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The Watson multiple scattering series is expanded to develop the Glauber approximation
plus systematic corrections arising from three effects: (1) deviations from eikonal propa-
gation between scatterings, (2) Fermi motion of struck nucl. cons, and (3) the kinematic trans-
formation which relates the many-body scattering operators of the Watson series to the physi-
cal two-body scattering amplitude. Operators which express effects ignored at the outset to
obtain the Glauber approximation are subsequently reintroduced via perturbation expansions.
Hence a particu1. ar set of approximations is developed which renders the sum of the Watson
series to the Glauber form in the center of mass system, and an expansion is carried out to
find leading order corrections to that summation. Although their physical origins are quite
distinct, the eikonal, Fermi motion, and kinematic corrections produce strikingly similar
contributions to the scattering amplitude. It is shown that there is substantial cancellation
between their effects and hence the Glauber approximation is more accurate than the individ-
ual approximations used in its derivation. It is shown that the leading corrections produce
effects of order (2kR, )

' relative to the double scattering term in the uncorrected Glauber
amplitude, +k being momentum and A~ the nuclear charge radius. The leading order correc-
tions are found to be small enough to validate quantitative analyses of experimental data for
many intermediate to high energy cases and for scattering angles not limited to the very for-
ward region. In a Gaussian. model, the leading corrections to the Gl, auber amplitude are given
as convenient analytic expressions.

NUCLEAR REACTIONS Multiple scattering theory at intermediate to high energy;
leading corrections to Glauber approximation due to eikonal, Fermi motion, and

kinematic effects.

I. INTRODUCTION

Whether or not nuclear structure information can
be reliably extracted from precise hadron-nucleus
scattering experiments depends to a large extent
on the quantitative accuracy of nuclear multiple
scattering theory used to interpret the data. ' ' On
the grounds of accuracy, the very convenient
Glauber approximation analysis is questionable"
in the intermediate energy range although it is
generally accepted as asymptotically correct at
fixed momentum transfer. The theory has been
successful in predicting total cross sections at
intermediate energies' which hints that the correc-
tions should not be very large until the energy gets
quite low.

In this paper a high energy expansion of the
Watson multiple scattering series' i.s: given which
reproduces the Glauber approximation as the lead-
ing (asymptotic) term and which produces syste-
matic corrections to the particular combination of
eikonal and sudden passage approximations inher-
ent in Glauber theory. To be specific, the Glauber
approximation is developed as the leading term in

a particular form of eikonal perturbation theory.
For elastic scattering the method is free of such
approximations as setting the longitudinal momen-
tum transfer (q, ) zero. For potential scattering
the eikonal perturbation theory provides systema-
tic improvement over the eikonal approximation
in numerical calculations for forward hemisphere
scattering. Assuming the scattering amplitude
has no essential singularities as k- ™at fixed
momentum transfer q, the eikonal perturbation
theory generates a unique asymptotic 1/k expan-
sion of the scattering amplitude, and hence reli-
able corrections to the high energy limit. This
expansion is thus ideally suited for multiple dif-
fraction scattering by high energy hadrons.

The objective of the high energy expansion is to
introduce corrections to the sudden passage ap-
proximation as well as corrections to the eikonal
approximation. Sudden passage exploits the idea
that the multiple scattering process is dominated

by many small momentum transfer two-body scat-
terings in each of which the projectile encounters
an essentially free constituent nucleon.

The picture further presumes the projectile
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velocity to be much greater than that which con-
stituent nucleons have due to either their Fermi
motion or the most probable momentum transfer-
red to any one of them in the scattering process.
Under such conditions the passage of the projectile
is quite sudden and the constituent nucleons do not
have time to move much during the scattering as
indicated in Fig. 1. Hence it is common practice
to regard the target nucleons as fixed scatterers.
However, it is important to appreciate the differ-
ence between the sudden passage picture and the
distinct approximation (fixed scatterers approxi-
mation) in which one assumes the projectile scat-
ters from rigidly interconnected scatterers, later
perf orming an average over the nuclear wave
function in either case.

The fixed scatterer approximation arises from
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FIG. ].. Sudden passage approximation. For elastic
scattering via the single scattering mechanism (a) indi-
cates a projectil. e with laboratory momentum I'I, just
before scattering from a nucleus (particles inside
dashed circle) which has zero center-of-mass momen-
tum, while (b) shows the system just after scattering.
Momentum q is lost by the projectile and gained by one
nucleon in such a way that the nuclear c.m. recoils
with total. momentum q as required by momentum con-
servation. The internal kinetic energy of the nucleus
does not change. In the weak binding limit, elastic
momentum transfer q measures the probability of find-
ing the nucleus essentially as in (a), other distributions
of initial nucleon momenta l.eading to different final
states {inelastic, breakup, etc.). Although the target
nucleons remain fixed in position in (a) and (b), the
interaction is a two-body quasifree on-energy-shell
scattering with a single nucleon absorbing the recoil
momentum. To the extent that Fermi motion and mo-
mentum transfer are negligible, the same laboratory
momentum applies to the two-body and nuclear scatter-
lIlg.

applying a closure approximation to the propagator
of a projectile passing through the nuclear medium.
One assumes the excitation energy of the nucleus
between scatterings is a negligible fraction of the
projectile energy, and can thus be ignored even
when summing over all possible nuclear states.
What remains is then a two-particle propagator
with kinematics relevant to projectile-nucleus
scattering. The resultant multiple scattering
theory involves a physical picture of rigidly inter-
connected scatterers; each recoiling as if it pos-
sessed the entire inertia, of the nucleus. In con-
trast, the sudden passage case involves two-body
recoil kinematics as indicated in Fig. 1 and this is
clearly preferable for high energy scattering as
the most prominent inelastic channels involve
quasielastic knockouts rather than rigid body ro-
tations.

At very high energy, such distinctions are not
crucial because the recoil effects tend to become
negligible. The reason is because the eikonal
approximation scattering amplitude dominates
at very high energy and it in turn depends only on
the beam velocity, not the recoil kinematics.
However, when corrections to the eikonal limit
become important, then the question of recoil
kinematics enters as was dramatized by Kujawski
and La,mbert. ' The point we wish to emphasize
is that the Glauber approximation presumes two-
body recoil kinematics, not rigidly fixed scatter-
ers as is often implied. For sudden passage the
scatterers are fixed only in the sense of a flash
photograph; they are assumed to recoil as un-
bound nucleons and generally do not have zero
momentum relative to target nucleus center of
mass (c.m. ). To the extent the target nucleons
are free, the individual scatterings are on energy
shell.

Two previous analyses of multiple scattering
starting from the fixed scatterer approximation
and nonrelativistic kinematics have been carried
out using the eikonal perturbation theory to intro-
duce corrections to the eikonal approximation'
and also the Fermi motion. " The result of these
analyses is that the multiple scattering amplitude
separates into two parts; one of which is very
similar to the Glauber form, however, with a
kinematical difference because the recoil kine-
matics in the fixed scatterer analysis necessarily
involve the total nuclear mass. Hence the zero
order (i.e., before corrections) multiple scatter-
ing phase shift of Refs. 10 and 11 does not bear the
same relationship to the free two-body scattering
amplitude as is appropriate for the Glauber ap-
proximation, although the difference is slight at
high energy for reasons already given. Because
the rigidly fixed scatterer model does not intro-
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duce the physical two-body kinematics to indivi-
dual scatterings, it becomes clear that a new start-
ing point is needed for developing corrections for
use at intermediate energies. Hence the purpose
of the present paper is to carefully formulate a
high energy expansion starting from the Watson
multiple scattering expansion and not using the
fixed scatterer approximation. Close attention
is paid to Fermi motion effects and two-body re-
coil kinematic effects in addition to the deviations
from eikonal propagation between scatterings.

A significant finding of the analysis is that there
is substantial cancellation between leading order
corrections to the Glauber approximation arising
from noneikonal, kinematic, and Fermi motion
effects. Stated another way, the finding is that
the use of two-body on-energy-shell amplitudes
plus neglect of Fermi motion plus use of a simple
eikonal propagator between scatterings tends to
be a more optimal combination of approximations
than any one of these approximations taken alone.
This result is important because it suggests that
some straightforward improvements over the
Glauber derivation based on removing one of the
approximations can be less accurate rather than
more accurate.

Each correction considered in this paper pro-
duces in leading order a scattering amplitude
change of order (2kB, ) ' relative to the double
scattering term in the Glauber theory, Sk being
c.m. momentum and 8, the charge radius of the
target nucleus. For calculations at intermediate
to high energies, the first order corrections are
small and they can be reliably calculated using
perturbation methods. The result is a more pre-
cise approximation to the full Watson series.
When two-particle scattering data and nuclear
form factors are parametrized by Gaussian forms,
the leading correction to the Glauber approxima-
tion can be analytically evaluated as can the
Glauber amplitude itself. Thus the enormous com-
putational convenience of the theory is not sacri-
ficed. The leading correction developed in this
paper provides a simple test of when the Glauber
approximation is reliable.

The present development of the high energy
expansion is based on inserting relativistic kine-
matics into the Schrodinger propagator of the
Watson theory in a noncovariant way. To justify
this approach, we have separately examined a
covariant multiple scattering model employing
relativistic eikonal expansion techniques. That
analysis shows that within kinematical factors a-
rising from Lorentz contraction, the leading terms
of an eikonal expansion take the same form in the
fully covariant model as in the present one. The
extra kinematical factors are inserted in our final

formulas to respect Lorentz covariance although
the net effect is generally small.

A novel feature of the analyses is that a two-
body t matrix is introduced whose nuclear elastic
matrix element involves just the physical tzeo-body
scattering information. This two-body I, matrix
is convenient for multiple scattering because it
automatically accomplishes the kinematic trans-
formation from two-body to nuclear center-of-
mass systems. The error made when this two-
body t matrix is substituted for Watson's many-
body operators can then be recovered by an eikon-
al-like perturbation expansion in just the same
fashion that noneikonal effects and Fermi motion
effects are recovered.

A parametrization of two-body amplitudes is
made in terms of an effective eikonal potential
related directly to the observable scattering ampli-
tude. The effective eikonal potential is so defined
that it is local, energy dependent, and when it is
used together with an eikonal propagator in a Lip-
pmann-Schwinger integral equation, one obtains
a t matrix whose on-energy-shell matrix elements
agree with the physical amplitude. By using this
device to parametrize the fundamental interaction
via a two-body t matrix, the high energy expansion
is rendered tractable and the corrections to the
high energy limit are determined directly from on-
energy-shell information.

II. HIGH ENERGY EXPANSION

For hadron-nucleus elastic scattering, let the
initial and final c.m. momenta be k& and k&, re-
spectively (units: A= c= I). The c.m. scattering
amplitude is expressed in terms of a T matrix as

E(q) =(T) —= e(2w) (-k~, Eo~T ~k;';Eo); q =k; —k~ .
(I)

In what follows the notation ( ) is consistently used
to denote the same nuclear elastic scattering ma-
trix element as here, Eo being the target nucleus
ground state energy.

The Watson multiple scattering expansion pro-
vides the following model for T assuming that
each two-particle scattering proceeds through the
elastic channel

A A

T = Qr, . + r,GT, +Q w;GAG. r, +~, (2)
i=1 j «j= 1 j «gvsQ

where
jmt'2

G
2E

+ t'p„(m/M)P j'
8= 1 2FfE

7]= V] + V]GT) .
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The kinematic parameters for the projectile nu-
cleus c.m. are

e =EI, (M/v s ), k =P~(M/Ws),

s=mo2+M +2MEL, EI, =n'o +PJ

while those for the projectile nucleon c.m. are

c, =EL, (m/b s, ), ~ = P~ (m/Ws, ),

s2 =m o'+ m'+ 2mE~ .

(4a)

(4b)

The profile functions I' are assumed to be related
to physical two-particle elastic scattering ampli-
tudes at the same laboratory energy EI by Fourier
transformation

I'(b)=K(RKK) f d'de 'I' f, ,„(d;KK,);,

In these expressions, EI,P~, and m, are the la-
boratory energy, momentum, and rest mass of
the projectile, while e and k are the nuclear c.m.
energy and momentum; &, and w are the two-body
c.m. energy and momentum; p is the nuclear c.m.
momentum operator; II~ is a nonrelativistic inter-
nal Hamiltonian for the nucleus of A nucleons each
with momentum p„and mass m, while the total nu-
clear mass and momentum are M and P =P„"p„. The
operators &; are similar to two-particle t matrices
with the important difference that G is a many-
body propagator. The interaction V, is regarded
as known only through the effects it produces in
physical two-particle scattering.

In the nonrelativistic limit, Eqs. (3) and (4) re-
present standard kinematics as ~ and e, become
reduced masses m, M/(m, +M) and m, m/(mo+m)
for nuclear and two-body scattering, respectively.
Relativistically, the kinematics are chosen so
that the eikonal (high energy) limit and the leading
I/)), corrections to the high energy limit are the
same as in a covariant model of two-particle
scattering based on summing the generalized lad-
der set of Feynman diagrams. Hence the depar-
ture from the more commonly used Watson kine-
matic prescription is intentional and is necessary
for agreement with covariant high energy results.

For large k = ~k; ~

= ~k&~, the Qlauber approxima-
tion has been successfully used to approximate

(T&=(T'g&= Fo(q),

where the matrix element (Tc& can be expanded
into a finite multiple scattering series when ex-
pressed as the following integral over impact
parameters

F,(q) =— d'I) e'~'ik
2'

where G, is a two-particle propagator which we
divide into two parts as follows

G2 ~=g ~ —N2;

g is an eikonal propagator for nuclear scattering
defined by~2

g = v ~ [(kq +kg)/2 —p1i
& (kg+

(10)

and N, contains two-body recoil effects:

N, =(p —k~) ~ (p —k, }/(2e,)+X~ ',
X =1 —[1 —q'e'/(4k'e ') j' '

The operator N, is very similar to the operator
used in Refs. 10 and 11 to introduce corrections to
the eikonal approximation. The so defined G, and
v,' are not the usual ones for free two-particle
scattering (e.g., k, and kz are projectile-nucleus
relative momenta and the struck nucleon momen-
tum p, does not enter}; however, they are very
suitable to our purpose which is nuclear scatter-
ing. If the interaction V& is any local potential,
then the operator 7,' has the property that its
nuclear matrix element involves (exactly) the phy-
sical tuo-Particle phase shift. In impact para-
meter representation, the statement is the follow-
ing where I' is the same function appearing in Eq.
(7):

(K')=Ib(2K)' Jd'bK" (&.I&(b-b )l&)

(12)

Hence approximating v; by v,' causes the single
scattering terms in Eqs. (2) and (6) to be identical.
A demonstration that G, is the propagator needed
to accomplish this result is given in Appendix A.
We emphasize that the result does not involve use
of the eikonal approximation but does assume a
local potential.

The error in the approximation T, = T,' is re-
coverable as follows. We express the difference

z and c, being the c.m. momentum and energy for
two-particle scattering. Although it is not expli-
citly shown, I'(I)) obviously depends parametrical-
ly on kinematic parameters x and e~ for two-par-
ticle scattering. For simplicity, the spin and iso-
spin dependence of I' is neglected in the present
analysis.

Because the Glauber theory is tractable, it is
enormously useful. Our goal is to perform a high
energy expansion of the Watson series which pro-
duces Eq. (6) plus corrections S.tep 1 is to ex-
pand the many-body operators v& about the follow-
ing two-particle operator

~, =V, +VC, ~,',
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between G, and the full propagator Q by

G, '-G '=N-N, +H, -E„ (13)

(8), and (13) that 7, differs from rt as follows

r( = v( + r( G~(N N-R+Hr E0—)G7( . (15)

where

N = (p -k, ) ~ (p -k, )/(2~)+ ~g-';

g —I [1 q2/(4P)]~& & (14)

To obtain Eq. (13), we have used G '=g '-N
—(Hr -Eo) together with Eq. (9). The eikonal
term g ' is common to both 6 ' and G, ' and hence
cancels in Eq. (13). Note that N involves projec-
tile-nucleus kinematics and hence differs from N,
which involves two-particle kinematics. Even
though N and N, are operators which express de-
viations from eikonal propagation, the portion
N-N, of Eq. (13) is not a correction to the eikonal
approximation but rather expresses the error in
the kinematic transformation from projectile-nu-
cleus to two-body systems. Because this kinema-
tic effect can be so described, it is obviously com-
parable in importance to deviations from the ei-
konal approximation. One deduces from Eqs. (3),

Equation (15) provides a basis for recovering ef-
fects missing from v,' via a perturbation expansion.
Generally the three corrections cancel each other
to some degree.

Step 2 is to introduce an effective two-body ei-
konal potential which is local and energy depen-
dent as follows:

U~(r) =in ' du, in[1 —I'(r'+u')'/'], (16)
d

~IO

where I'(b) is the two-particle profile function of
Eq. (7). Once given I'(b), this equation defines a
local eikonal potential whether or not the under-
lying interaction V, responsible for the phase
shift is local. The eikonal potential is so defined
that when it is used together with the eikonal
propagator (10) to define a new scattering opera-
tor t; by the integral equation

t; = V~, + Vs,gt„V~( ——(k/e)U~()r r)))—, (17)

then the new operator t, has the same nuclear ma-

trix element as does v,':

(tg=i)(nr) 'fdic"' (E,(
) —exp -i d*() (I~-~ii& )I&.) (18)

v'(-» f(+ t( G2(N Nm+Hr —-Eo)Gv, . (19)

The third step is to expand the propagators G
and G, about the eikonal propagator g using

This is the same as Eq. (12}because Eq. (16) re-
presents the we11-known result of equating Eqs.
(12) and (18) and effecting the solution for Us(r)
in terms of I'(I)) by an Abel integral transforma-
tion.

Hence for on-energy-shell momenta, the nu-
c1ear matrix elements of 7,' and t, are equivalent
by construction; for off-energy-she11 momenta
they may differ. The utility of t, is that it pro-
vides a convenient off-she11 extrapolation of the
physical phase shift. If we approximate 7,' by t, ,
the approximation invo1ved is analogous to that
of using a separable potential to extrapolate known

physical phase shifts off the energy shell. " Step
2 is to so approximate 7,' by t, in Eq. (15}, obtain-
ing

called the off-energy-shell effect in that it relates
the many-body operators v, of the %'atson expan-
sion to a two-body operator t, constructed from
on-energy-shell information. In Eq. (20), the
operator N generates corrections to eikonal pro-
pagation while Hz -E, generates Fermi motion
effects. If Hr is set equal to E, (for example, by
projecting onto the nuclear ground state}, then
Eq. (20) reduces to a two-body fixed scatterer
(or optical model) propagator. If furthermore N
is set to zero then Eq. (20) reduces to the eikonal
propagator g. Because the same operators appear
in Eqs. (20) and (19), one can see that the approxi-
mations v, =t, and 6=g which underlie the Qlauber
approximation are of comparable validity.

When perturbation expansions based on Eqs. (19)
and (20) are introduced to the Watson series (2}
(see Appendix 8 for details}one , finds that T re-
duces to the Glauber approximation plus correc-
tions. To leading order in 0 ' but all orders in
multiple scattering, the result is

G =g+g(N+Hr —Eo)G,

G2= g+gN2G2 .

(20)

(21)
&» =& r, ) +&()+ i's(()(&+iir -&.—2 )' ii'&)m)', )

The integral equation (19) expresses what is often x(Teg+1)) +0(l/k ), (22)



184 STEPHEN J. WALLACE 12

where

Ts —Q t, + Q t(gt)+ Q tgt~gt„+
g WfWgg

(23)

is the Glauber approximation to the Watson series. '
It is worth noting that the operator N~ appearing in
the correction term (22) arises from the difference
of N+Hr —E, from Eq. (20) and N N, +-Hr-E,
from Eq. (19). Thus there is partial cancellation
of the corrections from Eqs. (19) and (20) which
is already incorporated into Eq. (22).

III. EVALUATION OF THE CORRECTION

~(q) =~.(q)+~, (q)+ ~ ~ ~, (24)

where the correction to the Glauber approxima-
tion (6) involves eikonal potentials as follows (see

Due to the simple properties of the eikonal pro-
pagator and the fact that Uz is local, Eq. (21) can
be reduced to calculable expressions, The scat-
tering amplitude is written as a perturbation series
ink'

Appendix B for details):

Z,(2)={," ) Jd*e ' e(Z, )
[2-1'(2 —5)] +[1-e/~ —e,P(e, ' — ')]

i =1 i.j
OO -]]- E

dz V dz'Uz()r' —r;)) V dz'Uz(fr' —r&/) /Eg.
J~oo — g ~40

(25)

The factor (mo+M)/~s evident in Eq. (25) is the
aforementioned factor inserted to respect Lor-
entz covariance.

To obtain Eq. (25), the Fermi motion operator
Hr —Eo in Eq. (22) has been commuted to one side
until it acts on the nuclear ground state ~E,) and
thereby annihilates itself. Hence Eq. (25) only
involves the noncommuting (kinetic energy) por-
tion of the H~ and one finds that the Fermi motion
correction reduces to the same form as the cor-
rections arising from N and N~. In consequence,
the kinematic factors in Eq. (25}combine the ef-
fects of all three sources of correction.

In the limit of nonrelativistic kinematics,
~p +~ and ~2 ~p +AM ' become the

reduced masses for projectile-nucleus and pro-
jectile-nucleon systems, respectively. Then the
diagonal (i =j}terms in Eq. (25) vanish altogether
due to the cancellations. The coefficient of the
off-diagonal (i4j) terms becomes M/(m, +M)= 1
in place of 1 —c/M. Thus the off-diagonal terms
in Eq. (25) produce the major correction and as
previously discussed, this correction is due to
the "overlapping potentials" effect. The fact that
kinematic, Fermi motion and eikonal corrections
all cancel in the diagonal portion of Eq. (25} sug-
gests that the Glauber theory embodies an optimal
combination of eikonal and sudden passage approxi-
mations. It is worth noting that this cancellation
would not showup in the expansion of Ref. 11 due
to omission of the kinematic corrections due to

A

((E (r„... rz) I' = p.(~g)(»)'6"'(r, +" +r, )

(26)

with each p, (r) represented by a Gaussian term

p (~)=(4v&) "e " "
p (q')=e '" (2'7)

together with the standard approximation to the
two-par ticle scattering amplitude

( )
Ko'(i +p)4n' (26)

In this model, the Glauber amplitude takes a well-

Eq. (19).
The off-diagonal (overlapping potentials) portion

of Eq. (25} resembles the result found in a pre-
vious analysis' based on the fixed scatterer ap-
proximation in which the diagonal terms do not
arise. Because the diagonal terms cancel (in the
nonrelativistic limit), Eq. (25) is essentially the
fixed scatterer result. However, an important
difference is that Eq. (25}provides a well-defined
and calculable correction starting from only on-
energy-shell information introduced via the eikonal
potential U~.

The relative size of the correction E,(q) in Eq.
(24) gives a specific indication of when the Glauber
approximation is accurate. To calculate E,(q},
we employ the often used Gaussian model in which
the target nucleus wave function is written

known analytic form':

F(e)= 2eee ee"(B, ())g{:)—. e-e ' '
, , j q 6~(H+P)

(29)
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Us(q) = 2in
(

db hT, (qb) in[i —I'(5)] (30a)

Although it is more complicated, the leading
correction obtained from Eq. (25) can be reduced
to analytic expressions. To do this, it is first
necessary to determine the eikonal potentia1.
Us(r}, or equivalently, its Fourier transform
Us(q). From Eq. (16) one can show that the
Fourier transform takes the form

ing F,(q) into two components:

F,(q) =F~o(q)+Ff(q) . (33)

The part E, (q) represents the off diagonal (ie j)
terms of Eq. (25) which contain the overlapping
potentials effect in nuclear multiple scattering,
while EP(q) represents the diagonal (i =j) terms
of Eg. (25) and is related to corrections to single
scattering. Due to the cancellations already noted,

EP(q) tends to be small. The results are expres-

f dbb'J, (qb)& (30b)

where the second line follows after inserting

p(5) + Q /4g, ( P)
8vP

(31)

in accordance with Eqs. (28) and (7). It is an im-
portant numerical detail that ~o, ~

is often bigger
than unity for nucleon-nucleon diffraction scat-
tering and in such cases an expansion of Eq. (30b)
in powers of o, diverges. However, the quantity
needed in evaluating Eq. (25) is not directly Us(q)
but rather the product Us(q)po(q} because in co-
ordinate space idr'Us(r r') p—o(r'} enters Since.
the density po(q) falls off rapidly with q, we need
only determine Us(q) for relatively small q values.

A numerical calculation of Us(q) for diffractive
scattering is shown in Fig. 2 based on (30b) with
parameter values a =44 mb, p = -0.3, and P =2.72

(GeV/c) ' chosen to represent the 1 GeV nucleon-
nucleon diffraction scattering via Eq. (28). In this
case ~a',

~
=1.67. As shown by the dashed lines in

Fig. 2, the magnitude and phase of Us(q) can be
well approximated by a Gaussian form within the
range where p, (q) for 'He is significant. The
dashed lines in Fig. 2 are based on

LLJ

O
I- -I

IO

-2
IO

I.O

2-yq

Us(q) = -i4vPo', Ze "' (32)

with complex parameter values Z = 1.20+iO. VS,

y =2.21 -i0.89. The form of Eq. (32) is chosen to
facilitate comparison with the simple approxima-
tion Z=1, y=Pwhich would follow from ignoring
the denominator in Eq. (30b}. Note that for a tar-
get nucleus larger than ~He, p, (q) wouM fall faster
with q thereby improving the approximation (32}.

Once Us(q) has been approximated by the Gaus-
sian form (32), it is possible to carry out all the
remaining integrations in Eq. (25) to obtain an
analytic approximation to F,(q) in the Gaussian
model including center -of -mass correlations. The
analytic result can be easily generalized to the
case where Us(q) is represented by a sum of Gaus-
sian terms although there is no need to do so in
the present case.

The analytic expressions are based on separat-

ILJ
M

0.5—

0
0

I

0.5

q (GeV/c)

I

I.0

FIG. 2. The amplitude and phase of the complex eiko-
nal potential Uz (q) are compared to a Gaussian approxi-
mation by plotting S(q) = U&(q)/[-i4xP0'&] (solid l.ines)
and comparing to a simpl. e fit Ze ~~ as per Eq. (32)
(dashed lines). The dotted curve shows the rapid fall
off of po(q) = e ~ representative of a He target nucleus.
At the point where the Gaussian approximation Ze &
deviates by 10% from Z(q), the density factor po has in-
creased to 2% of its maximum value. Hence the product
p 0(q) U&(q) is accurately represented by a single Gaus-
sian term throughout the range where it is significant.
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sed as sums of Gaussian terms as follows~:

1)+'~ (q)'qo
2[2m(R+ )p/' l

—
&+ & g o, «[a„—4n«b„(1 —n«q )]e "«', (34)

g ~«[c. 4~—.,&.(1 P«-q'}]e
(po,Z)2 "-' (A —1) &x,p

(35)

where

z,.(q) ="~~" (36)

is the mell-known factor arising from the center-
of-mass constraint of Eq. (26). The kinematic
factors &0 and q~ are given by

Equations (34) and (35) provide useful forms for
the leading corrections to the Glauber approxima-
tion. It is instructive to compare these results to
the double scattering terms of the Qlauber ampli-
tude (29):

2

)-, )~) = -)) ~)~ - ))P,' ) . (q)(
+'

1-—+(A —1}—m, +M
e M ~s

(3V) a comparison which is more transparent in terms
of the following approximate ratios:

and expressions for the remaining parameters in
Eqs. (34) and (35) are given in Table 1 in terms of
previously defined parameters B Eq. (27), P Eq.
(28), and o', Eq. (31). The parameters Z andy of
Eq. (32) must be determined numerically as de-
scribed above if jo, ) & l. The index f in Table 1

takes the values 0 through 4 as required by the
sums in Eqs. (34) and (35).

E, (q)/E~ (q)= -ir(oZ'[1 —q' R' /(8 v)] /(k R),

R'=-8v(B+P) . (40)

E, (q)/E, (q) = -iq~&'(1 —pq'}e s"~'/[(/1 —1)kR].

(39b)

A length parameter R has been defined by

TABLE I. Parameter definitions for the analytic results (34) and (35).

~, =~p/(v P)

~ -'=2(q+a)-'+1(P+a)-'

~ -~= (y+g)-'+(y +8)-~+I(p+gy)-'

~3) 2(»+» +E(p+»

a(=(y+B) '

&2 = -2O $(»/7) ('Y+ &) (»+&)
~3=0~'(y~/y)'(»+&) '

&,= (~+~)-'
&vg 'Ys

&2= -~&(»/y)(v~+&) '(v+&) p(a+y, ) ~+a p y, +a+ 1——

b, =~, (»/y) (»+&)-2 2 -3 871 71
p(»+&) p

V2=~P/(P+2V)

~it = (y/2+B) i+E(p+B) i

P» =(v, /2+~)-'+i(P+~)-'

c~=(y-»)(V+») '
2 2

c2 = —cr )(y2/yg) (y2+ ~) y-—+ (,"W
d, =q(q+2@)-3

y, =-~»-2~»/(»+2m) j3
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First one notes the appearance of a dimensionless
ordering parameter (kR) '. When this parameter
is small compared to unity, the subject correc-
tions are small relative to the double scattering
term of the Glauber approximation, at least for
qR not large. The essential point is that the pro-
jectile wavelength need only be small compared
to the rms charge radius R, of the target nucleus
for (kR) ' to be a good expansion parameter. This
follows from noting that B=~R,' and hence an up-
per bound is

(41)

Thus the high energy expansion can be convergent
at rather low momenta for a variety of projectile-
nucleon interactions. Notice that this statement
is made for highly overlapping interactions which
is the case relevant to nuclear multiple see, ttering.
It is the spread out nature of each target nucleon
wave function which gives enhanced covergence of
the high energy expansion. For contrast consider
scattering by rigidly fixed centers in which bind-
ing effects are absent. Then there is no cutoff
from the target form factor (i.e., R, -0) radically
altering the above estimates. Our point is that at
energies for which the Glauber approximation can
be shown to be inadequate for rigidly fixed scat-
terers, "the high energy expansion remains ef-
fective for the physically interesting case of weak-
ly bound scatterers.

Typically R, ~ 1.4 fm, and thus 2', is less than
unity for c.m. momenta k greater than 60 MeV/c
Although the present expansion may very well not
converge at such low momenta, it appears well
suited to the intermediate energy range (2kR, -4
for 200 MeV pions, 2kR, -7 for 200 MeV protons
on helium). At sufficiently high energy, multiple
scattering can be accurately calculated using the
perturbation expansion (24) with leading correc
tions given very simply in the Gaussian model by
Eqs. (34) and (35). The higher order terms [E,(q)
and so on) in the high energy expansion (24) tend
to be of order (kR) ' or smaller compared to the
triple scattering term in the Glauber amplitude
provided qR ~1.

There remains the essential question of the
angular range of validity of the approximations
made, or to say the same thing, the limits on q.
Because an eikonal expansion can be arranged in
several forms, we mention here an accumulation
of results' ' which, in sum, show that the eikonal
perturbation theory in the form presently used
does give reliable extension of the angular range
of validity. To illustrate the results, differential
cross sections for proton-4He elastic scattering
have been computed at 1 GeV for which standard
Glauber calculations and experimental data exist.
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FIG. 3. For elastic scattering of 1.05 GeV protons by
4He, the Glauber approximation [Eo( 2 (dashed line) is
compared to the high energy expansion result I& 0+ &ql t

(solid l.ine) based on Egs. (26) to {37). The term I'&

incorporates effects of eikonal, Fermi motion, and
kinematic corrections to leading order in the high ener-
gy expansion.

Although there are other well defined corrections
to the Glauber approximation which need be con-
sidered before one compares the theory in a de-
tailed way with experimental data (e.g., spin"
and isospin effects, N* virtual production" nuclear
structure effects, "and phase indeterminancy of
two-particle amplitudes) they are all logically dis-
tinct from the ones we consider here.

The present purpose is to establish the relative
size of eikonal, kinematic, and Fermi motion cor-
rections to the Glauber approximation at energies
which are high enough for the leading corrections
to be taken seriously. We employ the Gaussian
model for scattering by 'He.

At 1 GeV (Fig. 3), the expansion parameter
q, jZ~'/(2kR, ) is 0.08, naively implying a 16% cor-
rection to the differential cross section in the
double scattering region from Eq. (39). At the
double scattering maximum in Fig. 3 (8 = 28'),
the correction is in fact 15%. Near the first dif-
fraction minimum, the corrections are quite small
due to cancellations and they do not become larger
than 31% in the range 8 & 60' shown. Evidently the
leading eikonal and sudden passage corrections do
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in fact represent small effects in this test case.
For a beam kinetic energy of 290 MeV instead of
1 GeV, k ' becomes twice as large and the leading
corrections would be about double those shown in
Fig. 3. The effectiveness of the high energy ex-
pansion thus overlaps most of the intermediate
energy range and is not limited to extremely high
energy scattering.

The high energy expansion provides a frame-
work in which to gauge the effectiveness of other
approximations commonly used in multiple scat-
tering calculations. For this purpose we assume
that the high energy expansion result (solid line
of Fig. 3) has converged very close to the exact
result for the 1 GeV P -4He scattering and then
compare other approximations with this result.

In the simplest form of fixed scatterer approxi-
mation H~ -E„which represents the nuclear ex-
citation energy, is set to zero everywhere and
therefore only the projectile nucleus kinem3. ties
enter via Eq. (2). Even though the r, do not in-
volve the two-body kinematics, they can be re-

lated to two-body physical amplitudes via Eq. (19).
The key feature is that the eikonal approximation
is not used for the propagator G of Eq. (20) and it
is therefore often assumed that the fixed scatterer
approximation is for this reason alone better
founded than the Glauber approximation.

A way to test this notion is to keep just the ef-
fects of N and Nm operators in Eqs. (19) and (20).
The change is simply to alter the kinematic para-
meters (3'I) to bio =1 and rin = 1 —e/e, . Figure 4

compares the high energy expansion resuIt of
Fig. 3 to the corresponding fixed scatterer result
calculated as just described.

The fixed scatterer result is no more effective
than Glauber approximation in such a comparison,
the reason being that fewer cancellations have oc-
curred among the leading corrections. If nothing
else, such a result suggests that it is subtle
matter to realize improvements over relatively
simple Glauber model calculations.

For elastic scattering, the optical model pro-
vides a theory which is in principle free of approx-
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FIG. 4. The full high energy amplitude (Fo+Fjt
{solid line) of Fig. 3 is compared to the amplitude
(F0+F'J 2 (dashed line) which omits corrections due
to the Fermi motion, i.e., Hz-Ep 0. Thus I" 0+I"

&

represents (to leading order) the results a so-cal. I.ed
exact fixed scatterer calculations in which only projec-
tile-nucl. eus kinematics enter but in which the interac-
tion is taken to be the physical two-particle scattering
amplitude.

FIG. S. The full high energy expansion result IF 0+Fgl

{solid l.ine) of Fig. 3 is compared to the amplitude
(F0+F'&') 2 (dashed line) which incorporates only the cor-
rection for non eikona1 propagation between scatterings.
Thus I'0+E'&' represents (to leading order) the results
of using free two-partic1e amplitudes in place of the
operators &; of the Watson series and ignoring Fermi
motion terms in the propagator &, both of which are
common practice in optical madel calcul. ations.
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imations and is limited only by the fact that exact
optical model calculations are intractable. It is
common practice to simplify matters by employ-
ing the impulse approximation to the ~& operators
of the Watson series together with a projection in
the propagator G which excludes all but the nuclear
ground state between scatterings. Usually Fermi-
motion and kinematic transformation effects are
ignored. However, the eikonal approximation is
avoided by solving a Schrodinger equation. The
effectiveness of this scheme can be estimated
within the high energy expansion by making cor-
responding approximations, namely, v; =t; which
corresponds to the impulse approximation plus
ignoring Hr —E, in Eq. (20) which corresponds to
the nucleus always being in its ground state be-
tween scatterings. In this case the high energy
expansion proceeds with only the correction from
noneikonal propagation between scatte rings. The
change is to alter the kinematic parameters (37)
to p p = & p g = 0 Figure 5 compares the full high
energy expansion result to the result based on
the typical optical model approximations just
described. A comparison with Fig. 3 indicates
that such optical model calculations are no more
accurate than Glauber calculations for the 2 GeV
P- He scattering, assuming the solid line in either
figure represents the correct result.

IV. CONCLUDING REMARKS

For nuclear multiple diffraction scattering the
high energy expansion provides a systematic
framework within which the Glauber approxima-
tion emerges as the leading term at asymptotic
energies. It should be noted that the version of
the Glauber approximation which emerges applies
to the center-of-momentum system (as necessary
for momentum conservation} rather than the la-
boratory frame. Also we carefully distinguish be-
tween fixed scatterer and sudden passage type
kinematics. Although a nonrelativistic framewor k
is employed, relativistic kinematics have been
introduced in such a way that all kinematic factors
are in agreement with those of a covariant model.

Several qualifications on the analysis should be
noted. First and most important, the eikonal
perturbation theory is basically an asymptotic ex-
pansion in k' ' which is most convergent for large
k and forward scattering angles. For large scat-
tering angles or too low energy, the convergence
may be poor, and hence the high energy expansion
is most relevant to forward hemisphere (8, &90'}
scattering. Within the forward hemisphere region
there are several approximations implicit in the
analysis which are believed to involve negligible

A portion of this work was performed at the Los
Alamos Scientific Laboratory during a visit to the
Theoretical Division. The author thanks the In-
termediate Energy Theory group for their hospi-
tality.

APPENDIX A

It is to be shown that the nuclear c.m, matrix
element of the operator r' defined in Eq. (8) in-
volves the physical two-particle phase shift. To
specify (r'), consider the scattering wave func-
tion for a local potential V(r) satisfying

[G, ' —V(r)] 4 + (r; k; ) = 0 (Al)

errors but which are noted for completeness. For
example, the relevant two-body scattering ampli-
tudes have been assumed to be diffractive in nature,
at least to the extent that exchange channel effects
have been ignored in writing the simple impact
parameter representation of Eq. (7). This as-
sumption reinforces the forward hemisphere limi-
tation. Also, note that the kinematic transforma-
tion involved in showing that the nuclear matrix
elements of the operator 7,' involves the two-body
physical phase shift is only exact if the interaction
is through a local potential. If a nonlocal poten-
tial is required, there is a presumably small er-
ror involved. Finally, the off-energy-shell ma-
trix elements of the two-particle scattering op-
erator have been rather arbitrarily parametrized
through use of the eikonal potential. Other means
of extrapolating the physical phase shift to con-
struct off-energy-shell matrix elements may pro-
vide different results, but only to the extent that
off-shell effects are important at all. Both of
these sources of potential error are small when
the two-particle scattering amplitudes depend
primarily on momentum transfer and are rela-
tively insensitive to the beam energy as is char-
acteristic of intermediate to high energy diffrac-
tive amplitudes. Hence we believe that the high
energy expansion provides reliable improvement
over the Glauber approximation for forward hemi-
sphere nuclear multiple diffraction scattering.

The results suggest that the very successful
Glauber approximation works well because the
dominant corrections involve some subtle can-
cellations and because the overlapping potentials
effect is small when the projectile wavelength is
much shorter than the charge radius of the bound
nucleons. In conclusion, the results lead us to
believe that nuclear structure nad/ roother effects
can be reliably extracted from precise hadron
nucleus scattering experiments using the Glauber
approximation plus leading corrections.
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G, is given by Eq. (9). If we express the scat-
tering wave function in the form

e~'(r; g) =e' ' ' 'P(r), (As)

the nuclear scattering matrix element of v' takes
the form

—e(2r) '(kz(v'(k) =-a(2w) ' Jdr e'~' ' v(r)p(r),

(A4)

where from (Al) and (As) it follows that P(&) is
the solution of

[-v ~ p(1 —&) ) —p ~ (p+q)/(2& ) —V(r)l(t)(r) = 0

and the boundary condition of incoming plane waves

e&'&(r; k, )-e' (A2)

Equa, tion (A11) is the wave equation for two par-
ticle scattering and Eq. (A12} thus relates ~r) to
the two-particle scattering wave function for ini-
tial momentum 7, . Hence the two-particle c.m.
scattering amplitude takes the form

f, „, (q) = -e, (2v) ' («
~ g g&+& (r; «, ))

= -e, (2n) ' dr e'& "& "f&'' V(r)@r).

(Als)
To evaluate Eq. (A13) at the same momentum

transfer q which is considered for the nuclear
matrix element, let Kg=Kg —q. Note that e,/«
= e/k) I»t( = (», ~

= «, and that —,'(«, +»t) is parallel
to v and thus also perpendicular to q. Integration
over z then produces

(A5) f.... ( )= ( ) f~~"'"('(5), (A14)
and the boundary condition

4(r)-I (A8)

Use has been made of the fact that v ~ q = 0. From
Eq. (A5), the function P(r) also depends para-
metrically on v, q, e„and X,. Now define a phase
shift function by

I'(5) =—i(e/k) J
dz V(r)(t)(r), (z ~~ k, +k&); (A l)

to render (A4) to the form

—e(2v) '(kf(v'(k&) =tk(2w) '
IJ

d'b e'" ' I'(b).

(A8)

The z axis is parallel to the velocity v, thus per-
pendicular to q. To this point nothing has been ac-
complished other than to define I'(b) via (A'I).

To relate I'(b) to the physical two-particle scat-
tering, introduce a momentum vector

where I'(5) is exactly the same phase shift func-
tion previously defined in Eq. (A'I). Since Eq.
(A14) is the on-energy-shell scattering amplitude,
we conclude that the nuclear matrix element of
v'' involves the physical two-particle phase shifts
embodied in I'(1). Equation (7) of the paper in-
volves the further assumption that Eq. (A14) may
be inverted by the standard method to obtain I"(b)
once given f, „, (q).

APPENDIX 8

If in the Watson series, we approximate v,.= t,
and G=g [see Eqs. (19) and (20)] then the Glauber
approximation is obtained in the form

Ts = Q t; (1+gt, ) '(1+gTo)

= Q t, + Q t,gt,. + Q t)gt)gt), + ~ ~ ~, (Bl)

«, = —,q+vs, (l -&(,,);

( «, (
= «= &(e,/e) -=J,m /Ws, .

(A9)
To verify this, note from the definition (1'I) of t,
that

Vs) =tq(1+gt;) '

([»' —(p+«, )'](2e,) ' —V(r)) (t)(r) =0

or equivalently,

(Alo)

Inspection of Eqs. (4}shows that «, has the corr.ect
magnitude for the c.m. momentum in two-particle
scattering at the same lab energy we consider for
the nuclear scattering.

Observe that Eq. (A5) rewritten in terms of »,
takes the form

and hence the Glauber 7.' matrix satisfies

Ts= Q Vz, (1+gTg). (Bs)

When operating on a plane wave ~k, ) in the nu-
clear c.m. , the operator 1+gT~ creates an eikonal
scattering wave function

(r ~4g, ) —= (r~ (1+gT0)~k& ) = e' &' ' e'"+

[(»'- p2)(2e, )-'- V(r)]g ' (r «, )=0

if we define

(A11)
which is a plane wave phase shifted by

r dz' Us, (~r' —r, )), r' = (b, z').

(A12)
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The z direction lies parallel to the average mo-
mentum k& +k&. Similarly,

(+~ ir) -=(k~i(1+kg)ir) =e ' ~''e'"-

where

(86)

(87)

When either of these expressions is used, the
matrix element (To) defined in Eq. (1) is easily
verified to take the form given in Eq. (6) after an
integration over the z direction is carried out.

To display corrections to T~, let

Then the Watson series can be expressed as

T Tg + T

= Q (f, + t,')[1+(g + G')(t, + f ')] '

x [1 + (g +G') (To + T')]

which defines the complete correction T' to the
Glauber approximation in this model. If we re-
tain just first order deviations (primed objects),
the expression for T' is

T'= Q{tf(l +gt, ) '(1+gTo)

N1 N+ IIT @0

~~ =~~+~i~

where Eq. (19) gives

(88)

(89)
x-t, (1+gt, ) '(Gt, +gff )(1+gt,) '

x (1+gT )o+ t, (1 g+t, ) '(gT'+ G'To) f

ti ——t( G, (N| N, )Gr;-
= [1 —t)G, (N| —N2)G] 't)G2(N| —N2)Gt( (810)

(814)

and the leading order terms in (810) and (812)
yield

G =g+G',

where Eq. (20) gives

G'= gN, G= (1-gN, ) 'gN, g.

(811)

(812)

G'= gN g, t,'= tg(N, —N, )gf, .

These perturbations introduce objects considered
negligible in the Glauber approximation. Using

t;(1+gf;) ' = Vs, and rearranging leads to

1 Q )g~g)T g[ gg(N )N ))))gg —Vg~)N) V g V g))gg(N —N )gV g]lgT~+))+g Vz~xg2~

(816)

which defines T' in terms of known objects g, Vz„
and f, . Now from (83}it can be shown that

To obtain Eq. (817) we have used the fact that

~~

~~

1
1 —g Vs, g = 1+ Tog .

5

Hence applying this operator from the left to both
sides of Eq. (816)we arrive at

T'= (1+T~g)Q[- Vs) gN~Ve, (gTo +1)
j

to simplify the N, term.
Explicit forms for the corrections can be ob-

tained by using

N, = (p-%q) ~ (p —g)(2e) '

+ Vs) gN,gT0])' (816) + g[p„—(m/M}P]'(2m) '+ Vr -Eo, (818)

where the N, term is the sole survivor of cancel-
lations amongst terms in the first sum of Eq.
(815), after using (1 —Vs, g}t,= Vs, .

Because of the simple relations (84) and (86),
the relevant matrix element of T' takes a con-
venient form involving the phase shifted plane
waves

(T') =(e&-);S,
i N, —g V„gN~V, je&');E,} .

(817)

N, =(p-k, ) (p-k, )(2e,)-', (819)

where p=-iV acts on the projectile coordinate r
while p„= —iV„, P =g„p„acts on the target nucleon
coordinates. Terms involving 1 -A. and 1-3.2 from
Eqs. (11}and (14) are of order k~ and are not in-
cluded in the leading order (k ') calculation. Lest
this omission appear arbitrary, the reader is re-
ferred to previous work which exhaustively justi-
fies such a procedure. " Also the eikonal Green
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function is required

g(rr r') = -i(e/k)5 '& (b -5')8(z —z')e'~" '

We find that Eq. (811) then takes the form

(B20)

&r') =-e(de) 'J d'de" '
&Z

I (de) '[e'"-, 5] [d, e'"']++(dm) '[e'"-, d„-(m/M)rr] [j)„-( /m)M rer'"+I

OO ~Z

+ g(2e2) ' «'e'x-Uz, , p ' p
i Z y «00

« 'Uz, e'"+ )E,) . (B21)

Because Hr —E, has been commuted to act on ~E, ), it no longer appears in Eq. (B21). As a consequence,
the Fermi motion effects arise solely from the kinetic energy part of H ~ and are model independent, as-
suming that the binding interaction V~ commutes with the phase e +. Finally, because

Z

[p„—(m/M)P, e'""]=-r) de' U (r' —r„)e'"++ (m/M)err e™+

the Fermi motion effects take a form similar to the correction to eikonal propagation.
To proceed, it is necessary to approximate the N, type correction due to the intractable z integrations

in Eq. (B21). To this end we first calculate to leading order in a multiple scattering expansion to find that
the N, term gives

(de) '(e/e, )Jd*d-e"'&d„]l de VX (') V„,(()(d„),
«OO

(B22)

where X, (i) = f'„«'Uz(r' —r, ) etc. , and where ex-
tra phase factors e' ~ have been set to unity. Qn
the other hand, if U~; in one of the z integrals of
Eq. (B21) is replaced by the average A '~~", , Uz„
then both z integrals can be done via

term gives just

where
(B23)

(4)]') (6/I ) /f b e" (Eole'xoA- VX- ' VX+ IEO),

Zi, «'—Q Uz, e'"+ = e'"+ —1,

i dz—' Q Uz, e')& =e'" - --1.
Z

Hence with the average approximation, we find
that to all orders in multiple scattering, the N,

X.=X. +X = «g Uz(r-r;).
«OO

But now setting the Glauber phase factor e'"o to
unity does not reproduce the correct leading order
result Eq. (B22). To reconcile this difference, we
replace A 'VX VX, by p( VX(i) VX, (i) in Eq. (823).
Then evaluating (T') with this approximation to

the e, ' part gives the following result:

(P) =(4e) ' d de' ' (d)e'" [['1 —e/M] g deer (e) err, &/)e[( —e/e, +(e/m)(( —m/d()]
«oo

x dzVX i 'Vy+ i Eo
= 1

which is equivalent to the form used in Eq. (25) of
the paper.

(B24)
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