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A new parity-conserving equation of motion is used to evaluate the ground state of a system of high density
neutrons in a quantum crystal. If one form of a purely repulsive NN potential is employed, the ground state
energy has a minimum with respect to the localization parameter in the density range appropriate to neutron
star interiors, whereas it does not if a realistic NN potential is used. However, the values of the localization
parameters a,,~' corresponding to the observed minima are very close to or even less than the separation A
between neutrons. Since the method employed here for the solid is only reliable when a,, A > 1, one cannot
definitely say that an equilibrium solid state exists even in this case.

NUCLEAR STRUCTURE Neutron solidification, possibility of solidification of
neutron star matter examined.

I. INTRODUCTION

A letter with the same title was published by
Canuto and Chitre! in 1973, which indicated how
the Reid NN potential, used in the context of the
t matrix, favored a solid arrangement of neutrons
over a liquid structure at densities greater than
1.6x10'° gem™3,

Several authors have discussed the same prob-
lem with different answers. In particular, the
phenomenological types of calculations indicated
that arranging the neutrons in a solidlike structure
would lower the energy, with respect to the liq-
uid.? At the time of publication of Ref. 1, only one
computation reported a negative answer.®> How-
ever, it would be seriously incorrect to catalog
Ref. 1 as one more, perhaps more sophisticated,
computation indicating that a solid indeed exists
and to make a case on a majority basis. The only
significant comparison is between Ref. 1 and Ref.
3, leaving aside the results of Ref. 2 that, though
very interesting, do not help in resolving the dis-
crepancy between Ref. 1 and Ref. 3. In Ref. 3,
both the solid and liquid computations were per-
formed, whereas in Ref. 1 only the solid was com-
puted. By comparing the solid energies found in
Ref. 1 with the liquid energies of Ref. 3, the au-
thors of Ref. 1 concluded in favor of a solid ar-
rangement. Since it is methodologically unsat-
isfactory to compare energies obtained with dif-
ferent techniques, an alternative method was em-
ployed in Ref. 1, based on the study of the elastic
properties of the solid arrangement. The result
did not change. In order to resolve the discrep-
ancy, H. A. Bethe suggested that the NN potential
be taken the same for any angular momentum state
and equal to the repulsive part of the 'S, Reid po-
tential. We would like to stress that the Bethe

problem is important in spite of its unrealistic
appearance at first sight. In fact, the realistic
NN potentials presently available are much more
complex than that used in Refs. 4 and 5. However,
if a solid does not set in with such a potential the
extension to a more complicated form will bring
more attraction, a feature that does not help
solidification. The results obtained using the
techniques of Refs. 1 and 3 did not agree, but the
situation was soon clarified. The results, as re-
ported in Refs. 4 and 5, can be summarized as
follows:

(1) Both computations found that the energy per
particle E/N has a clear minimum with respect
to a!, the spread of the single-particle wave
function.

(2) In Ref. 5, it was also found that the energy
of the solid is lower than that of the liquid, thus
indicating a phase transition.

(3) The absolute values of the energies for the
solid phase were, however, different, those of
Ref. 5 being much higher.

In conclusion, with respect to the Bethe poten-
tial, in Ref. 4 it was found that E(a) has a mini-
mum with respect to a® and in Ref. 5 it was found
that the solid is the minimum-energy state. At
the same time, however, two other computations
were performed with an almost equally repulsive
potential as the one used in Ref. 4. The first, by
Chakravarty, Miller, and Woo,® reached the fol-
lowing conclusions:

(1) As for the solid,® the values obtained were
rather close to those of Ref. 4. However, the val-
ues of o™ were unsatisfactorily large. We feel
that the results cannot yet be considered certain
and therefore we shall not make use of them.

(2) As for the liquid,” the energies obtained
were much lower than those of Ref. 5, the dis-
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crepancy increasing with density, being of the
order of 200 MeV at around 10** gcm™3, From
the results of Refs. 6 and 7, one cannot conclude
that a solid exists, but only that there is a new
discrepancy in the energy for the liquid state.

(3) The energies for the liquid state of Ref. 7
agreed very well with those found by Cochran and
Chester,® who employed a Monte Carlo technique.
More specifically:

(a) The energies of the liquid are within 25 MeV
of those of Ref. 7. The agreement is very satis-
factory.

(b) These energies are considerably lower than
those of Ref. 5. .

(¢) The energies for the solid are considerably
higher than those of Ref. 4.

(d) Within the same Monte Carlo technique, the
energies for the solid are higher than the energies
for the liquid.

One can therefore conclude, for the liquid

(i) The LOCYV technique, in itself, as employed
in Ref. 5 cannot be trusted, since it yields too high
energies. The results of a full variational tech-
nique® are however in good agreement with those
of Refs. 7 and 8.

(ii) As far as the solid arrangement is con-
cerned, the solid energies of Refs. 1 and 4 must
be reevaluated.

It was realized by the present authors that with-
in the f-matrix approach as previously em-
ployed,’** a most serious deficiency was the lack
of symmetry under parity inversion of the two-
body Hamiltonian

[T1+T2+U(1)+U(2)+V12]¢12 =E 10, 1)

where f‘l and Tz are the kinetic-energy operators
for particles 1 and 2, respectively, U(l) and
U(2) are their respective self-consistent Hartree
potentials, and V,, is the two-body potential.
U(7) is taken to be of the form of a simple har-
monic oscillator

U@) = U(0) +Mw?(F; - R; )2, @)

where ﬁ,- is the coordinate of the i th lattice site,
when the center of mass is eliminated, Eq. (1)
reads

HEW(T)=€y(T), 3)
where
H) =~ V2 +iMw* G = BP + V) @)

and A=R, -R,. Since H(T)+H(-T), ¢ has no defi-
nite parity and when a full angular momentum de-
composition is performed, unwanted waves like
3S, and 'P, appear. In Ref. 1 the potential for such

waves was taken to be repulsive, thus introduc-
ing an unjustified amount of repulsion.

II. SYMMETRIC TWO-BODY HAMILTONIAN

Recently, a parity conserving two-body Hamil-
tonian analogous to Eq. (4) has been derived. This
can be accomplished by requiring that Eq. (1) for
two particles in the V;, =0 case be

[T, +T,+U,(1,2)]p*(1, 2)=EZ $*(1,2), 5)

where ¢*(1,2) are properly antisymmetrized wave
functions for the two particles and U, (1, 2) is the
Hartree potential for the two particles. The above
antisymmetrized wave functions require U (1, 2)
to be symmetric under particle exchange. Since
the equation of motion for each particle is given
by

(T + U) s () = [3 7w + U(0) ] (4), (6)

where U(i) is given by Eq. (2) and ¢, (i) is a Gaus-
sian function of the form

3/2

i) = 0r,(F)) = Torexp[ 3ot - R ). (D)

a™'= (#/Mw)/? is a measure of the spread of the
wave function about the lattice site R;. We now
choose the eigenvalue of Eq. (5) for the two-body
equation in the case V,,=0 to be simply twice
that of the one-body equation given in Eq. (6),
i.e.,

E; =3%w+2U(0). 8)
This choice amounts to neglecting exchange ef-
fects. Similarly, ¢*(1,2) is chosen to be the

properly symmetrized and antisymmetrized pro-
duct of Gaussians

0*(1,2) =277, (1)0,(2) % ¢,(1) ¢, (2)]; ©)

+ corresponds to spin antisymmetric (S=0) case
and — to the spin symmetric (S=1) case. In terms
of relative and center of mass coordinates T and
R, respectively, Eq. (9) reads

$*(1,2)=2"28(R)[¢, () £ ¢, (T)], (10)

where <I>(§) is the center of mass wave function
given by
- a3/2 T 1/ - 2

@(R)=Wexp{— ofR-3®, +R)P}, (11)

and
- as/z L . -
@q4 (r) =Wexp[— Fo3(r - A)z] ’
(12)

- as/z . . -
@, (r) =Wexp[— 03T +A)?].
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In terms of T and R Eq. (5) now reduces to where
n? n? - - - =
[_vaz—Mv,2+Us(1,2)]¢*(1,2) U,(R)=Mw?[R -3(R, +R,)]?. (15)
=[B7w +2U(0)] *(1, 2). (13) Now
If we write U, (1, 2)= U, (R)+ U, (¥), Eq. (13) be-

V20 ()= - 52 (8 - 1R - B, ()

+[3 - 102 + AP, ()},

comes

[0, 40,0+ 300 () = 10 + 200016 @), )
(14) so we can solve Eq. (14) for U (r) to get

J

[tanhGa?T -R)],
[eothGa®F -RA)], S

195)
1}

0
1, (16)

UL(F)=2U(0) + sMw?(r® + A% - 2T +K)

so that the proper parity-conserving two-body equation of motion for two neutrons now becomes

2 > > la2T . K - -,
-%vf vima? [ (124 42 - 27 F)) [tanh G r *)] V() |o(F) = (@) . 17
[coth(3a2T * A)]
r
This new form of U(7) is (a) symmetric with re- from requiring that the properly symmetrized ¢,,
spect to space inversion, thus ensuring the in- should reduce to the free wave function ¢,,, when
clusion of only the right waves; (b) has a hump V., vanishes. The healing property of 3,, is auto-
at =0, the height being A%, (c) is zero at 7 ~+A, matically satisfied.
i.e., it has the form of a double humped harmonic Equation (17) has been used in Ref. 10 to com-
oscillator; and, finally, (d) it follows directly pute the ground state energy for solid He® and the
results are the closest to the experimental data
E/N obtained so far.
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FIG. 1. Energy per particle, E/N (MeV) vs o? (fm™2)

at a density of 8.43x10'* gem™, for different choices
of the NN potential as specified in Eq. (18). FIG. 2. Same as Fig. 1 for p=1.83x10' gem™.
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III. RESULTS FOR NEUTRON SOLID

Having solved the main difficulty of Eq. (4) and
having tested the results in the sensitive He® case,
we have applied the f-matrix technique, as fully
explained in Ref. 1, to the neutron case.

The potentials were taken from the NN poten-
tial recently constructed by Bethe and Johnson.™*
The forms used were the following (y =0.77):

(A) for any L,
YV(r)=4015.5¢75+5
(B) for any L,
. yV(S,) =4015.5¢ 5% ~10.463¢™Y
~18317.5¢738 |

(18)

(c)
yV(*S,) =same as above,

yV(D,)=4015.5¢75-5¥ —10.463¢~Y — 1441,2¢73%8

YV(L=1)=4015.5¢"5-5¥ 13,488~
-1010.36¢73- 8

yV(L=3)=4015.5¢7%+5Y 1+ 3,488~
—937.9¢73-4% |

With the repulsive potential A, the curves of
E/Nvs o had minima within the density range
tested, viz., 5x10'* t0 1.83 x10*®* gem~3. Two
of these curves are shown in Figs. 1 and 2 and
are labeled A.

Since the quantity aA is a measure of the ratio
of the lattice separation to the spread of the wave
function, we require a,A>1 for this £ -matrix
method to be reliable, where @, are the values of
o at the minima. According to Figs. 1 and 2, the
minima occur at @, A< 1, so it cannot reliably be
stated that an equilibrium solid state exists in the
above density range for potential A. In Ref. 4,
where the repulsive part of the Reid 'S, potential
is used, minima in the E/N vs o? curves occurred
at @,A=2, which is a more comfortable value.
Even if an equilibrium solid state does exist for
potential A, we cannot definitely say that it is the
phase of lowest energy since we lack the corre-
sponding energy for the liquid phase.

If one introduces some attraction and one uses
the full 'S, potential for all angular momentum
states, the minimum disappears, as shown by
curves B.

Even more realistically, we can now use the
full Bethe-Johnson potential for each partial-
wave state, as shown by choice C. The E/N vs a?
curves again have no minima. The negative ener-
gies of curves B and C are unphysical, and these

curves clearly have no minima.

It is apparent then that the parity -conserving
Hamiltonian used in the paper reduces the possi-
bility of a solid structure in neutron stars by elim-
inating the repulsive unwanted waves. We have
also checked that another purely phenomenological
local potential? that fits the phase-shifts equally
well does not change the previous results. As a
matter of fact, the resulting energies are almost
identical.

A few comments on both Fig. 1 and Fig. 2 con-
cerning the negative values of E/N are in order.
Potentials A and B are highly unrealistic. The
first is repulsive for any internuclear distance
and it therefore produces positive energy for any
density. Potential B is equally unrealistic since
it pretends to represent the NN potential in any
LJ state as a 'S, potential. As we know, the 'S,
potential is more attractive than any other poten-
tial in any LJ state. It reaches a minimum of
about -80 MeV at »=0.7 fm, The repulsive part
of 1S, is not strong enough to overcome such an
attraction except at high density. As a matter of
fact, were the repulsive part more repulsive, the
analogy with solid He® where a strong Lennard-
Jones potential is operating, would have been in-
structive. The only realistic choice is actually
potential C. The action of the extra repulsion
with respect to 'S, brought in by high angular mo-
mentum waves is clearly discernible. Finally, the
3P, state is known to be always repulsive, whereas
the D, potential, even though almost as attractive
as 'S, has its action strongly curtailed by the
strong centrifugal barrier I (I+ 1)/72.

For p =8.46 X10'* gem™3, the distance of the first
neighbor is A=1.358 fm. Since each wave func-
tion” has a spread a™, the very fact that we use
localized wave function of this type implies that
the computation is not valid if ™'z A, i.e., each
wave function, localized at a lattice site R, should
not have a spread larger than half the distance to
the next particle.

For instance, only from a¢?=2, o™ =0.7, and
2A=0.7 do the results start to become meaning-
ful. We have, however, reported values of E/N
for lower values of o® to stress the importance of
the interplay between attraction and repulsion.

We therefore conclude that if we employ the
realistic form of the NN potentials the E/N vs o?
curve does not possess a minimum, a condition
necessary for a solid structure to exist.

Recently, Takemori and Guyer'® have published
computations on solid neutron matter using a /-
matrix formalism similar to ours but with the
corresponding Reid potentials to A, B, and C.
Their results of E/N vs a? are quite close to
those presented here for all three potentials.



12 SOLIDIFICATION OF NEUTRON MATTER

The authors would like to thank Professor H. A.
Bethe and Dr. C. Kdllman, Dr. P. Haapakoski,
and Dr. C. W, Woo for several instructive dis-
cussions during their stay at Nordita, Copen-

2037

hagen. One of the authors (J. L. ) would like to
thank Dr. R, Jastrow for his hospitality at the
Institute for Space Studies.

*Present address; Department of Physics, University
of the West Indies, Kingston, Jamaica.

y. Canuto and S. M. Chitre, Phys. Rev. Lett. 30, 999
(1973).

’P. W. Anderson and R. G. Palmer, Nat. Phys. Sci. 231,
145 (1971); J. W. Clark and N. C. Chao, ibid. 236, 37
(L972); D. Schiff, ibid. 243, 130 (1973).

3V. R. Pandharipande, Nucl. Phys. A174, 641 (1971).

4y, Canuto, J. Lodenquai, and S. M. Chitre, Nucl. Phys.

A209, 170 (1974).

5V. R. Pandharipande, Nucl. Phys. A217, 1 (1973);
(unpublished).

6s. Chakravarty, M. D. Miller, and C. W. Woo, Nucl.

Phys. A220, 233 (1974).

"L. Shen and C. W. Woo, Phys. Rev. D 10, 371 (1974).

83, Cochran and G. V. Chester (unpublished).

°H. A. Bethe, Seminar at Nordita, Copenhagen, June 4,
1974 (unpublished).

0y, Canuto, J. Lodenquai, L. Parish, and S. M. Chitre,
J. Low Temp. Phys. 17, 179 (1974).

11y, A. Bethe and M. B. Johnson, Nucl. Phys. (to be
published).

24, Eikemier and H. H. Hackenbroich, Nucl. Phys.
A169, 407 (1971).

M. T. Takemori and R. A. Guyer, Phys. Rev. D 1,
2696 (1975).



