. The double line
represents the inert source of the binding potential for
the struck nucleon.

We wish now to modify the result (8) so as to in-
clude the effects of binding of the target nucleons.
To do this we consider a struck nucleon ~ as in-
teracting with an inert core via a potential V .
The relationship between the operator g for scat-
tering from a bound nucleon a and W is"

t. = r. + x„(z-z, +iq)-'

xU~(E-Ka- U„+iq) 't~,

1'.")(~)= (2v)' &q, o
I & I q, »P(~), (8)

where p(r) is the nuclear density distribution nor
malized to A, the target nucleon number.

amplitude over the isospin of the target nucleons,
and approximate n by an effective distribution
A 'p(r} independent of o., we arrive at the standard
expression"

where E is the energy of the mN system and E, is
the Hamiltonian for a free pion and a free nucleon.
For a pion of incident momentum q we have E
= e, (q) +M„-8, where 8 is the binding energy of
the nucleon. We replace 1 by the first iteration
of Eq. (9}in calculating the optical potential from
Eq. (1), giving a result which includes to second
order in the mÃ amplitudes corrections due to nu-

cleon binding:

(r')t;)r)=tt"'(r-r')tern(r)+, g g f e (eq, q;'m)t„]q', q —q';m')ee„)„(q';r, )F
a m, m'

x&qe, q-q';m" [T„(q,0;m).

The quantum numbers m, m', m' in Eq. (10) are nucleon spin projections. This result includes an average
over spin orientations m of the struck nucleon, and the mN amplitudes have again been treated in the high
energy approximation with Fermi motion neglected (see Sec. IIA). The quantity F is given by

E'~r' „e(q'; r, r') = Jtd~kd'f('e'" ' e '"'
Jl d Pd P'(t)~(p'+k'- q')[E — e(q') —e„(P') +i@] '

x&p' m'
l ~..[E-e, (e'}]lp~ m"& [E—~.(e') —e&(p) +in] '0.(p+k- q').

Here we have used the equality

1
"E—e~((f'}—K~ —U~ +iq

1-r„,[z-~,(q }]

where K is the kinetic energy operator for the
ath nucleon, and V', is the full scattering opera-
tor for the 0.th nucleon against the "inert" core."

Our binding correction to the free mN amplitude
used in constructing the optical potential is shown
pictorially in Fig. 3.

C. Approximation scheme

To proceed with the evaluation of Eqs. (10) and
(11) we note first that the k and k' integrations in
Eq. (11) simply transform the nucleon wave func-
tions to coordinate space. We then replace the en-
ergy denominators in Eq. (11) by their 6 function

parts and obtain

F' ' (t]', r, r') =-ee'p e„'(tqt) (r')t)„(rle'e'" "fdtt ctree 'r ''(p'm' e'„,[Z)—e, (e')]) ,, tt)m'ete

(12)
where P and P' satisfy the energy conservation condition

(13)



To perform the angular integrations in Eq. (12), we introduce a partial wave expansion of the nucle-
on-core scattering amplitude" (the latter is treated as spinless):

(p', rn'I v', Ipjm")= Q Y(!'(n,,)F! ((Q,)((fjm'(j'2)m'IA(, Il, m! j-,'jm")T'!",'(I, m'(j-,'jm'IA,
I
fjm„-'„m") T'! ') j

(14)

$+1+g ~ L
'+ 21+1 (15a)

l'-o ~ I
A 23+ 1 (15b)

T',"' = — exp(H', "') sin5', "'.1

)!pe,(p) (15c)

Insertion of Eq. (14) into Eq. (12) gives

F'~,' „(q'; r, r') =-(2!!)'p'e„'(p)g (r')(1)„(r)e'

x Q j,(pr')j, (pr)Y! ((Q„)Y) ( (0„)
rl o ml, ml

xf(ljm,'; —,', m' IA, , I
fjm„' 2, m")T',"„'+(Ijm!,'-';, m'I A, fljm„' 2, m")T', '}. (16)

Here g„(r) is the coordinate space wave function
of the nth nucleon.

To render the theory tractable, we first take the
usual local approximation to the quantity I' in
Eq. (16):

Further, we replace F(q', r) by its average over
orientations of r and (!) (r) by a spherically sym-
metric effective single particle wave function g(r)
= [p(r )/A] "', independent of n If we. then write
the optical. potential (10) as

X(q'; r, ')-d(q'r) = f dr, 'd(q';r, P).
our local, spherically symmetric binding correc-

tion V,'"(r) takes the form

q,'"(r) =-(qx)'q(r) Q Q f d q (q O;m(q''. '(q', q —q';m'&(q', q —q';m"
(
j'. (q, O;m&j*x„'(O)

o.' m, m

x P j, ( jm)j, ( qr) j((&,.)r, (O, ) I
x dxj, (jix)j, (q''x)q(x))

l, . ml, ml'

x[&l, m! j ~2 m'
I A„ I L, m„'-,', m")T'), '(p)+&f, m'„'-,', m'I A, I I, m» —,', m")T', (p)]. (19)

Finally, we restrict ourselves to an on shell
theory in which the magnitude q' of the interme-
diate pion momentum is replaced in the mN 7 ma-
trices by its on shell value q& determined by q and
the scattering angle cos )(q q').

We note that the amplitude (q, 0; m I T„I
q', q —q'; m ')

appearing in Eq. (19) can be expressed as a. labora. —

tory frame amplitude by the application of parity
and time reversal invariance:

( q, 0; m
I
T„I

q', q —q'; m')

=(-I)"™(q', q- q';-m'
I T„Iq, 0; -m) .

To perform the spin algebra, we introduce the
decomposition

( q', q —q'; rn"
I T„Iq, 0; m) = Nx (f~ +ig n o „)x

(21)

where X represents the Pauli spinor for spin pro-
jection m, and n is a unit vector in a direction
normal to the scattering plane. We normalize f
and g such that the laboratory frame cross section
summed and averaged over polarizations is
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The kinematical factor N in Eq. (21) is then given
by

where p =cos(q q') and 6 =(q'+q&' —2qq&p)'~'.
Insertion of the decomposition (21) for the wN

amplitudes into Eq. (19) permits the integration
over azimuthal angles P describing the orientation
of q' to be performed trivially. We obtain the

result
1 OO

V,'"(r) =-(2v)'p(r) g ~t dye'(q, g)[f '(q, p)+g '(q, p)] q"dq'p'e„'(p) gj, (pr)j, (q'r)
-l 0 l

x x'dxj, (px)j, (q'x)g(x)) [(1+1)7.', '(P) + fr', '(P)~].
0

(24)

The term f ' in Eq. (24) corresponds to no spin
flip of the struck nucleon in either of the gN inter-
actions of Fig. 3, whereas the g' term corresponds
to a double spin-flip.

D. Effects of the Pauli principle

We have attempted to delineate the effects of the
Pauli principle by calculating in two extreme cas-
es. In the first, Eq. (24) is used as it stands, with

all effects of antisymmetrization ignored. In the
second, we remove "by hand" from Eq. (24) those
spin flip and charge exchange terms associated
with the external lines which would lead after the
first scattering of Fig. 3 to a double occupancy of
shell model states. For this procedure we view
the target nucleons z as being in the ground state
shell model configuration prior to interaction with
the incident pion, even though our earlier approx-
imation P (r)- [p(r)/A]'" deprived our descrip-
tion of the nucleus of all such structure. The quan-
tum numbers of the struck nucleon following the
first mN collision of Fig. 2 are partially dictated
by the various elements of Eq. (24). For the term
in Eq. (24) proportional to f„'7'I ', for example,
the quantum numbers of the nucleon following the
first collision of Fig. 2 are orbital angular momen-
tum l, total angular momentum j =l- ~, and spin
projection unchanged from its value prior to colli-
sion. We now proceed to block the Pauli forbidden
transitions under the assumption that the PxinciPal
quantum number of the shell model wave function
for the struck nucleon is unchanged by the first
collision of Fig. 3; the effects of the Pauli princi-
ple are thereby overestimated. As we shall see
below, this approximate inclusion of the Pauli
principle affects a sizable reduction in the magni-
tude of V"," but introduces little change in the scat-
tering amplitudes calculated from the optical po-
tential. Consequently, our approximate treatment
at least as far as it concerns the binding correc-
tion should be entirely adequate.

III. RESULTS AND CONCLUSIONS

We have evaluated Eq. (24) numerically for a "C
nucleus and a variety of pion energies. Here we

simply approximate the nucleus by a uniform
sphere of radius A. The sN amplitudes f and g
were constructed from the CERN phase shifts ';
both elastic scattering and double charge exchange
were taken into account.

We have calculated the nucleon-"core" scatter-
ing amplitudes T,, using a square-well isoscalar
optical potential U(r) including spin-orbit interac-
tion:

(25)

with" U, = (0.098 +0.019i) QeV' —0.3P' and U
= -0.62. Here P is the nucleon momentum. This
parametrization represents an average of neutron
and proton potentials. The small imaginary com-
ponent allows for the probability of virtual dissoci-
ation of the nuclear "core" in Fig. 3, otherwise
the parameters here are in essential agreement
with those of the effective independent particle po-
tential used in the calculation of bound state prop-
erties. "

Our numerical results for the m-"C optical po-
tential are shown in Figs. 4 and 5. A value of 3.0
fm was used for the nuclear radius B. We see in

Fig. 4 thai below the resonance the imaginary part
of the binding correction is small compared with
the unembellished lowest order theory P,'", that
it rises to the level of about 50/~ at the resonance
peak, and has fallen to insignificance for a pion
kinetic energy of 450 MeV. For all energies ex-
cept the very lowest, the effect is to make the nu-
cleus mo~e absorptive. The real part of the bind-
ing correction in Fig. 5 shows a similar energy
dependence, but modifies the real part of V'," by
up to about 100/q within the resonance peak. Since
the latter is only a small correction to the imag-
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inary part of V', ' in this energy region, this result
is significant only as far as concerns the very
sensitive diffraction minimum in the m-nucleus
differential cross section.

We see in both Figs. 4 and 5 that the Pauli prin-
ciple is very effective in suppressing the scatter-
ing of a nucleon which is initially deep in the nu-

clear interior, while the effect becomes negligible
for nucleons which are highly peripheral. This is
just what one would in fact expect in a more real-
istic A.-body picture of the nucleus with a relative-
ly dense central region and a less densely populat-
ed skin. In our simplified scheme the mechanism
responsible can be seen directly from Eq. (24):
Our treatment of the Pauli principle partially sup-
presses those low partial waves in nucleon-"core"
scattering corresponding to occupied l levels in
the shell model configuration. The behavior for
small arguments of the Bessel functions in Eq. (24)
implies that for small x, these low partial waves
are the only ones of importance, whereas in the
nuclear periphery the low E values suppressed by
the Pauli principle make only a small contribution

relative to those which remain unaffected. If we

contemplate increasing the nucleon number A, the
Pauli principle will partially suppress an increas-
ing number of partial waves in Eq. (24). This is
just as it should be, for the following reason. The
low energy nucleon-nucleus optical potential is es-
sentially A-independent, reflecting the saturation
of nuclear forces; if the Pauli principle were not
to play an increasingly important role in our theory
with increasing A. , then the size of our binding cor-
rection to the optical potential would certainly
grow with A, in contradiction to this very satura-
tion property.

To calculate a m-nuclear scattering amplitude,
the Klein-Gordon (KG) equation must be solved
with the potential V, given by Eqs. (18}, (8}, and

(24}. In order to see approximately to what extent
our results can reconcile theory and experiment,
we have contented ourselves with a solution to the
KG equation in the eikonal approximation which,
as we shaB see, is completely adequate for our
purposes. The m-nuclear scattering amplitude cor-
responding to momentum transfer 2 is, in this ap-
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FIG. 4. Pion- C optical potential (imaginary part) as
function of x/R. Horizontal line is the value for the
theory without binding correction of a uniform spherical
nucleus. Dashed curve: binding correction with Pauli
priciple ignored. Solid curve: binding correction with
Pauli principle included. Potentials are for pion kinetic
energies of (a) 120 MeV, (b) 165 MeV, (c) 194 MeV,
(d) 220 MeV, (e) 310, and (f) 450 MeV.

FIG. 5. Pion- C optical potential (real. part) as a
function of r/R. Horizontal line is the value for the
theory without binding correction for a uniform spheri-
cal nucleus. Dashed curve: binding correction with
Pauli principle ignored. Solid curve: binding correction
with Pauli principle included. Potentials are for pion
kinetic energies of (I) 120 MeV, {II) 165 MeV, /II) 194
MeV, IV) 220 MeV, (V) 310 MeV, and (VI) 450 MeV.
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pr oximation

F,(b) =iq ' bdb Jo(bh)
~
1-exp -i ' dz V, [(b'+z2)'~~]

Jp
(26)

V&0) r)—
2e„(q)[e,(q) —ez +b+iI'/2] '.

where

I'rp(r}
2g

(27)

(28)

Here e~ and I' are the position and width of the

(8, 8) resonance in mN scattering and o is the aver-
age of mP and mn total cross sections at the reso-
nance peak. We use numerical values"" 0 = 137
mb, e„=330.5 MeV, and I' =114 MeV. The poten-
tial (27) has its peak shifted downward by about 50
MeV relative to the resonance peak in mV scatter-
ing.

We turn now to a comparison with the experi-
mental n-"C total cross sections. We denote by

o, the total cross section calculated from Eq. (26)
wherein V, is replaced by V,'', i.e., Op is the re-
sult of the theory without binding corrections. The
corresponding quantity using the full optical poten-
tial will be denoted by 0. A further quantity of
interest is the mA cross section calculated by
Clough et aLT with the lowest order theory [Eq. (8)].
Here the KQ equation has been solved without the
eikonal approximation" and with a more realistic
nuclear density distribution than the uniform one
which we have chosen. Let us call this third theo-
retical cross section 0, .

In order to minimize the errors in our calculated
cross sections vp and 0 arising from the use of the
eikonal approximation and from our very approx-
imate description of the nuclear shape, we have
compared the ratio (cr/oo) with the quantity o,„ /o„
where o,„~ is the experimental cross section. This
procedure has the additional feature of demonstrat-
ing very clearly the energy dependence of the dif-
ference between lowest order theory and experi-
ment. In Fig. 6 we plot the quantity b,o,„—= (o,„~/o,}
—1 as data points and the quantity (o/o, ) —1 calcu-

For pion kinetic energie s above 220 Me V we
have used the form (8} as it stands for the uncor-
rected optical potential P,"', with the forward lab-
oratory frame amplitude calculated directly from
phase shifts. " For lower energies, we have in-
cluded the modification due to Ericson and Hufner":
f, (0) -fz(0) where K is the (complex) momentum
of the pion Mithin the nuclear medium. The for-
ward s& amplitude (both on and off shell) is then
given a resonance form, with the resulting lowest
order optical potential":

0&o I 0-

x Clough et ai.
Wilkin et ai.

a Crozon et ai.

E
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b
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FIG. 6. Data points: deviation of experimental m-~2C

total cross sections from calculations of Clough et al.
(Hef. 7), using the uncorrected optical potential Eq. (8).
Dashed curve: increase in total cross section due to
binding corrections as calculated in our theory (Pauli
principle ignored). Sol.id curve: increase in total cross
section due to binding corrections as calculated in our
theory (Pauli principl. e incorporated) . Data are from
Hefs. 5, 7, and 33.

lated using our theory. For purposes of orienta-
tion, the m-~C total cross section, obtained by
drawing a smooth curve through the data of Clough
et a/. ,' is also shown.

We note first that the effects of the Pauli princi-
ple are very small; even above the resonance, the
zero momentum transfer amplitude clearly re-
mains most sensitive to the optical potential at the
nuclear surface. We observe next that our correc-
tion has the right sign, and, what is much more
encouraging, reproduces quite well the energy de-
pendence of the correction required by the data.
It should be emphasized that it appears difficult to
modify the lowest order theory in some way other
than we have done, and still produce a correction
with the right energy dependence. Both the data
and our theory clearly show the compromise men-
tioned in the Introduction between (i) a modifica-
tion of the optical potential which increases in

magnitude with increasing strength of the pN in-
teraction, and (ii) a sensitivity to changes in the
optical potential which decreases with increasing
mN interaction strength. The result is a shift of
the maximal effect from the resonance peak to
considerably higher energies: the peak effect in
Fig. 5 is at T, =310 MeV. There is no reason for
purely structural effects, such as deviations from
the independent particle model of the nucleus, to
exhibit such an energy dependence. Finally, as
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discussed in the Introduction, "off-shell effects"
in the lowest order theory [the use of the vN T ma-
trix as it stands in Eq. (6)] are simply too small
to matter. "

Our theory reproduces on the average only about
50% of the required correction to the data. There
are, of course, a number of possible sources of
this discrepancy. First, we have neglected all off-
shell effects in the propagation of the system be-
tween wN scatterings (see Fig. 3). There is no
particular reason for these to be negligible at the
energies in question. Second, we have used only
the first iteration of Eq. (9). That is, we have ne-
glected generalizations of the process shown in
Fig. 3 which would involve three and more mN in-
teractions. Of these two effects we expect the
first to be the more important. In view of the en-
couraging results of Fig. 6 a calculation of these
off-shell contributions would be a worthwhile under-
taking. Such a calculation could be made feasible
by the use of a separable mN interaction, ""an
approximation which should be fairly good near the
(3, 3) resonance. Finally, it is clear that in Fig. 3
other intermediate states than mÃ could play a role;
pN and KZ would be reasonable candidates. In fact,
SU(3) predicts equal coupling constants (to within
a sign) for b, wN and n~Z. 34 Needless to say, the
question of the size of the contribution made by
such inelastic intermediate states is intimately
connected with that of off-shell propagation, since
in the on shell approximation made here, the in-
elastic intermediate states are forbidden energet-

icallyy

from contributing at all.
W'e return now to the treatmentxx, es of binding

effects in the "classical approximation"" men-
tioned in Sec. L Here the sole effect of the binding
potential is taken to be a shift E- F,' in the energy
parameter of the mN scattering operator entering

in the construction of the optical potential. The
magnitude of the shift seems to be about 20 MeV,
but is difficult to estimate accurately. " %e note,
however, that the sign of the shift is trivially de-
termined: If the classical approximation were cor-
rect, the result would be F.' =F —U where U is the
constant binding potential. Since U binds the nu-
cleon we must have Z'&F.. Hence on the high ener-
gy wing of the (3, 3) resonance, where the mN am-
plitude is falling in magnitude, binding corrections
in the classical approximation can only seduce the
nuclear opacity and thus zvoxsen the agreement be-
tween theory and experiment (see Fig. 1). This
effect is clearly seen in Fig. 7, where we plot the
quantity oo(E+e)/oo(E) —1 as a function of energy.
As before, vo is the total cross section calculated

1Q

dd
dA

(mb)

1Q'—

1Q'—

('Ie)

12-

8-

-12-

I

100
I

200
I I

300 400
(Mev)

I

500

FlG. 7. The quantity 0'0(E +e)/o'0(E)-1 as a function
of energy E for different values of the "classical bind-
ing" shift c: (a) e = 20 MeV, (b) e =40 MeV, and (c)
c =60 MeV.

1Q 2Q 3Q 40. , 5Q 6Q 7Q

ei b (d8g)

FIG, 8. Angular distribution for 7t-~2C elastic scatter-
ing at 260 MeV. Dashed curve: calculation with optical
potential uncorrected for binding effects. Solid curve:
calculations with corrected optical potential (Pauli
principle incorporated). Experimental points are from
Ref. 1; open rectangles are computed from the data
of Ref. 2 as described in the text.
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from Eq. (26) with Vq replaced by the lowest order
theory Vq. The quantity c is the "classical bind-
ing" shift of the wN energy; we treat it as a free
parameter. For all positive values of e, we see
that the treatment of binding corrections in the
classical approximation seduce the theoretical
cross section on the right hand wing of the (2, 8)
resonance. Comparison with Fig. 1 shows that
such a treatment is unsatisfactory.

We turn finally to the angular distributions for
m-~C elastic scattering. Because we have ignored
all the finer features of the nuclear shape, agree-
ment between our theory and experiment must at
best be restricted to the diffraction peak. In Fig. 8
we show the m-"C angular distribution at 260 MeV
measured by Binon et; al. , ' as well as the eikonal
solutions of the KG equation using both the uncor-
rected optical potential [Eq. (8)] and our improved
version tEqs. (18) and (24)]. The radius of the ~C
nucleus was taken for these calculations to be 3.2
fm, which is the equivalent charge radius. " The
two open rectangles at extreme forward angles do
not represent real data points, but rather the fit
to the "pure nuclear" amplitude made in the Cou-
lomb-interference experiment of Ref. 2. The bind-
ing correction to the optical potential affects an
increase in the differential cross section of about
20% throughout the diffraction peak. Very near the
forward direction, our modification of the lowest
order optical potential represents a clear improve-
ment. At wider angles, the data fall slightly below

both curves, which probably reflects nothing more
than the limitations of the eikonal approximation
at these relatively low energies. The results of
Fig. 8 do, however, assure us that the eikonal ap-
proximation is certainly not introducing any errors
of a magnitude such as would cast doubt on the re-
liability of our earlier results in Fig. 6.

We conclude that binding effects represent an es-
sential correction to the lowest order 7tA optical
potential for pion kinetic energies between 120 and
420 MeV. Our theory for these correctly repro-
duces the distinctive energy dependence of the cor-
rection required to reconcile the lowest order the-
ory with total cross section data. Comparison of
the data with the various calculations as compiled
by Clough et al. ' and reproduced in our Fig. 1

shows that in this regard, the model described
here would appear to be unique. This encourages
us to believe that although our calculated effect is
about a factor 2 too small in magnitude, the re-
maining discrepancy might very well be removed
by the inclusion, as discussed above, of those por-
tions of Fig. 3 corresponding to off-shell propaga-
tion of the intermediate mÃ system. A version of
our model generalized in this way would then pro-
vide a completely satisfactory description of the
optical potential at the energies in question.
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