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For even-even nuclei, the excitation energy L2 and the reduced transition probability
B(E2) between the ground state and the first excited 27 state have been considered. On the
basis of different models, it is shown that for a nucleus [N, Z] the relations

E2[N, Z1+ E2[N +2, Z +2]1 = E2[N +2, Z] ~ E2IN, Z +21~0

and

B(E2)IN, Z] + B(E2)[N +2, Z +2] = B(E2)[N +2, Z] = B(E2)[N, Z +2]1~ 0

hold good, except in certain specified regions. The validity of these difference equations
is tested with the available experimental data. The difference equation of Ross and
Bhaduri is shown to follow from our approach. Some predictions of unmeasured E2 and

B(E2) values have been made.

NUCLEAR STRUCTURE Simple relations for E2 transition probabilities and
excitation energies of first excited 2% states in even-even nuclei.

I. INTRODUCTION

In recent years, the mass sum rules given by
Garvey and Kelson® have been found to be ex-
tremely successful in predicting the ground-state
energies of nuclei. The success shows that the
ground-state energies of a group of six neighboring
nuclides are related through a difference equa-
tion. This may be attributed to the possible exis-
tence of a certain approximate symmetry in nu-
clear dynamics. It is natural to expect that such
symmetry might also be manifested in properties
other than the ground-state properties of nuclei.
Ross and Bhaduri® (hereafter referred to as RB)
have tried to find difference equations involving
the properties of excited states. They have con-
sidered the excitation energies E2 of the first 2*
excited states and the corresponding reduced
transition probabilities B(E2) of a group of four
even-even neighboring nuclides, and found that
for a nucleus [N, Z] the quantity F[N, Z]
=[E2B(E2)]™ is related to the other three nuclides
through the relation

F[N,Z|+F[N+2,Z+2]|~F[N+2,Z]- F[N,Z +2]=~0.
(1)

They have shown by comparing with experimental
data that the above relation is mostly true except
in certain specified regions. In this paper, we
have been able to establish even simpler difference
equations involving either E2 or B(E2) only for

simpler sets of four even-even nuclides. The
equations are

E2[N,Z]+E2[N+2,Z +2]
—-E2[N+2,Z]-E2[N,Z+2]=0,
(2)
B(E2)[N,Z]+ B(E2)[N+2,Z +2]
—~ B(E2)[N+2,Z]- B(E2)[N,Z+2]~0.
(3)

In Sec. II, the above difference equations have
been derived in different models. In Sec. III, Eq.
(1) due to Ross and Bhaduri has been shown to
follow from our consideration. We have shown
the consistency of Eqs. (2) and (3) with experimen-
tal data in Sec. IV. In Sec. V, we have discussed
the limitations of these equations. Also, several
unmeasured B(E2) and E2 values have been pre-
dicted and compared with the available tentative
experimental data. Our predictions of B(E2) val-
ues have been compared with those predicted by
RB.

II. DERIVATION OF THE DIFFERENCE EQUATIONS

The Garvey-Kelson mass sum rule,! which is
remarkably successful, has in its background a
single-particle picture of the nucleus. Its con-
sistency with the microscopic calculation, in the
frame work of the Hartree-Fock (HF) model of the
nucleus, has been shown by Bassichis and Kel-
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son® in the case of s-d shell nuclei. The success
of this sum rule involving only ground-state en-
ergies is indicative of the possible existence of
other sum rules relating properties of excited
states which might be consistent with the HF mod-
el. In the following, we attempt to establish our
difference equations (2) and (3) with this model.
The description of the deformed nuclei in the
projected Hartree-Fock (PHF) theory*® consists
in calculating the intrinsic determinantal state
¢ g through the minimization of the energy expecta-
tion value (¢, |H| ¢x), and then generating the dif-
ferent members of the ground-state band from it
by the use of the projection method of Peierls and
Yoccoz.® In this prescription, the wave function
for the state J belonging to the ground-state band

T4 |y
Wil T TRT A DN N, )72

327" [J,- E J;
M; p My

K is given by

Vo= gz [ D @R@l00, @)

where Q stands for the Euler angles «, B, and vy,
R(Q) is the usual rotation operator e~ *zg~i¥%e iz
and Dy, (Q) is the usual rotation matrix element.
The normalization constant N is given by

_ 2J+1>fdsw Lo | R(Q)] o) -

The matrix element of any tensor operator Tﬁ be-
tween two different angular momentum states J;
and J; belonging to the same intrinsic wave func-
tion ¢ is

K-v v K

] Z[J‘ k JfM TSI dB ., x(6|The B 0).
7 0

(5)

The reduced B(E2) transition probability between the initial state J; and final state J; can be obtained from

Eq. (5) as

BE2) = I [ @10l

where
z
Qi =(9V2 3" v Yi6:9:)
i=1
and

el QN J3)=

(27, + 1) (N kN ) ? Kev v K

4 .2
327 [J. Jf]f Sing dB dyt, (x| Qie™%| o) .

(6)

For the special case of even-even nuclei, for which K=0, J;=0, and J,=2, the above equation reduces to

Jy sing dp d3y(8)(9ol Qs 90)

@letio- [fo"sinﬁ dpd g (B)

For even-even nuclei, the overlap integral

(o] €79| ¢,y in the denominator is sharply peaked
at 8=0 and B=7 in cases where the intrinsic state
¢, is sufficiently deformed. The overlap function

= (ol e 5| ¢y)

for small B can be approximated as

n(B) =exp(=38°(¢do| J,2| ¢o)) = exp(~56*(T?)) .

This approximation? is exact up to and including
B%. In heavy nuclei, the expectation value of J? is
expected to exceed 100 and, further, for even-
even nuclei,

n(B)=n(m - B) .

(@0l ™3 @) I72[ [T sinBdB d5o(B) (0ol e ™ 6o 77 *

r

Thus, 7n(B) is extremely peaked at =0 and B=7
for heavy nuclei; i.e., the region in which we are
primarily concerned. The same behavior can be
expected® from (¢,| Q%e 75| ¢) in the numerator.
Hence, assuming that the numerator and denomi-
nator contribute only at =0 and S =7, we get

zZ
@1 Q210)= (ool Q81 ooy = D Gl Q310 ®)
i=1

where |i) stands for the HF single-particle proton
orbital. Using Eq. (8), we get the reduced transi-
tion probability from Eq. (6) as

zZ 2
3 laslo
i=1

B(E2)=5

©)
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One also arrives at Eq. (9), if one uses the cor-
responding wave function in the unified model of
Bohr and Mottelson.

To establish our difference equation (3), we as-
sume that the HF single-particle wave function
varies very slowly in the domain of the groups of

four nuclides considered here, and we take them
J

B(E2)[N,Z]+B([E2)[N+2,Z+2]- B(E2)[N+2, Z]

To establish the difference equation (2), we use
Eq. (5) to calculate the energy of the state J of the
ground-state band of even-even nuclei, by re-
placing Tﬁ with the nuclear Hamiltonian # and set-
ting J;=J;=J and K =0. Then Eq. (5) reduces to

s Jo singdBdl (8) (@l He 5| oo
° " [TsinBdBdg,(8)(doleT M o)
0

It has been shown approximately by Villars® and
by Lamme and Boeker” that the above equation
reduces to

E{ = (90| H|60) + 550 +1), (10)
where
4= [ (ol 7.2 00)]? 11)

(Pol HI | 9o) = (Dol H| 90) (00|, Do)

is identified as the moment of inertia. So E2, the
energy difference between 0" and 2* states, is

E2=3/9. (12)

Since it is difficult to derive the difference equa-
tion (2) using the expression of the moment of in-
ertia given by Eq. (11), we use the simpler crank-
ing formula for the moment of inertia:

g=2 Z I<Z'J I]>|2 , (13)

€; —€;

where ¢ and j refer to occupied and unoccupied HF
orbitals with energies ¢; and ¢;, respectively.
This expression for the moment of inertia of the
nucleus [N, Z] can be written as the sum of a func-
tion 9,(2Z) for protons and a function 4,(N) for neu-
trons:

ei—e

2
o 5 lalnpk Z AL
S P

=9,(N) +9, (2) , (14)
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to be identical in the same group. This approxima-
tion has also been made by Garvey and Kelson® to
obtain their mass sum rule where six different
nuclei are involved. It is also justified in view of
the slow variation of deformation as shown in
Table II. Hence, using Eq. (9), it is now trivial

to derive difference equation (3);

— B(E2)[N,Z +2]

zZ 2
=5HZ<Z‘IQ%|Z'> +

| Q516 -

4 2
|3 clesi] -

o|z'>ﬂ=

where P denotes the total number of neutron or

proton single-particle HF orbitals in the model

space. Since the HF orbitals for groups of four

nuclides have been assumed to be the same, fol-
lowing Eq. (14) we can write the moments of in-
ertia for a group as

IN+2,Z+2]=9,(N+2)+9,(Z +2),
9[N+2,Z]=9,(N+2) +9,(2), (15)
9[N,Z+2]=9,(N)+8,(Z+2).

The moment of inertia of (N +2) neutrons can be
expressed as

2
S (N+2)=2 Z |<Z|JI]>|
iTN+z €~ €
j=N+3,p
_3 [AEARIS
=1N € —€;
j=N+L.P
ey lasdl
i=W+1),N+2) €i=€
i=W+3),p
2 Y ], |J>|2
i=1L,N € — €
i=W+1),(W+2)

where the first term is the moment of inertia 4,(N)
due to N neuvtrons, and the remaining two terms to-
gether represent the effective moment of inertia
due to the last two neutrons added to the (N +1)th
and (N +2)th orbitals. Obviously, these terms are
very much smaller compared to the first term,
and, since the numerators and denominators are
positive, the sum §,(2) of these two terms will be

still smaller. So we get
9,N+2)=9,N)+6,(2). (16)

Similarly, the moment of inertia due to (Z +2) pro-
tons is

8,(Z+2)=9,(2)+6,(2) . 1

Using Egs. (12), (16), and (17) for a group of four
nuclides, one can easily obtain
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E2[N,Z]|+E2[N+2,Z+2]-E2[N+2,Z]- E2[N, Z+2]=

This proves our difference equation (2).

For spherical nuclei, it has not been possible
to establish these difference equations in the
framework of a microscopic theory like random-
phase approximation (RPA). However, in the fol-
lowing we have been able to establish these dif-
ference equations for both spherical and deformed
nuclei in the collective model. It is worthwhile to
remark here that rotation has been recognized long
since as a more pronounced feature of nuclear dy-
namics than vibration. Also, in recent years it
has been found experimentally*® that many soft
nuclei do have well-defined ground-state bands.

For spherical nuclei, the collective vibrational
model for excited states assumes that the nucleus
executes small harmonic vibrations characterized
by a restoring force C, and an inertial parameter
B,, where the subscript indicates that only quadru-
pole distortions are being considered. In this
model, E2 and B(E2) of a nucleus with mass num-
ber A and charge number Z are given by!!

E2=7(C,/B,)"/?, (18)
457z e*r A3
B(E2)= 32 (B,C,) 7 (19)

where 7, is related to the uniform nuclear radius
R through R=7,AY3, The values of B, and C, are
given® in the hydrodynamical model with irrota-
tional flow as

66,(2)5,(2)
9[N+2,Z+2]9[N+2,Z]3[N,Z +2]

~0.

r -~

B,=81M72A5/3
and

3222

- 2A2/3¢_
C,=4mr2A%3S T0mr AT

where S is the surface energy per unit area, which
is approximately constant (477, 2S=20 MeV). On
substitution of the values of B, and C, in Eqgs. (18)
and (19), the expressions for E2 and B(E2) reduce
to

E2=c'A"Y2(1 - b'Z2/A)M? (20)
and
B(Ez)zalzzAl/S(l_b/zZ/A)"l/Z’ (21)

where the constants a’, &', and ¢’ are, respective-
ly, given by

“16 \ams
b’ =36%/(4077,°S) =0.0166 ,

.. (321S\V?
Cc —ﬁ(m) =36170 keV.

1/2
ar=13 (_3_> 72 11=0.00023 ¢*b*

Thus, E2 and B(E2) are smoothly varying functions
of A and Z, and consequently of N and Z. Treating
N and Z as continuous variables, E2 and B(E2) for
the nuclei [N+2,Z+2], [N+2,Z], and [N,Z +2] can
be expressed by performing Taylor’s expansions
in N and Z as

TABLE I. (a) Relative magnitudes of different derivatives of E2[N,Z] and B(E2)[N, Z] for some representative
spherical nuclei. (b) Relative magnitudes of different derivatives of E2[N, Z] and B(E2)[N, Z] for some representative

deformed nuclei.

1 3B(E2) 1 9'B(E2) 1 9B(E2) 1_9'B(E2) 10E2  19%2 10E2 1 98%2
Nucleus B(E2) 0Z B(E2) 8z? B(E2) ON B(E2) ON? E298Z E20Z%?  E20N E2 oN?
(a) For spherical nuclei
NI 0.0818 0.0043 0.0005 0.000 04 —0.0160  0.00066  —0.0060  0.00011
Hca 0.0514 0.0019 ~0.0007 0.000 04 —0.0127  0.00006  —0.0022  0.00039
1%Te 0.0484 0.0018 —0.0009 0.000 04 —-0.0126  0.00005 —0.0017 —0.00001
2%6pb 0.0367 0.0014 —0.0021 0.000 04 —0.0139 —0.00007 —=0.0004 —0.00003
(b) For deformed nuclei
1¥Ga 0.0399 0.001 02 0.008 65 0.000 187 —0.0108  0.000 56
184Dy 0.0384 0.001 00 0.008 00 0.000 010 -0.0101  0.00049
evp 0.0361 0.000 95 0.007 60 0.000 014 —~0.0094  0.00043
Hicm 0.0263 0.000 24 0.00540 0.000 007 —0.0068  0.00022
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9E2 9E2 92E2

92E2 9%E2

E2[N+2,Z+2]=E2[N,Z]+2W+Zﬁ +2 SN
a_Eg.+2?ﬂ oo
aN dN? ’
9E2 _9°E2

E2[N,Z+2]=E2[N,ZJ+2—8-2—+2_8Z_2+... ,

E2[N+2,Z]=E2[N,Z]+2

B(E2)[N+2,Z +2]=B(E2)[N,Z]+2 8B (E2) L

822

dB(E2) ‘9

2Nz

392B(E2) .2 32B(E2) 2 82B(E2) (22)

N 8Z

B(E2)[N+2,Z]=B(E2)[N, Z] oN NP
8B(E2) o 32 B(E2)

B(E2)[N,Z +2]=B(E2)[N,Z]+2 57 Ve

The first terms in the first three and last three
expansions stand for the E2 and B(E2) for the nu-
cleus [N, Z], respectively. Retaining terms up to
first order in Eqgs. (22), one can easily obtain the
difference equations (2) and (3). In order to show
the validity of the Taylor’s expansion and also jus-
tify retaining terms only up to first order, we have
calculated [using Eqgs. (20) and (21)] the quantities

1  aB(E2) 1 8B(E2) 1 3E2
B(E2) O8N ’ B(E2) 8Z ’ E258N°’
1 8E2 1 82B(E2) 1
E2 8Z ’ B(E2) aN? ’

9°B(E2)
B(E2) 02?2

1 6%E2 1 9°E2
for some representative nuclei and presented them
in Table I(a). An analysis of these numerical val-
ues justifies our approximation.

We follow the same approach to establish Eqgs.
(2) and (3) for the rotational nuclei. In the collec-
tive rotational model, if the deformation is charac-
terized by a single parameter 3, then the quadru-
pole moment for a nucleus [N, Z] is given by®

3/5\/2
Qo= 5 (;> ZVOZAZ/:;B ’ (23)

and the reduced transition probability for exciting
the nucleus from ground state 0* to the 2* state is
given by!®

5
B(E2)f :_16—17 eonz . (24)

On substitution of the value of @, from Eq. (23) in
Eq. (24), one gets

B(E2)4 :I'e?? v Z2AY/352 (25)

For axially symmetric nuclei, the excitation en-
ergy of the 2* state will be given by

bN? 82 oNez

2
o OBE2) L O°B(E2)

E2=37/9,, (26)

where 9, is the moment of inertia, which in hydro-
dynamical model is given by'*

90:8%M702A5/3[32 . (27)

Here, B(E2) and E2 are smoothly varying functions
of N and Z, and also of 3. We will assume that
is a very slowly varying function of N and Z, par-
ticularly in the domain of the groups of nuclides
considered here. In Table II, we have presented
the experimental values of 8 for representative
groups of nuclides, the mean value of B for the
groups, and the percentage of deviation from the
mean values. It is found that the variation of B
from the mean value of a group is very small for
the nuclei shown in this table. Hence, we have
treated 8 as a constant in performing the Taylor’s

TABLE II. Experimental values of the deformation pa-
rameter 3 for groups of four nuclides. [These values
have been extracted from the experimental B(E2) values
of Ref. 2.] In the third column, the mean value of 8 for
the group is presented. The fourth column gives the per-
centage of deviation of each 3 value from the mean value.

Deformation Mean % deviation from

Nucleus B B mean 3
18Dy 0.2843 —0.83
164 4
oy 0.2961 0.2867 3.20
e 0.2774 —3.20
1Er 0.2892 +0.80
2%y 0.2404 -0.70
238 _
$¥u 0.2417 0.2421 0.16
3py 0.2435 +0.60
#pu 0.2427 +0.24
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expansion at [N, Z] for E2 and B(E2) of the rota-
tional nuclei [N+2,Z+2], [N+2,Z], and [N,Z +2].
The numerical values of

1 8B(E2) 1 oB(E2) 103E2

B(E2) 8N ’B(E2) 8Z ’ E2aN’
1 8E2 1 9%2B(E2) 1 92B(E2)
E208Z ° B(E2) 8N? ’ B(E2) 8z% °
1 22E2 1 8°E2

E28N?’ E2 87?2

FIN,Z]|+F[N+2,Z+2]-F[N+2,Z]- FIN, Z +2]

are presented in Table I(b) for some representa-
tive rotational nuclei. The relative values justify
our approximation leading to the difference equa-
tions (2) and (3) for the rotational nuclei.

III. DERIVATION OF ROSS AND BHADURI
DIFFERENCE EQUATION

In this section we show that the difference equa-
tion (1) due to Ross and Bhaduri follows from our
approach, as shown below:

1 1

“E2[N, ZIB(E2)N, Z] "E2IN+2,Z +2]B(E2)[N+2,Z + 2]

1 1

TE2[N+2,Z|B(E2)[N+2,Z] ~ E2[N,Z+2]|B(E2)[N,Z+2]"

In the preceding section, it has been shown [Eq.
(22)] that in the collective model, for both rota-
tional and vibrational nuclei, it is a good approxi-
mation to expand E2 and B(E2) for [N +2,Z +2],
[N+2,Z], and [N,Z +2] nuclei at N and Z in a
Taylor’s series and retain terms up to first order
only. Making use of this fact, it is found that the
right-hand side of Eq. (28) vanishes. Thus, in the
collective model F[N,Z ]+ F[N+2,Z +2]- F[N+2, Z]
— F[N,Z +2]=0 for both rotational and vibrational
nuclei. In the PHF model also, this difference
equation can be derived as follows. In this model
it has been shown before that E2 and B(E2) are
given by Egs. (12) and (9), respectively. When
these expressions are utilized, the right-hand side
of Eq. (28) reduces to

1 d[N, Z]

15| |2 )
2 @519
i=1

LOIN+2,Z+2]
Z+: 2
’ §<z|Q3|i>\

__8[N+2,Z]
NALCAD

d4[N,Z +2]

2 |z 2 |°
55 la31)
i=1

Following Eqgs. (16) and (17), we put
9|IN+2,Z+2]=49[N, Z+2]+5,(2)
and
9[N+2,Z]=4[N, Z]+6,(2)
in the above expression. Thus, Eq. (28) reduces to
F[N,Z]|+F[N+2,Z+2]- F[N+2,Z] - F[N, Z +2]

2

5.(2) ?j(ﬂ@%’@ ‘- 1;&]%10

P g ees| |Zael

2

(28)

The quantity inside the square bracket is extreme-
ly small, since the numerator represents the con-
tribution of the last two protons to the transition
probability, while the denominator is the product
of the transition probability due to Z and (Z +2)
protons. Further, this small fraction is multiplied
by another small fraction, 5,(2)/15. Hence the
above equation can be written as

F[N,Z|+F[N+2,Z+2]-F[N+2,Z] - F[N,Z+2]~0,

so the assumptions which have been made to de-
rive our difference equations (2) and (3) in the
collective model and PHF model are adequate
enough to derive the difference equation (1) of
Ross and Bhaduri. Hence it is reasonable to ex-
pect that Eqgs. (2) and (3) will have the same de-
gree of consistency with experimental data as
Eq. (1) does.

IV. ANALYSIS OF EXPERIMENTAL DATA

We have exclusively taken the experimental
B(E2) and E2 values from the compilation of Ross
and Bhaduri? and, in addition to this, some data
on E2 have been included from Ref. 10. To test
the consistency of our Egs. (2) and (3), we have
calculated the quantities

E=E2[N,Z|+E2[N+2,Z+2]-E2[N+2,Z]
—E2[N,Z +2] (29)
and
B=B(E2)[N, Z]+ B(E2)[N+2, Z + 2]
- B(E2)[N+2,Z] - B(E2)[N,Z +2] , (30)

with these available experimental data, and pre-
sented them in the second and fourth columns of
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TABLE III. Test of the difference Eqgs. (2) and (3). The first column lists the first nucleus appearing in Eqs. (2) and
(3). In the second and third columns are presented the values of E (in keV) and P (in %) of Egs. (29) and (31), respec-
tively, calculated with the experimental E2 values. The fourth and fifth columns list the values of B and 6B of Egs. (30)
and (32), respectively, also calculated from experimental B(E2) values.

Anchor E P B 6B Anchor E P B 6B

nucleus (keV) %) (e?1d) (e?1?) nucleus (ke V) %) (e?n?) (e2b?)
$8Ti 54.0 4.5 —~0.0378 £0.014 90 Wce 71.0 6.3 ~0.05 £0.088 31
jicr 30.0 2.6 0.001 £0.018 74 1nd —60.0 14.6 ~0.188 +0.073 21
¥Fe —=79.0 7.1 —0.0169 £0.03348 148N —45.15 20.3 —0.46 £0.143 20
§2Ni -121.0 10.6 —0.024 £0.026 43 150Sm -6.75 2.9 0.08 +0.267 20
§87n -11.0 1.1 0.008 +0.03110 15%5m 5.76 5.5 —-0.03 +0.321 40
15Ge 163.3 24.9 -0.107 +0.096 16 122Gd 25.2 10.7
HGe 87.7 15.0 —0.039 £0.05943 1%Ga —4.9 4.3 -0.12 £0.51810
1Se 106.7 20.6 0.093 +0.136 30 156G -3.8 4.27 —0.43 +£0.555 00
Se 108.1 19.2 —-0.11 +0.120 50 1%ad -1.9 2.3 —-0.23 +0.487 30
188e 106.9 15.9 -0.073 £0.083 97 Dy 44.7 17.6
Sse 113.9 15.3 0.024 £0.059 37 16y —-27.5 19.7 0.55 +0.500 90
$Kr 179.9 20.4 —0.182 £0.112 90 128Dy -12.9 12.5 0.68 £0.555 00
Nzr 579.0 42.3 0.125 £0.035 65 8Dy -3.4 3.8 0.000 +0.545 40
#zr —~78.5 8.9 0.048 +0.047 01 182Dy -2.7 3.3 0.2 £0.497 50
AMo —86.5 11.0 0.16 £0.072 59 18 Er 36.8 13.0
#Mo -122.7 17.78 0.199 £0.079 84 188y -10.0 5.5
Mo 186.5 31.9 —-0.194 £0.19300 | '@Er -18.8 14.6
1%Ru 73.4 15.4 —0.046 £0.11770 ey -10.7 10.3
1%pa 44.2 7.5 —0.108 £0.074 71 oty —4.4 4.8
1%pq 102.5 18.3 —-0.077 £0.083 51 86Er -2.9 3.5 0.07 £0.461 90
19¢pd 19.6 3.7 ~0.058 £0.097 16 188k -5.1 6.3 0.70 £0.4602
Hca 83.5 8.7 —0.083 £0.06345 KN —-14.1 11.1
122ca 51.9 5.6 —0.053 £0.064 46 186vyh -9.1 8.8
Hca -17.6 1.9 —0.062 £0.046 91 188yb -2.7 3.0
sn 59.0 6.6 -0.127 +0.11100 110D 2.1 2.4 —0.29 £0.6048
1%0sn 74.0 8.4 —0.113 £0.01905 12yh -0.5 0.6 0.75 +0.5671
12sn 73.0 8.2 -0.039 +0.01712 dyh -0.8 0.9 —0.42 +0.5921
1%Te -9.0 1.7 0.251 +0.206 60 i -5.5 5.1
1%7e 21.0 3.7 —0.176 £0.250 20 12y 0.4 0.4
1%re 32.8 4.7 —0.178 £0.182 90 pt -2.1 2.1
12xe 2.7 0.9 26 nf —6.9 7.3
12Xe ~11.4 3.5 118t -2.1 2.1 -0.03 +0.4754
126Xe 25.0 7.8 -0.719 £0.436 60 I¢w 5.3 4.4
128xe 8.0 1.7 -0.1 +0.347 00 sw -3.3 2.8
150%e 10.8 1.9 0.188 £0.254 90 180w ~5.2 4.6
12%¢Ba 23.9 9.6 18w 6.3 5.4
1288, —8.7 2.8 ¥w 6.4 4.8 —-0.05 £0.,3087
139Ba -21.2 5.4 18os 13.7 9.5
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TABLE III (Continued).

Anchor E P B 6B Anchor E P B 6B

nucleus (keV) %) €e%1?) €2b?) nucleus (ke V) %) €%b?) €%b?)
180s 36.1 24.0 2%Ra 2.2 3.1 -0.97 £1.1270
1#0s 57.4 32.0 %6Ra 4.2 7.1 0.09 +1.1090
1%os 12.6 5.7 0.17 +0.8772 228Th 0.1 0.1 0.05 +1.8780
1880s -11.2 4.6 0.22 £0.7392 20Th -0.5 1.0 -1.25 +1.3350
1%0s -17.0 2.7 —0.22 £0.2133 28 Th 3.8 8.0 2.95 +1.2110
19pt —41.5 10.0 —0.12 £0,2527 %y —0.6 1.4 -0.23 £0.6905
1%pt —-96.2 24.9 0.21 £0.2026 #pu —-0.92 2.1
WHg —86.0 13.3 0.28 £0.1197 Mipy —0.5 1.1 —-0.73 £0.9956
%0Rn 28.7 18.4 —0.88 +0.4709

Table III, respectively. (The “anchor nucleus,”
i.e., the first nucleus occurring in Egs. (2) and
(3), appears in the first column.) Thus E and B
are the deviations from zero of the E2 sum and
the B(E2) sum in Egs. (2) and (3), respectively.
The validity of Eq. (2) cannot be fully judged from
the smallness of the quantity E, since the relevant
E2 values in the sum may be quite small. Hence,
we define the quantity

P=100| E{E2[N, Z]+E2[N +2,Z +2]+ E2[N+2, Z]
+E2[N,Z +2]}7L. (31)

It is easy to see that P—0 for E -0; i.e, when Eq.
(2) is exactly satisfied, and, P- 100 when either
the positive terms or the negative terms in Eq.
(29) are comparatively smaller and can be ne-
glected. This happens when Eq. (2) is severely
violated. Thus, P represents a relevant quantity
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FIG. 1. Test of the difference equation for E2 [Eq. (2)] on the experimental data. The lower curve gives the devia-
tion E as defined by Eq. 29). The upper curve gives the percentage deviation P as defined by Eq. (31). The case used
to test the difference equation is labeled along the abscissa by the neutron number and the proton number of the anchor

nucleus, i.e., the first nucleus occurring in Eq. (2).



2046

which provides a true measure of the validity of
Eq. (2). This is presented in the third column of
Table III.

In Fig. 1, E and P have been plotted for 66 cases.
In 45 cases P has values less than 10%, and only in
seven cases does it have values more than 20%.
The case with jZr as anchor nucleus is extremely
pathological. Here, the value of P is 42%. The
failure of the difference equation may be attributed
to the fact that three of the nuclei involved here
are magic. Some other cases involving nuclei
with Z =40 also show big descrepancies. Other
cases where descrepancies occur mainly involve
nuclei in the transitional regions around Z =78
and 88, and some nuclei with N=88. Except in
these regions, it is reasonable to conclude that
the difference equation (2) is quite successful. It
is worthwhile to remark here that Fig. 1 clearly
reveals the shell closure effect in the Periodic
Table, through the values of P and E which are
characteristic of the properties of excited states.
Hence such plots are interesting.

The validity of the difference equation (3) can be
judged from the smallness of the values of B cal-
culated from Eq. (30). The percentage of devia-
tion was not calculated here, since the experimen-
tal B(E2) values have errors. On the other hand,
we take the usual definition to compute the ex-
perimental uncertainty 6B in the sum of Eq. (30)
as

R. PATNAIK, R. PATRA, AND L. SATPATHY 12

4

63=¢<Z:®BEZHNUZJFYM,

i=1

(32)

where 6B(E2)[N;, Z;] is the experimental error in
B(E2)[N,;,Z;]. In Fig. 2, 6B is shown as an enve-
lope about the horizontal axis along which are
plotted N and Z of the anchor nucleus (although

0B is defined only at a series of points, we have
connected these points by straight lines to make the
figure easier for interpretation). The values of B
have been plotted in the same diagram and are
joined by a broken line. The criterion for the va-
lidity of the difference equation (3) for a particular
case is that | B| <| 6B, and from Fig. 2 this is
generally found to be satisfied. However, there
are regions where B is considerably outside the
envelope. These regions are Z =178, 88, and Z =40,
and Z or N with magic numbers, and are identical
with those found from the analysis of Fig. 1. This
is in conformity with the conclusions of RB.? Fur-
ther, it is observed that the difference equation
fails in the region of nuclei with N=88 and Z vary-
ing from 60 to 66. This is an additional feature
emerging here in the analysis of both Figs. 1 and

2 that was not apparent in the analysis of RB. This
feature is reminiscent of the fact that abrupt onset
of deformation takes place at N=88, which has
been theoretically shown by Nilsson et al.'® and
also empirically observed by others.!®! Hence,
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FIG. 2. Test of the difference equation for B(E2) [Eq. (3)] on the experimental data. The deviation B as defined by
Eq. (30) is given by the broken line. The experimental uncertainty 6 B, as defined by Eq. (32), is presented as an en~
velope about the horizontal axis. The theoretical values of B, calculated by using the B(£2) values from Ref. 16, are

presented as heavy dots. The case used to test the difference equation is labeled along the abscissa by the neutron

number and the proton number of the anchor nucleus, i.e., the first nucleus appearing in Eq. (3).
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TABLE IV. (a) Comparison of the predicted and experimental B(E2) and E2 values. For a given nucleus, the second
column gives our prediction and the third column gives the prediction of RB for the B(E2) values. The tentatively as~
signed experimental values of B(E2) are given in the fourth column. The fifth and sixth columns give our prediction and
the experimental values of E2. If the prediction can be made in more than one way, the various results are shown along

with their average value.

(b) Predictions of unmeasured B(E2) and E£2 values. For a given nucleus the second and third

columns give our prediction of E2 and B(E2) values, respectively. The last column lists the B(E2) value predicted by
RB. The available experimental E£2 values are presented in the second column inside parentheses.

(a) Comparison of predicted and experimental values

B(E2) (e2b?) E2 (keV)
Present RB Present
Nucleus prediction Prediction Experiment prediction Experiment
W8%Ru 1.085+0.14 1.25 0.2 1.47%0.29 219.8 242.3
11'Ru 1.124+0.176 1.23%0.25 1.45%0.29 217.4 240.8
12Ru 1.188%0.214 1.28+0.35 1.81%0.36 224.8 236.8
i12pq 0.899% 0.08 0.90=0.1 >0.54 314.9 348.9
Hpg 0.963=0.092 0.97+0.35 >0.68 303.5 332.9
Uce 1.05 =0.069 1.07+0.1 0.79+0.16 242.5 258.6
1820s 3.75 +0.464 3.41+0.46 ces 121.9 127.0
3.5 £0.44
3.46% 0.54(av)
1#%0s 3.60 +0.295 3.62+0.33 3.20% 0.62 126.2 120.0
3.49 +0.346 3.16+0.38

3.545= 0.227(av)

3.41+ 0.35(av)

(b) Predictions of unmeasured values

Present predictions RB predictions of
Nucleus E2 (keV) B(E2) (e?b?) B(E2) (e?b?)
88Ge 100.1 0.198+0.018
18Ge 615.2 0.157% 0.044
%Se 840.0 0.437+ 0.084
1% Ru 279.9 0.971£0.107
e 623.0 0.548% 0.110
550.3 0.36 +0.185
586.6(av) 0.454 % 0.108(av)
(600.0)
12%e 335.5 1.225%0.149 1.34=0.43
347.0 0.898+ 0.052 0.93%0.18
362.4 1.171+0.480 0.97+0.07
348.3(av) 1.098% 0.168(av) 0.99% 0.14(av)
(355.0% 10)
Wce 410.0 0.64 *0.047 0.66%0.11
(397.5)
12%Nd 91.14 3.64 £0.18
(75.9)
148sm 795.0 0.33 *0.086 0.58=0.06
791.0 0.522% 0.046
793.0(av) 0.426+ 0.049(av)

(747.4)
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TABLE IV (Continued)

(b) Predictions of unmeasured values

Present predictions RB predictions of
Nucleus E2 (keV) B(E2) (e2b?) B(E2) (e*b?)
158Sm 72.5 4.83 +0.345 4.63%0.12
(76.0)
el 68.1 6.19 =0.384
T 77.1 5.30 +0.420
%os 232.9 1.84 £0.116
#Cm 41.3
(42.2+0.1)

except for these regions, the difference equation
(3) can be considered to be reasonably valid. In
Fig. 2, we have also displayed by heavy dots the
values of B computed with the B(E2) values cal-
culated theoretically by Uher and Sorensen!® for
spherical nuclei in the RPA formalism. These
values of B(E2) were taken from Table V of Ref.
16, with an effective charge of 0.3 e for neutrons
and 1.3 e for protons. It will be seen that, in most
cases, the theoretical values of B lie within the
error envelope. It is satisfying to note that, in
the case of the anchor nucleus N=88, Z =60, both
the theoretical and the experimental values of B
fall outside the error envelope. Hence, it is natu-
ral to conclude that our difference equation (3) is
reasonably valid, and has both theoretical and ex-
perimental support except in the specified regions.

V. PREDICTIONS AND CONCLUSION

In this section we would like to discuss the use-
fulness of these equations, make a few predictions
of E2 and B(E2) values, and compare with the ten-
tative experimental values, wherever available.
We will also compare our predictions with the
B(E2) values predicted by RB. Before we discuss
our predictions, we summarize the regions where
our difference equations are not likely to be ap-
plicable: (a) when one or more of the nuclei in-
volved are singly or doubly magic, (b) when any
of the nuclei has N or Z=40, (c) for some of the
transition nuclei around Z =78 and Z =88, (d) when
any of the nuclei has N=88 and Z between 60 and
66, and, (e) possibly, for low-mass nuclei (A<50).

In Table IV we have presented the predicted E2
and B(E2) values of some representative nuclei.
In some cases, where the predictions can be made
in more than one way, all the calculated values
along with the average value have been presented.
Since the RB prescription can be used for predic-
tion of B(E2) values only when the E2 values for

all the four nuclei and the B(E2) values of the
other three nuclei are known, it has not been pos-
sible to calculate the B(E2) values in all cases.

In Table IV(a), we present our predictions of
B(E2) and E2 values, RB predictions of B(E2) val-
ues, and the corresponding experimental quanti-
ties. The agreement between our prediction and
experimental values is satisfactory. It can also
be seen that our predictions of B(E2) values are
quite close to those of RB in all the possible cas-
es. This was expected, since our difference equa-
tions (2) and (3) are as strongly supported by theo-
ry and experiments as Eq. (1). Moreover, the RB
equation has been shown to follow from the same
considerations which have led to the establishment
of Egs. (2) and (3). It is also extremely satisfying
to note that our predictions of E2 values compare
[Table IV(a)] reasonably well with the experimen-
tal ones. In Table IV(b), we have presented a set
of predictions for B(E2) and E2 values for some
representative nuclei.

‘In view of the theoretical and experimental evi-
dences presented in this paper, the difference
equations (2) and (3) can be reliably used to pre-
dict unmeasured E2 and B(E2) values within an
accuracy of +20%, and often better. It is pleasing
to note that the RB equation is compatible with our
Eqgs. (2) and (3), both theoretically and experimen-
tally. Apart from the obvious simplicity of our
equations compared to the RB equation, the former
provide better guidelines for the understanding of
nuclear dynamics than the latter. It further illus-
trates that the difference equation approach,
which has been highly successful in the case of
nuclear ground-state energies, can also be useful
for correlating properties of excited states. We
feel suitable difference equations similar to Egs.
(2) and (3), but involving other transition probabil -
ities and excitation energies, may be found for
odd-A nuclei.
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