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Calculation of the covariant pion-nucleus optical potential. I. Kinematical aspects*
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A discussion of several kinematical schemes used in the study of pion-nucleus scattering is presented. It is
shown that various kinematical ambiguities of the noncovariant theories are resolved in a covariant analysis.
In particular, the use of an off-mass-shell description for the projectile and the target particles provides a
degree of freedom in the kinematical description which avoids various problems present in the noncovariant
analyses. We present a comparison of the angle transformations, matrix elements, and differential cross
sections obtained from the different kinematical specifications. In these comparisons we have attempted to
maintain a clear separation of the dynamical and kinematical assumptions, using the same pion-nucleon
interaction in all the cases considered. It is found that the large angle scattering is most sensitive to the details
of the kinematical description.

NUCLEAR REACTIONS Scattering theory, pion optical potential, comparison of kinematic
transformations.

I. INTRODUCTION

Recently, there has been a systematic effort in
the use of pions to probe nuclear structure. The
pion-nucleus interaction differs considerably from
the nucleon-nucleus interaction. At a few hundred
MeV, the kinetic energy of the pion is larger than
its rest mass. Consequently, the pion must be
treated as a relativistic particle. (The relativistic
formalism is unnecessary at such energies in the
case of the nucleon-nucleus interaction. ) Further-
more, the presence of resonances in the medium
energy domain makes the fundamental pion-nucleon
(wN) interaction strongly energy dependent. This in
turn requires a more careful treatment of binding
effects and general off-shell effects.

Two different approaches have been used in the
study of the scattering of pions from nuclei. A

large number of the published works in this area
rely on the nonrelativistic multiple-scattering the-
ory of Watson, or of Kerman, McManus, and
Thaler (KMT). ' These treatments are very similar
to those employed for nucleon-nucleus scattering
except that mN scattering amplitude is used in place
of the NN amplitude. Various ad hoc schemes have
been adopted to introduce relativistic kinematics.
We shall see that such an empirical conbination of
nonrelativistic dynamics and relativistic kinemat-
ics is a source of confusion and ambiguity in deal-
ing with the off-shell effects inherent in the anal-
ysis of pion-nucleus scattering.

Recently, a new covariant multiple-scattering
theory has been developed. ' ' The T matrix in this
theory satisfies a three-dimensional covariant lin-
ear integral equation. (This equation can be ex-

tended to incorporate the desired crossing sym-
metry properties. ' The resulting nonlinear equa-
tion for the T matrix is a generalization of the Low
equation to the case of complex nuclear targets. )
Here the use of relativistic kinematics is integral.
Also, binding effects, off-shell effects, and the
Fermi motion of the target nucleons may all be
treated properly.

In this work, we compare a covariant pion-nucle-
us optical potential discussed previously' with the
noncovariant optical potentials used in literature.
For this purpose, we introduce into our covariant
analysis the fixed scatterer approximation (FSA),
an approximation which is not a prerequisite to the
analysis but is convenient for the purpose of com-
paring our methods with various nonrelativistic
schemes.

In Sec. II, we discuss the basic kinematical prob-
lems which appear in the construction of an optical
potential for pion-nucleus scattering, and note the
general defects of the noncovariant theories. The
principal features of the covariant optical potential
are then discussed in Sec. III. We shall see that,
in addition to the usual Feynman diagrammatic
analysis, the use of a special definition of a spinor
for an off-mass-shell nucleon' is useful in elimi-
nating the ambiguities in the kinematical trans-
formations. One is able to construct a covariant
optical potential which contains only true dynam-
ical off-shell effects. Some numerical values for
the calculated covariant optical potential are pre-
sented in Sec. IV, where pion-carbon elastic scat-
tering cross sections are presented and compared
with experimental data. Finally, we summarize
some of our conclusions in Sec. V. (The reader
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who is not interested in the critique of the nonco-
variant kinematical schemes is advised to skip Sec.
II.)

II. REVIEW( OF NONCOVARIANT METHODS

It is well known that the basic pion-nucleon scat-
tering amplitude appearing in any multiple scatter-
ing theory is "off-shell. " The off-shell (sN) t ma-
trix is often written in noncovariant theories as"
(see F ig. 1):

&k po - q I t(&uo) Ik, p &
= y&k.

'
I t(~0) Ik,&. (2.1)

Here, k' and k represent the pion momenta in the
pion-nucleus c.m. frame, while k,' and k, refer to
the relative momenta in the pion-nucleon (vN) c.m.
frame. Also, po and po-q denote the nucleon mo-
menta, and q is the momentum transfer. The co-
efficient y is a factor related to the transformation
of the mN amplitude from one frame to the other.
A slightly different expression has also been used"
to relate the wN scattering amplitude f (instead of
the t matrix) in different frames:

fhb(k', k) =G(x)f. (.~)(k' k. )

with

(2.2)

G'(y) —= G (cos0,) —=
d(cos8,

d(cosGi b)
(2.3)

(A) (A)

-k-p
0

—k'

FIG. 1. The single-scattering diagram considered in
noncovariant scattering theories. The dashed, the l.ight,
and the heavy lines represent, respectively, the pion,
the nucleon, and various nucl. ei. The xV off-shell scat-
tering amplitude (k', po-qI t (ceo) I k, po& is denoted by
the filled circle, while the nuclear vertex interactions
are represented by the open circles. A cross denotes a
particle which has been placed on its mass shell. . Note
that this figure is a schematic representation of the non-

convariant cal.culation and is not a Feynman diagram.

representing the Jacobian of the angle transforma-
tion.

The necessity of introducing Eq (2.1) o.r Eq. (2.2)
arises from the fact that although the ~N amplitude
needed in constructing the m-nucleus optical poten-
tial is in the center-of-mass (c.m. ) frame of the v-
nucleus system, the phenomenological (either on-
shell or off-shell) vN partial wave amplitudes are

always parametrized and computed in the c.m.
frame of mN system. For instance, in a separable
potential model we have, "with cos8, = 0,' ~ k„
&k.

'
I f(~.)Ik.)

t", .„(Ik.'I) t,'r, „(lk.I) („,—)

(2.4)
as the specification in the mN center-of-mass
frame.

We remark that in most applications the param-
eters, +, and &3, of Eq. (2.1) are somewhat ambig-
uous. However, in the case of Potential models of
the fundamental interaction, supplemented by non-
relativistic kinematics, it is possible to determine
values for , and &0 from a detailed many-body
theory. " In that case, questions of transformation
from one frame to another are readily resolved
us ing standard Gal il can tran sformations.

If we use the transformation of Eq. (2.1), it is
unclear exactly which relativistic dynamical equa-
tion is implied in an ambit'a&/ frame. Various au-
thors have attempted to resolve these difficulties
by using a potential theory which satisfies the re-
quirements of Lorentz invariance"; however, this
approach has not been applied to the study of pion-
nucleus interactions.

In our work we have attempted to resolve the
questions of the relativistic nature of the pionic
motion by using a manifestly covariant diagram-
matic technique. In this scheme we have the re-
quirement of four -momentum conservation at each
vertex as well as the necessity of considering the
dynamics of off-mass-shell particles. Rather than
being a disadvantage, the introduction of off-mass-
shell considerations greatly simplifies the kinemat-
ical transformations. In the foll.owing we will at-
tempt to point out some of the problems which a-
rise if one insists on treating only the kinematics
of on-mass-shell particles. (For the sake of clar
ity, we remark that in our covariant theory we will
speak of off-nzass-shell amplitudes; however, in
the discussion of T matrices obtained from tkxee-
dimensional equations we will speak of on-enexgy-
shell and off-energy-shell amplitudes, as is cus-
tomary. )

As an example, we consider the case of a pion of
momentum k, incident on a nucleon of momentum
—k,/A, as is appropriate to a "fixed scatterer" de-
scription of the target. ' In keeping with the stan-
dard approach found in the literature, both the pion
and the nucleon are placed on their mass shells.
Then no I

see Eq. (2.1)I is taken to be

(2.5)

If P, and P„are the four-momenta of the pion and
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nucleon, one has

(gpo = s = (p Tr
+ p «}

r =E. ,E «,,,/(E. ,T,E«,T,i~)

Equation (2.7) is then generalized in the off-ener-
gy-shell case to

(2.7)

=(E - +E -)'" "o N "o.gg. )' - Ik. l'(I —1/A)'. (2.6)

In Eq. (2.6} it has been assumed that (P, +P„)' is a
Lorentz invariant and this quantity is then evalu-
ated in the (wN) c.m. frame and in the m-nucleus
c.m. frame.

Further, in order to use Eq. (2.1) it is necessary
to specify y. Now, for the on-energy-shell T ma-
trices y is given by

remedy the violation of three-momentum conser-
vation in the above version of the FSA (version 1).
In this new version" of the FSA (version 2), one
evaluates the mN scattering amplitude Eq. (2.1) at
values of nucleon momentum chosen as follows:

and

p, = —k/A + q(A —1)/A

= [(A —I)k' —(A + I)k]/2A (2.11)

p, —q = [(A —1)k —(A + 1)k']/2A. (2.12)

=E.,T, +E~,I,- q
(2.13)

Furthermore, Eqs. (2.5), (2.6), (2.6), and (2.9)
are respectively replaced by

o =E.,],+EN, p,

E 7f. kc Ex.k.c E~.kcEN.k'.c

E7f, 'IfE 7r T&'E w, 4/A+ x, 4'/A
(2 6)

In this scheme the magnitude of the relative mo-
mentum k, is determined by the relation

(E, k, +E« t„}'=(E„q+E« ~„)' —~k~'(I —1/A)',

(2.9)

&3,
' = (E„-„,+E„-„,)'

= (E, q +E„- )' —(k, +p,)',

E..],.E ..k;E~, ~-&~.],-
' '

E,TE.,X&~,p EN, p, -q

(E.,T„+E«, ~,)' = (E., g +E«, p,
)' —(k+ p.)'.

(2.14)

(2.15)

which is a general version of Eq. (2.6). The rela-
tion between the cosines of pion scattering angles,
cos0„=- k' ~ k and cos8„=—A,

' ~ k„ is obtained in this
model from the assumed invariance of t
= (P, -P',}'[or of (P„P',)]:

cos8, =E„& E„~, E„„E-„& + kk'cos8„/k, 'k,

(2.10)

We may criticize the calculational scheme de-
scribed above on several grounds:

(1) The energy parameter ~, is determined by
Eq. (2.6) once and for all. It is then used as the
argument of the D function in the separable model
of Eq. (2.4). This approximation neglects the fact
that the energy available should be calculated sep-
arately for each elementary collision. This fact is
of particular significance for the mN system where
the denominator D is a strong function of energy.

(2) In the original application' of the FSA de-
scribed here, the T matrix which appears in the
theory does not conserve three-momentum or en-
ergy (except in the case of forward scattering).
For example, if the momentum transfer is q, this
symmetric FSA analysis implies the use of kine-
matical transformations based on T matrices of the
form (k+q, —(k+q)/A~t(~, )~k, —k/A). In this case
the implied violation of momentum and energy con-
servation is clearly incompatible with the use of
Lorentz invariance to specify the kinematical
transformations.

In a later work, "a new scheme was devised to

(2.16)

Similarly, the magnitude of the relative momentum
k' is determined by

(E, k +E«q )'= (E, g +E« ~ q)' —(k'+p, -q)'.
(2.17)

The angle transformation is still given by Eq. (2.10)
with the center-of-mass momenta calculated ac-
cording to Eqs. (2.16) and (2.17). The choice of

p, and p, -q in this scheme depends, therefore, on
the scattering angle. Although such a choice re-
stores four-momentum conservation for the mN

scattering whenever ~k, ~

= ~k,'~, it does not improve
the calculational scheme from a fundamental point
of view. In particular, we observe that:

(1) As in the previous scheme, the energy pa-
rameter o is again determined once and for all by
Eq. (2.14), and is independent of the actual ~N col-
lision parameters.

(2) For the off-shell pion-nucleus scattering
()k~ 4 ~k'~), energy is not conserved in the elemen-
tary ~N amplitude. Therefore, this scheme again
becomes incompatible with the use of Lorentz in-
variance to specify the angle transformation.

(3) This scheme will lead to a pion-nucleus opti-
cal potential (k' ~V~k), which is not symmetric under
the interchange of k and k' when ~k~ e

~

k'~. This
happens because the energy parameters uo and p
are noninvariant under this interchange. There is
therefore a violation of the general symmetry prop-
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erty that an optical potential must possess.
Since there is no clear way of avoiding the asym-

metry mentioned above, we will not make full nu-
merical analysis of this scheme here and only re-
strict our discussion to the implied angle trans-
formations.

Various other kinematical transformations were
proposed in the literature. ""These transforma-
tions were based on Lorentz invariance and an on-
mass-shell description for the particles. (We
should note that the work of Phatak" resolves some
of the problems associated with the transformation
originally proposed in Ref. 8.)

Of the published works, we analyze one typical
FSA scheme'o (version 3). On the whole, this
scheme follows version 1 described above except
that the angle transformation is not calculated with
Eq. (2.10). To avoid the occurence of unphysical
values of cos6i„one uses the relation"

finite nucleon recoil) be included. Therefore this
scheme is somewhat limited in application.

We conclude this section by emphasizing that the
kinematical ambiguities in noncovariant treatments
are due to the introduction of relativistic kinema-
tics into nonrelativistic dynamical schemes. We
remark that four-momentum conservation for the
scattering of on-mass-shell particles implies a
fixed scattering angle for a definite magnitude of
the final momentum of one of the particles. For
the calculation of the optical potential, the magni-
tude of the pion momentum and angle of scattering
are independent variables. Only in a covariant the-
ory involving off-mass-shell particles, such as
that discussed in the next section, does the use of
relativistic kinematics produce no ambiguity.

III. OFF-MASS-SHEI. L CALCULATIONS IN THE

COVARIANT THEORY

cosg ab

+E~ K„cos&~

A. Unambiguous kinematical transformation and the covariant
optical potential

(2.18)

where k, is given by Eq. (2.6). The quantity cos8P
can be further related to cos6, in the c.m. frame
of the pion-nucleus system by an on-shell Lorentz
transformation. Equation (2.18}guarantees physi-
cal values of cos0„however, it is a fixed relation
for the scattering of a on-mass-shell pion incident
upon a nucleon at rest in the laboratory frame.
Thus it can not be generalized to off-shell scatter-
ing processes, nor can the subsequent change in the
magnitude of the pion momentum (in the case of

In this work we apply the methods of Ref. 6 to the
calculation of the optical potential. We evaluate the
triangle diagram (Fig. 2) using the rules outlined
in the appendix of that reference. In this method,
each internal particle of four-momentum P, has its
mass defined as Mf'~P, '. In general, Mg is differ-
ent from the on-shell mass M;. This is therefore
an "off-mass-shell" description of the phenomenon.

It has been shown that the first-order eovariant
optical potential involves the integration of the pro-
duct of an invariant off-mass-shell scattering am-
plitude and an invariant density matrix for the tar-
get nucleus, '

d~ P u
—"(P -~}[(2 )'&i, P -~IM..(s)IP, P-e&]" (P-e)

s "s'

( nr .I -)"P""'" @)(~net.s r)" (3.1)

[We refer to Ref. 6 for a, detailed discussion of the quantities appearing in Eq. (3.1).] This potential may be
used in the three-dimensional covariant integral equation:

&k'IM(w)lk& =&k'IIf.(w)lk&
J

dk"&k Iz,(w)lk"&2
"'

E . &k" IM(w)ik&. (3.2}

Here and in Eq. (3.1) the subindices of M, K, and R refer to the specific covariant reduction scheme em-
ployed. "The right-hand side of Eq. (3.1) is a relativistic invariant: the quantity (Mz/E„z g)dQ is an in-
variant volume element, p' is the invariant nuclear density matrix, and the rest of the expression is the

Cf C

invariant off -shell pion-nucleon scattering amplitude. Denoting this invariant mN amplitude by 8&& ', with
the indices f and i referring to the isospin states of the vN system, we find'

6'",."' = u'"(P' -Q) [( 2)'v(P'P' —QlM„(s)Q, P —Q&]u' (P -Q)
= —(2~) 'u" (P' 0)([&"+.'&"r-(P'+P)]+(—I.~)&;.[A' '+.-'If' '~ (P'+P)])u"(P -0),

(3 3)

(3.4)

where (see Fig. 2)
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and

ties, t, p', p'l(P -Q)', (P' -Q)'1+&,t [s, t, p', p", (P Q-)', (P'-Q)']},
&' '= ~ f& r=~t.[s, t, P', P" (P —Q)', (P' —Q)'] -& r=,t, [s, t,P', P", (P —Q )', (P' -Q)']],
s = (p+P -Q)' = (p'+P' —Q)',

t=(p -p')'

(3.5}

(3.6)

(3.8)

There are analogous relations for B ' and B . A
novel feature of Eqs. (3.3) and (3.4) is the appear-

II
ance of off-mass-shell nucleon spinors' u' (P' -Q)
and u' (P-Q). Here u (P' —Q) is a function of
p' -Q, P"-Q'=((p' —Q)'+M'~-')'t' and M'*, whilejf s

u' (P -Q } is a function of P -Q, Po —Qo =((p —Q)'
+~']' ', and M$. The quantities M„'* and M$ can be
termed the "off-shell-masses, " and are ultimately
obtained from the application of four-momentum
conservation for each diagrammatic element. To-
gether with v' (P' -Q) and v' (P -Q), these off-
shell spinors have the same completeness and or-
thogonality relations as the conventional (on-shell)
spinors, which we write as u' (P' —Q), u' (P -Q),

tt pv' (P' —Q), and v' (P —Q}. We refer to our previ-

ous work for detailed discussions. ' It is the intro-
duction of these off-mass-shell nucleon spinors
that enables us to consider Eq. (3.4) to be the most
general Lorentz -invariant off -shell mN amplitude.
Also, the invariant amplitudes A ', defined by Eqs.
(3.5) and (3.6), and B ' depend on more invariants
than the on-shell invariant amplitudes used to de-
scribe free wN scattering. (The relation between
our general off-mass-shell mN amplitude and vari-
ous phenomenological off-shell mN amplitudes was
discussed in Ref. 6.)

The great advantage of using Eq. (3.4) is its in-
variance with respect to frame transformation. In
the c.m. frame of the mN system, we obtain simply

-2,.[M M, ] /. X.'([& +e'(q k.')(q k.)]5/;+(~. ~)f [&, '+&. '(o k.')(o k.)]]X." (3.9)

In Eq. (3.9), E, and E, are functionals of A~'~ and
B ', and k,' and k, are the unit vectors along the
relative momenta. ' The product k,' ~ k, contained in
this equation is related to the scalar product of the
pion momenta in ~-nucIeus c.m. frame by

k' k. =(k'k': —p'p" +k.k')/lk. 'Ilk. l (3.10)

k,' = —,
' Ws+[p" —(P' —Q)']/2&s, (3.12)

k.'=l[p (P -Q)]'-p'(P -Q)')/s (3.13)

= fs' —2s[p'+(P -Q)']+[p' —(P -Q)']')/4s,

(3.14)

k,'= —,
'

v s +[p' —(P —Q)']/2v s, (3.11}

with P' and P" being the zeroth components of the
pion momenta,

={[p'( -Q)]'-p"(
=ls' —2s[p" + (P' -Q)']

+[P"—(P'-Q)']'44s.

(3.15)

(3.16)

p=(2W Ea a, k)

(vr)

p' = (2W-E ~, , k')

(vr)

(A) ar

P= (E,-k)
A, R

'

F%

Q=(E,Q)
1

(A)

P' = (E -k')
a, e' '

FIG. 2. The single-scattering diagram considered in
the convariant scattering theory. This is a true Feynman
diagram with the lines having the same significance as
in Fig. 1. The letters (+LL ) denote the unoccupied orbit
in the nucleus C. The black circle denotes an invariant
scattering amplitude and the open circles are vertices.
Only the heavy nuclei are placed on their mass shells.

Equation (3.10) is the covariant angle transforma
tion eve have ProPosed. This transformation is ob-
tained from calculating the invariant scalar pro-
duct (p'„p, ) in both the sN c.m. frame and the m-

nucleus c.m. frame. In contrast to Eq. (2.10), the
off -shell masses of the pion, P', and P ", and of the
nucleon, (P —Q)', and (P'-Q)', enter into the cal-
culation of Eq. (3.10) via Eqs. (3.11)-(3.16). In this
case we have therefore guaranteed that the angle

A A

cosines given by k,' ~ k, and k' ~ k always remain be-
tween -1 and +1. We mayalso note that the scalars
(P —Q)' and (P' —Q)' are determined at the nuclear
vertices, where their values are influenced by the
binding of the target nucleon.
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B. Covariant fixed scatterer approximation

Since the noncovariant analyses were all based
upon the FSA, it is useful to introduce a covariant
FSA for the purpose of comparing the covariant and

noncovariant schemes. The covariant FSA we pro-
pose can be introduced by the following prescrip-
tions. Repla. ce s in Eq. (3.1) by s of Eq. (2.6) and
factorize the vN amplitude from the dQ integration
to obtain

&k'Ilia(II') Ik& = g ~'"(P' -@)I(»)'&P', P' -@IM,E(~) IP, P -Q&]~"(P —e)P.".'"-"'"(k -k')
nlLs "s'

(3.17)

pI

1

2
(A) (A)

P Q Q;
(a)

pl

Q=Qf
(b)

pl

FIG. 3. A diagram representing the covariant fixed
scatterer approximation. The elements have the same
significance as in Fig. 2. The four-momenta Q~ and Qy
are fixed at ~Ec, gk, —qQ and ~Ec „P...-qk. '~ as discussed
in the text. These two diagrams are averaged to obtain
a symmetric optical potential for the covariant FSA.

with q = (A —I)/A and (see Fig. 2), and

P-@=-(E,i - Ec.i, , -klA), (3.18)

P' -Q=-(E„-„, Ec „~,-, qk -k'). (3.19)

Note that (P —Q)'—=M$'= (M„—b, „n,)2 and (P' -Q)'
—=~'~', with b, „«representing the binding energy of
the nucleon in the orbit (nII ). Also we have, in
general, p eM, and P' wM„. Equations (3.18) and
(3.19) correspond to the situation where before the
scattering event, the nucleon is at rest in the rest
frame of the target nucleus and after scattering the
nucleon is moving in the rest frame of the target.

The vN amplitude in Eq. (3.17) depends on
v,'r»(Ik, 'I)v,'r „(Ik,I)/D,'r „.(s). The values of k,",
k, ' and k,' k, are calculated in the covariant FSA
according to Eqs. (3.10)-(3.14) with P —Q, P' —Q,
and s (not R). Note that we only use the approxima-
tion s —8 in the evaluation of D.

The covariant optical potential. in the FSA [Eq.
(3.17)], calculated by using Eqs. (3.18) and (3.19),
does not have the desired off-shell symmetry prop-
erty with respect to the interchange of k and k'.
The geometry connected with this FSA is not sym-
metric; namely, the initial nucleon is at rest and

the final nucleon is moving in the target nucleus.
We symmetrize the result by averaging the result
obtained in the scheme characterized by Eqs. (3.18)
and (3.19) and that obtained with the specifications:

P Q= (-E„i Ec, zt'~—rlk' -k),
P' -Q—= (E~ i. Ec qk, --k'/A).

(3.20)

(3.21)

Equations (3.20) and (3.21) correspond to the situ-
ation where a nucleon moving in the initial nucleus
has its momentum changed so that it is at rest in
the final nucleus. The averaging procedure is il-
lustrated in Fig. 3. The resulting optical potential
now possesses the desired symmetry property.

IV. COMPARISON OF COVARIANT AND NONCOVARIANT

CALCULATIONS

A. Comparison of angle transformations

Qwing to the fundamental ambiguities existing in
the use of relativistic kinematics within the frame
work of a nonrelativistic dynamical calculation, the
number of ad A'oc transformation schemes which
may be conceived is virtually unlimited. We choose
to compare in Fig. 4 the covariant angle transfor-
mation defined by Eq. (3.10) with the noncovariant
schemes used in Befs. 8, 10, and 14.

For on-shell pion-nucleus scattering [Fig. 4(a)]
the covariant result (solid curve) is hardly distin-
guishable from the result of the procedure advo-.
cated in Refs. 10 and 14. (The latter results are
not shown graphically. ) However, the covariant re-
sult does differ from that of Ref. 8 (dot-dashed
curve)

In the case of off-shell pion-nucleus scattering
[Fig. 4(b)], the transformation defined in Ref. 10
(dashed curve) remains unchanged with respect to
the on-shell calculation, [Fig. 4(a.)], as discussed
in Sec. II, that is, the dashed curve in Fig. 4(b)
coincides with the solid curve in Fig. 4(a). It may
be seen that the curves resulting from the covari-
ant theory change their position but stay entirely in
the physical region; the curves based upon Refs. 8
and 14 move out of the physical region. The dif-
ference between the four schemes is most marked
in the off-shell case.
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0

0

0

0

that in the Born term, the pions are on their mass
shells).

From Eq. (2.9) or Eq. (2. 16) we see that ~k, ~

= )k,'~
in the schemes of Refs. 8, 10, and 14. It is worth
pointing out while the value of ~k, ~

(= ~k,'~) is com-
pletely determined by the incoming (beam) pion mo-
mentum ~k~, once and for all, in the schemes of
Ref s. 6 and 10, the value of ~k, ( (= (k,' ~) depends on
the pion-nucleus scattering angle in Ref. 14.

In contrast, we may use Eqs. (3.14) and (3.16) to
determine the values of ~k, ~

and (k,'( in the covari-
ant theory. These values are different, that is
~k, ( w ~k,'~, (except in the case of forward scattering)
as may be seen from the following considerations.
Owing to the conservation of four-momentum in the
vN scattering process (in the covariant approach)
the off-shell mass of the struck nucleon changes
after the collision with the pion. We have, there-
fore, M'CPM„*; that is, (P' —Q)' c (P- Q)', for non-
forward scattering. From Eqs. (3.14) and (3.16) we
therefore find ~k,

~

0 ~k,'~ in general (see Fig. 5)—in

marked contrast to the situation that obtains in the
noncovariant FSA.

Also in the covariant FSA, the struck nucleon,
which is at rest in the target, has an off-shell mass
M*„=M„—b, , where 6 represents the effect of nucle-
ar binding. This mass difference is illustrated in
Fig. 5, where the value of M'*„as a function of the
angle of scattering of the pion is also exhibited.

In summary, with regard to M'*„and ~k,'~, we note
that they differ from the corresponding noncovari-
ant (constant) FSA values most dramatically for
large scattering angles (Fig. 5). These large dif-
ferences are not as important as might appear from

COS 8lr
FIG. 4. Relation between the cosine of the pion scat-

tering angle in the c.m. frame of the 11- C system, 0~,
and the pion scattering angle in the c,m. frame of the
mV system 0~, for T„" =80 MeV. (a) On-shell scattering
k'=k" =k0=166 MeV/c. (b) Off-sheI. 1 scattering withko=
166 MeV/c, k = 333 MeV/c, and k' = 72 MeV/c. The solid,
dot-dashed, dotted, and dashed curves represent, re-
spectively, the results given by the covariant calcula-
tion, and versions 1, 2, and 3 of the noncovariant FSA.
The upper solid curve corresponds to having the target
nucleon at rest initially, while the lower solid curve
corresponds to having this nucleon at rest in the target
after the collision.

B. Comparison of Born amplitudes (off-mass-shell effect)

The difference between the "off-mass-shell" de-
scription we have used in the covariant analysis
and the "off-energy-shell" description used in non-
relativistic approaches is already marked in the
Born term of the multiple scattering series. (Note

I I
I

I I
I

I I

M

250

900-

T „' =80MeV

800-

700
0

I i i I i )

60 120

150

NC

160
6 (deg &

FIG. 5. Off-shell effects influencing the calculation of
the Born term of the covariant theory. The solid and
dashed curves, respectively, show the off-shell mass,
M'N*, and the final relative momentum in the AN c.m.
frame, ( k', (, as functions of the pion scattering angle,
0„, in the 7t'-nucleus c.m. frame. The calculation made
corresponds to the physical situation of Fig. 3(a) and is
for pion-carbon elastic scattering at T~"=80 MeV. The
dotted and dot-dashed lines are the nucleon mass Mz
and the relative momentum

~ k, ~
used in the nonco-

variant FSA versions 1 and 3.
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ilar in the calculation of the Born term. The dif-
ference between the Born amplitudes at large an-
gles obtained in these two approaches is due to the
following: For nonforward scattering, the covari-
ant theory gives the result Ik, I

c Ik,'I, while the PW
scheme has Ik, I= Ik,'I. This means that in the cal-
culation of the Born term of the pion-nucleus scat-
tering process the elementary mN interaction is off
shell in the covariant theory but on shell in the PW
scheme. This affects the numerical value of the
amplitude.

C. Comparison of calculated potentials and cross section

for m-' C scattering

lt was shown' that Eq. (3.2) could be converted to
a covariant three-dimensional equation for the @-

nucleus T matrix of the form

10
0

l~. f

I

s I:ll la

60
s I i )

120 180

&k'
I
7'.(w) Ik &

= &k'I v, (w) Ik&

-„&k'I l;(W) Ik "&&k"IT.(W) Ik&

2' Q „g „+jg

(4 l)

where

e (deg)
FIG. 6. Bom cross sections for n-~2C scattering at

T„'~80 MeV. The solid, dashed and dot-dashed curves
are, respectively, the covariant, (Ref. 6) LPT (Ref. 8),
and PW N, ef, 10) schemes. In all the calcu)ations the
same off-shell xV interaction, taken from Ref. 11, was
used.

10

I I I

vr -"C I I ) I I

the study of Fig. 5, since the nuclear form factor
is a rapidly decreasing function of momentum
transfer.

The Born cross sections for the covariant and
two noncovariant schemes are compared in Fig. 6.
In each case the mN interaction of Londergan,
Mc Voy, and Moniz" was used. For scatter ing an-
gles less than 20', the results of the Landau,
Phatak, and Tabakin (LPT) (dot-dashed curve) and
the Piepho and Walker (PW) schemes (dashed
curve) are not distinguishable on the figure and
both are slightly higher than the covariant result
(solid curve). This difference at forward scatter-
ing angles is a reflection of the binding effect taken
into consideration in the covariant theory. At large
angles, the three curves differ significantly. The
unusually large (Born) cross section indicated by
the dot-dashed curve can be related to the very un-
usual angle transformation (see Fig. 4) used in the
LPT scheme. The angle transformations of the
covariant theory and the PW scheme are very sim-
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FIG. 7. On-shell values &t'0I Ve, z, (W)Iko& of the optical
potential defined in Eq. (4.2). (a) The real part (note
that the isolated LPT point has a sign opposite to that
shown on the figure). (b) The imaginary part; the cal-
culation is done for &- C scattering at 80 MeV. Note

(k 2 y~ 2)112+(k 2+~ 2)i/2 andk =$66 MeV/c.
Also, 1 fm equals 197.3 MeVfm .
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FIG. 10. Differential cross sections for m- C elastic
scattering at T~ =80 MeV. The data are from Ref. 16.
The curves represent the results for various kinematical
schemes as discussed in the text.
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V. DISCUSSIONS AND CONCLUSIONS

We have used the FSA to compare the covariant
optical potential of Ref. 6 with two noncovariant
optical potentials in order to illustrate the effects
of using different kinematical schemes. Since the

interaction" was used as input in all three optical
potentials, the difference in the differential cross
sections provides an estimate of the effect of using
various kinematical transformations. It can be
seen from Fig. 10 that the LPT scheme yields re-
sults which differ significantly from the covariant
and PW schemes.

Finally, we wish to emphasize that the FSA is not
needed in the application of the covariant theory.
The introduction of the covariant FSA in this work
is for the sole purpose of comparing the kinernat-
ical aspects of different theories. (The theories of
LPT and PW, in their original application, employ
different interactions or different dynamical equa-
tions from those considered here. ) Further, it is
clear that the energy dependence of the mN ampli-
tude in the resonance region will invalidate the
FSA. In the covariant theory this energy depen-
dence, as well as the Fermi motion of the target
nucleons, can be taken into account properly. A
detailed numerical analysis including these impor-
tant features will be reported elsewhere.

use of relativistic kinematics is unambiguous in

the covariant theory, we consider the results of the
covariant calculations least open to question. It is
necessary to emphasize that in the covariant theo-
ry the kinematical transformation is determined
from first principles, and therefore the covariant
optical potential contains only true dynamical off-
shell effects. This is clearly a desirable result
since it allows one to construct dynamical off-shell
models for the invariant mN scattering amplitude
without being confused by the presence of kinema-
tical ambiguities. In fact, the so-called "off-shell
extensions" discussed for noncovariant theories in

the literature often have their origins in the use of
different ad koc kinematical transformations. "Qff-
shell effects" generated in this manner have no re-
lation with true dynamical off-shell considerations.

The dynamical assumptions of the relativistic
theory are fixed by the specification of the covari-
ant scattering amplitudes used in the comparison
of the different kinematical schemes. In particular,
we have used the separable model of Ref. 11 after
making use of the approximation that the form fac-
tors, v2+ 2J depend only on the single invariants
~k, ~

or ~k,'~'. As noted in our previous work, the
off-mass-shell invariant mN amplitude depends on
more variables than the amplitude of the noncovar-
iant theories. Thus, the use of the phenomenolog-
ical amplitudes of Ref. 11 requires that some ap-
proximations be made. These are described in
Ref. 6. Further studies of the off-mass-shell am-
plitudes would be of value in providing further jus-
tification of the approximations we have used in ob-
taining a covariant amplitude via a particular in-
terpretation' of the phenomenological amplitudes.

We wish also to emphasize that the use of an in-
variant 7TN scattering amplitude involving only spin-
ors for on-nzass-skell nucleons" does not resolve
the kinematical ambiguities discussed in this work.
This is because the invariant amplitude to be used
in multiple scattering theory, as we have pointed
out in Sec. II, requires an off mass-shell treat--
ment of the target nucleon. (The physical meaning
of the off-shell-masses M~ and M'~ of the struck
nucleon and their evaluation were discussed previ-
ously. ') The introduction of the spinor for an off-
mass-shell nucleon is therefore an essential in-
gredient in obtaining a convenient and well defined
kinematical description.

The calculated differential cross sections ob-
tained from the covariant and noncovariant optical
potentials may show important differences at large
scattering angles. We note that at these large an-
gles various &d koc kinematical transformations
may not be reliable. Although some nonrelativistic
theories may provide good fits to the data, we feel
that only in the covariant theory can the full kine-
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matical complications of off-shell effects arising
from nuclear Fermi motion and nuclear binding
receive an adequate theoretical description. The
difference between covariant and noncovariant cal-
culations for pion-nucleus elastic scattering should
be more marked if we drop the FSA approximation.
In particular, the inclusion of the effects of the mo-

tion of the target nucleons will cause the mN off-
shell amplitudes to be evaluated in kinematical do-
mains different from those of the noncovariant the-
ories. ' Detailed numerical studies of these novel
aspects of our approach will be presented in future
work.
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