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A formalism for inelastic nucleon scattering from nuclei is developed which takes into
account explicitly the effect of giant multipole resonance states. The transition amplitudes
derived from this formalism, when energy averaged, separate into two primary compo-
nents. The first is the slowly energy varying direct reaction amplitude that is mediated by
an effective interaction while the second is the energy varying semidirect reaction amplitude
associated with doorway state excitations of giant resonances. The determination of quan-
tum numbers and associated properties of giant resonances follow from analyses of inelastic
nucleon scattering to low lying nuclear states. Specifically, from the application to the in-
elastic scattering of 23 to 45 MeV protons from ~2C leading to the 1+ (12.71 MeV T =0 and
15.1 MeV & =1) states, the strength distributions of the giant isovector E1 and isoscalar
E2 and E3 resonances are determined.

NUCLEAR REACTION C(P,P'), E =22.5-45 MeV; measured o(0); DWBA
analysis; included resonance effects; deduced ~2C giant dipole, giant quadru-

pole strength distribution.

I. INTRODUCTION

Recently there has been a renaissance in the
studies of giant multipole resonances' ' due, in
large part, to the advent of new experiments.
While the isovector giant dipole resonance~ (GDR)
has been extensively studied for at least a decade
by means of electromagnetic excitation, it is only
in the last few years that other giant multipole res-
onances have been observed. Prior to this, their
existence was inferred by the need of effective
charges in shell model calculations' of electro-
magnetic transition rates between low lying states
and by the core polarization renormalization in the
microscopic description of inelastic nucleon scat-
tering. ' Now, however, they have been observed
directly in photonuclear reactions, particle cap-
ture studies, ' electron" and hadron scatter-
ing, " '~ and in inelastic scattering to low lying
discrete states. '

The photonuclear (y, P) and (y, n) experiments
reveal sensibly only the GDR because of the long
range electromagnetic interaction and small mo-
mentum transfers involved in those reactions.
Inelastic electron scattering to the giant resonance
regions permits observation of multipolarities
other than the GDR.' They are primarily the giant
quadrupole' (GQR) and giant magnetic dipole'
(GMD) resonances, for although electron scatter-

ing' is mediated by the long range electromagnetic
interaction, a large range of momentum transfer
is involved.

In contrast, direct excitation of giant resonances
by hadron scattering does not as clearly display
their effects in data since these reactions are me-
diated by the short ranged nuclear interaction. As
a consequence, all transition multipolarities have
comparable probabilities. Of course this fact is
the great advantage of making studies of giant res-
onances with hadron scattering experiments since,
given the ability to unfold data, information about
higher multipole resonances can be obtained. Fur-
thermore, with the variety of projectiles available
for nuclear scattering, different giant resonance
types can be selectively excited. Specifically, in
proton, " 'He, " and 'H scattering all possible elec-
tric and magnetic, isoscalar and isovector, excita-
tions are permitted. Deuteron scattering" prefer-
entially excites electric and magnetic isoscalar
resonances, and n scattering' essentially excites
only electric isoscalar resonances. However, in
all such scattering experiments, the giant reso-
nances are the residual states in the reactions and,
since these resonances lie in the continuum, there
is considerable difficulty with background subtrac-
tion. Thus the resultant data permit neither a sen-
sitive evaluation of the resonance widths nor an
estimate of cross section magnitudes to better
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than 2~.
Inelastic scattering to low lying states' in nuclei

is an additional, albeit indirect, way of determin-
ing the properties of giant resonances. This oc-
curs when the projectile energy is such that semi-
direct second order scattering processes mediated
by virtual formation of these giant resonances are
comparable to those of the normal direct reaction.
Then, as the nucleon decay width of giant reso-
nances predominates over any other channel, in-
elastic nucleon scattering will be most influenced
by these semidirect effects. Typically, these
giant resonance contributions yield cross sections
with magnitudes in the range 0.1 to 1 mb/sr.
These are significant contributions in all inelastic
channels, the elastic channel included. Hence, as
there are a great variety of final states of different
spin and parity, and since the inelastic scattering
to each of these states will be influenced by semi-
direct processes, the disadvantage of having to
unfold the semidirect and direct contributions is
greatly offset by the variety and obtainable accu-
racy of pertinent data. Of course, to use this
method, it is necessary to have full angular dis-
tribution inelastic scattering data in small steps
of projectile energy, acquisition of which is not
difficult if modern data handling facilities are used.

II. THEORY

In this section, a formal theory of direct reac-
tion inelastic nucleon scattering is developed. It
is the basis for the identification of different reac-
tion modes and specifically of that in which giant
resonances are treated explicitly. This develop-
ment is presented in Sec. II B after a discussion,
in Sec. II A, of our prejudices as to what is the
reaction mechanism. Finally, in Sec. II C, we
present the approximations necessary to facilitate
evaluations.

A. Phenomenological view of the reaction mechanism

Graphical representations of the dominant direct
and semidirect processes that influence direct re-
action inelastic nucleon scattering are shown in
Fig. 1 for single quasiparticle excitations upon the
ground state. The notation of Bohr and Mottelson"
has been supplemented by the use of double arrows
to denote particles in the continuum. It should be
remembered that the circles denote an explicit
two nucleon scattering process and signify that the
Pauli exclusion principle should be treated proper-
ly.

The direct processes, illustrated in Fig. 1(a),
are those mediated by a single effective two-nu-
cleon interaction. This effective interaction is
described by a two-nucleon potential with charac-
ter and parameter values that have been obtained

COR E POL A R I Z AT IO N

RE NOR MAL I Z ATION

INTERMEDIATE PICKUP MODEL

direct exchange

(a)
GIANT RESONANCES

(b)

FIG. 1. Diagrammatic representation of the (a) "di-
rect" and (b) semidirect scattering processes for in-
elastic nucleon scattering to 1p-1h final states in nuclei.

empirically from studies of inelastic scattering to
a variety of target states in a variety of nuclei and
for many projectile energies. " As such, this ef-
fective interaction is independent of target states,
target mass, and projectile energy. However,
while these numerous analyses have resulted in
an optimum form, " there is ample evidence that
this effective interaction is insufficient to explain
data quantitatively and additional scattering pro-
cesses must be introduced. The next simplest
modes of scattering processes are those illus-
trated diagrammatically in Fig. 1(b), namely the
semidirect processes that are mediated by two ex-
plicit interactions.

The semidirect processes, that still lead to a
final nuclear state being a two quasiparticle exci-
tation from the ground state, are obtained by
crossing two of the three outgoing lines in the di-
rect process shown in Fig. 1(a). Three forms of
semidirect amplitudes result, each of which has
distinct dynamical properties. The first of these,
the core polarization renormalization amplitude, '
affects only the bound state details of the scatter-
ing. Therefore, it is projectile energy independent
and does not selectively affect any specific partial
wave in the single particle continuum wave func-
tions. The intermediate pickup model amplitudes
are represented by the second of these diagrams,
since a two-nucleon cluster propagates between
the interactions. Virtual deuteron formation that
has been considered in some numerical evalua-
tions" provides examples of these amplitudes.
While these amplitudes are slightly energy de-
pendent, at least to the extent that stripping and
pickup reactions are, and therefore differ in na-
ture from the core polarization renormalization
components, they still affect all partial waves.
Also, since the cluster is in the continuum, these
amplitudes are a primary source of the imaginary
part of the complex t matrix recently used to ana-
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B. Formal derivation of the T matrix

The two potential formula for the T matrix" is
the basis for all distorted wave approximation cal-
culations. For a Hamiltonian

H =H +H'+H,'

=H, +H2

the 7 matrix is

(2)

&8 (H) =~s (H, )+&q,' '(P) I H+ ,'H"GHly,"( ))o,

lyze inelastic scattering. "
The last of the diagrams in Fig. 1(b) represents

resonance processes. They are associated with
the excitation of high lying particle-hole states'
in the target resulting from the capture of the pro-
jectile into a bound orbit. The associated scat-
tering amplitudes are significant only if the cap-
ture width from the initial channel and the decay
width into the final (nucleon emission) channel are
large. Such is the case if the intermediate parti-
cle-hole states constitute giant resonances which
are a group of states within a narrow energy band
(& 5 MeV) exhausting a large fraction of the energy
weighted sum rule. " Therefore, the semidirect
resonance scattering amplitudes are significant
only for energies spanning these giant resonances.
Specifically, using either the collective or naive
shell model to predict the giant resonance cen-
troid energies, these semidirect resonance ef-
fects will be evident in proton inelastic scattering
with projectile energies in the range

E~ (MeV) = [41n —(-) 22]A-' ~'+ e,. + 5,

where 0&n & L and (-1)"=(-1) for excitation of
isoscalar (bT =0) or isovector (b,T=1) giant res-
onances of multipolarity L. The e& is the (nega-
tive) binding energy of the state into which the pro-
jectile is captured. For light nuclei (A &40),
therefore, resonance effects will influence inelas-
tic proton scattering for projectile energies up to,
and possibly greater than, 40 MeV. A lower limit
must be set since we require compound reaction
contributions to be minor. For heavier nuclei, the
A. '~' dependence in Eq. (1) lowers the upper limit
and, in the lead region, all essential effects are
below 20 MeV. As a consequence, indirect as-
sessment of giant resonance properties from semi-
direct contributions in inelastic scattering to low

lying states in very heavy nuclei is less useful be-
cause of compound reaction effects. For heavy
nuclei, therefore, direct excitation of giant reso-
nances by inelastic hadron scattering might be
preferential.

where

G&+'=(E H—+is) '

4 =P% +Q4+R%,

where the projection operators are such that P
projects out the elastic and the specific final in-
elastic scattering components of the total wave
function and R projects out a set of states embed-
ded in the continuum that can be treated as bound
doorway states. '4 The operator Q which projects
out all other components, and therefore includes
all other energetically allowed open reaction chan-
nels, then satisfies the completeness relation

P+R +Q= 1.
Using the projection operator properties

P' =P Q' = Q; 'R' =R

PQ=QP =0, etc. ,

the Schrodinger equation

(6a)

(6b)

segments, yielding the set of coupled equations

(E Hpp)P@ =H psR-4'+H pgQ%,

(E Hss)R@ =H„pP4-+HsoQ+,

(E Hog)Q@ =Hop-P+ +Ho„R%',

(8)

whereH»=I'HR, etc.
The Q subspace contains all channels that are

treated in an average way to facilitate numerical
application. Therefore, we introduce the effective
energy dependent and non-Hermitian Hamiltonian

R(E) =H +HQ(E -Hoo+ie) 'QH

which arises from eliminating Q4 from the coupled
equations. Equations (8) then become

is the total Green's function. The matrix elements
of the total effective interaction that is based upon
the residual interaction H,', are calculated with
eigenfunctions of the truncated Hamiltonian H„viz.

(4)

To adapt this formulation to calculations, the
Hamiltonian H, must be specified so that its eigen-
functions can be readily obtained. Whatever be
this choice, the difficulties of making calculations
are associated with the specifications of the total
effective interaction. An input bias as to the im-
portant features of this total effective interaction
is necessary. In this study, we input the bias dis-
cussed above in Sec. II A, and develop the scatter-
ing theory in terms of the Feshbach projection
formalism. "

Hence, we consider the total scattering wave
function in the form
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[E -X„(E)]Pe=X „(E)Re,

[E Xs-s(E)]R@=X»(E)P4 .
(10)

Eqs. (9) and (10) by replacing E by E + 2i I, —whence

[E —X~~(E + 2i I]P4' =X~„(E+ 2i I)R4',

[E —X„„(E+ ~i I]R@=X»(E + 2i, l)P4' .
Due to the Q subspace effects in X, these equations
yield cross sections that fluctuate rapidly with en-
ergy. However, since we wish to investigate the
direct and semidirect reaction processes, an ener-
gy average is needed to eliminate fine structure in
the reaction amplitudes. By doing so with a Lo-
rentzian weight function, " the appropriate energy
averaged coupled equations can be obtained from

II, -X„(S),
II2-X~s(&) +X»(&)+Xss(~),

where 8 =E+ ,'iI, —and from Eq. (3)

(12)

These are the generalized optical model equations.
The energy averaged T matrix is then obtained

by the replacements

T~ =TB„[X (h)]+&q~ '(p) ~(X „+X„+K„„)[1+G~'(X+X„+X„)](q~'(o.))

= Tg. (X~~)+&0' '(P) ~X~sG "X»l0"(&» (13)

since both g~'i belong to the P subspace and are
solutions of

(X~p -E)y~'i =0.

The leading terms in Eq. (13) give the scattering
amplitudes for the direct processes, classified in
Fig. 1(a), as well as the nonresonant (core polari-
zation and intermediate pickup) semidirect pro-
cesses that were classified in Fig. 1(b). All of
these amplitudes involve complex form factors
since the Hamiltonian X~J,(g) is non-Hermitian.
These amplitudes can be evaluated by using the
coupled channels method with complex transition
form factors. In the case of weak transitions, it
is sufficient to use the distorted wave approxima-
tion" " (two channel coupling), whence

~8 (XPP) =&X'8 '4
~, IXPsP I f (X"@~,)), (1&)

where X~ I, is the complex effective interaction.
It is complex because it includes all Q space ef-
fects (but no R space effects) that connect the
elastic channel, projected by P„, to the inelastic
channel, projected by PB.

The remaining terms in Eq. (13) yield the scat-
tering amplitudes for the semidirect resonarice
processes that were characterized in Fig. 1(b).
Since the effective interactions X~ and K» couple
into and out of R space from P space, respective-
ly, the Green's function is diagonal inR space so
that

RG"R =$E-X„„(8)-X„,(h)[E -X, (8)]-'X (8)}-'

(16)

is the effective propagator in these amplitudes. As
with the leading terms in the T matrix, these semi-
direct transition components involve form factors
that are complex since there are round trip pos-

sibilities in which transitions from P to R space
proceed via Q space and vice versa. They com-
pete with the direct P to R space transitions.

Formally, the Green's function of Eq. (16) can
be evaluated by using a spectral representation.
This requires the eigenfunctions of the full non-
Hermitian Hamiltonian in G~+ and of its adjoint,
and yields'4

RG "R=Rl ygn-'(E) &y„"iR,

where the energy denominator is

S '(E) =(E -E„—&i+ ,'iI't —4~+-,'fI" ~)—'.(18)

The level shifts (4) and widths (I') arising from the
coupling of the R into the Q space yield the
spreading quantities denoted by (0) while those
arising from the coupling of the R into the P space
yield the decay quantities that are labeled by (0).
Practically, of course, one cannot solve the exact
Schrodinger equation which would be required to
evaluate these quantities.

C. Practical forms of the resonance T matrix

Using the distorted wave approximation for
~ (P) and gf+~(u), the resonance transition am-

plitudes can be expressed as

r&P =«~;&(0 )C„(~)~X,~a&'RX»~)t& &(0)C, (~)) .

(19)

Then, in accord with our model assumption for the
dominant contributing intermediate states of the
A. + I particle system and assuming that the associ-
ated particle-hole excitations result from effective
two-nucleon interactions, these amplitudes can be
recast as
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T sn =&K s (0 ) I&4'g (+ ) I veff (0 1 ) I hap yh(0 + )&R &g~ lh(0&+) I veff (o1) I x~ '(0)c'&, &A) &

with

n-'(E) = (E -E,„+i-.'1")-'.

(20)

(21)

We restrict consideration to excitation of 1p-1h final states since such transitions most stringently select
the type of intermediate state structure in which we are interested. Specifically, in the 2p-1h intermedi-
ate states, one of these particles will be frozen into the particular particle orbit of the final state. With
this restriction, the resonance amplitudes become

&'s'=&X's '(0') l&[j (0)jh'(0')]g I V fr(o'1') IGo(1')p '(1')]zip(0)]s» '&(j (0)[o(1)o '(1)]y]s IVff(o1) IXa"(o)&

=p (-1)'h h&j, jhm', mhIJf-Mf&&Aj pm IHR&&xj p'm' I85R&

x&y's '(o') l(Vff(0'1') l[o(1')p '(1')]g ] Ijh(0')» '& jp(0) IQo(1)p '(1)]g„lVff(01)] ly~"(0)&, (22)

where now

u '(E) =(E E,',„-+i-,'I;)-'. (23)

The evaluation of these amplitudes requires the specific two particle-one hole spectroscopy of the rele-
vant doorway states. Such spectroscopy can be obtained from Tamm-Dancoff approximation (TDA) and
random phase approximation (RPA) calculations. To date, however, no such calculations have been re-
ported for the excitation region of interest. Therefore, to facilitate evaluations, it is necessary to further
simplify the transition amplitudes of Eqs. (22) and (23). A useful simplification is to take the limit of the
spectator concept in which there is no residual particle-phonon interaction, whence all intermediate
states l[(op )~j]s& for a given A. and j are degenerate. Closure summations on the total intermediate
angular momenta (WR) are then possible and yield

T~~'„' = & '(Q)&)fs-'(0') I&[j~(0)jh'(0')]~ l(v ff(0'1') I [a(i)p-'(1')]~ H[o(1)p '(1)]~„lvff(01)} lx~~'(0)&,

where

& '(Q) =(Q —R(o„+—', if' )
'

(24)

(25)

and Q is E —e&, the sum of the projectile kinetic energy and the binding energy of the spectator. Thus,
employing the crosure approximation has resulted in an effective transition interaction, predicated upon
scattering to a particle-hole final state, that is independent of the particle-hole details of that final state.

The effective transition interaction in Eq. (24) is a product of form factors, namely

V"(0', 0)=& '(9)[ f (o')'f (o)]„
= S '(Q)( Veff (0'1')

I [o(1')p-'(1')]„sH[o(1)p '(l)]g pl Veff(01)j, (26)

where (] denotes integrations over coordinates 1' and 1, respectively. These form factors can be re-
duced by using the standard multipole expansion of a central force

V ff(01) = g 4w&u~sr(r, r, ) [Y~(0)~ Y~(1)][5s(0) 5s(l)] [Qr(0).Or(1)]
L,ST

4&~ps r(rory) [g(l s )& x'g(l. s )z]oo[5r(0) Or(1)1
LSTJ

(27)

and by using RPA type wave functions for the intermediate particle-hole excitations, namely

l[oP ']g„& = Q(xph l[jp jh ]ps&+ Yphl[jh j,']&s&)
ph

(28)

The resulting effective interaction is
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V'(0' 0)= +161]$ '(Q)(-)"rOr„(0')Or „(0)[X +(-) "' "P ' F.„i][X],+(-) '" "P ' 1'g

(L sr)(QI)R(csT)(0)[HAJJ (0 )~
cJJ (0)] ( )

+ P p(j j j j l l l l SIS)1/2

lp

x(lpl'„OOIL'0)(lpl]OQILO) 11„

L/

2 jp
1

jh
S' J

lp 2 jp
1

h 2 jh ~JR. +T

L S J
(29)

where 0 denotes 2a+ 1 and the radial integrals are denoted by Rp&. In general, therefore, this effective
transition interaction has central, vector, and tensor components. The central and tensor components
with L =J =)]. (and therefore I.' =/ =A. ) are associated with the excitation of natural parity (electric) reso-
nances, whereas the components with L4Z (and therefore also L'WZ but S =S' =1) excite unnatural parity
(magnetic) resonances. But the direct excitation of A.-multipole giant resonances by inelastic scattering'
has shown that normal parity states are most readily seen and that their transitions are dominantly S =0.
Thus we consider only the central non-spin-flip (S = 0) components of the effective transition interaction of
Eq. (29), namely

V ')(0'0) = P S '(Q)8]]/(2L+1)(-)" Or„(0')Or „(0)[Xi„i+(-)~p ~hY'i„i][X „, +(-)~p J] Fp],]

xR~f .)(0')R~~&r'(0)[Y~(0') Y~(0)](-)'p"p[jj'j 'j ]' '(j j 2 —2 ILo)(IpI'b2- 2 ILo) 61)~pro)

(30)

which has the form of a simple multipole expansion with a separable radial form factor

1"(0'0) = -4& Q & '(Q)gg(0')gl', (0)[YJ.(0')'&g(o)](-)" Or )(s0r')Or 1vr(o)61, ),~11,o

where

(31)

Z,'(0) =[2&(2L+1)]' ' +[X»+(-) P- ~1»l t-) P[jpj„l' '(jpjz —,
' —SILO)Rp~ (0).

ph

(32)

Unfortunately, for most nuclei, the wave functions
necessary for the evaluation of these microscopic
form factors are unavailable. Nevertheless, from
the nature of the radial integrals in Eq. (32), these
form factors are surface peaked quantities similar
to those used in collective model analyses of in-
elastic scattering. " In fact, since the microscopic
theory of collective motion" relates the phonon
creation and annihilation operators to linear com-
binations of one particle-one hole operators, we
can identify the 2p-lh doorway states in Eq. (22)
of the microscopic model with a single particle
coupled to a collective phonon, namely

I([op ']&j,(0)]s& ~ I(l».,»j, (0)]s),
where I»„]]are giant resonance eigenfunctions of
the general Bohr collective Hamiltonian that en-
compasses harmonic surface, spin, and isospin
oscillations. " With this collective model descrip-
tion, and using the same approximations as in the
preceding development, the transition amplitudes
of Eq. (24) can be evaluated using the same form
for the effective transition interaction as in Eq.
(31), but with radial form factors now obtained
from the generalized description of the deformed

potential model. " Specifically these form factors
are

v,']o) =]4 ]ol.+))]-'"P,'2(' ""),
ef' (34)

where

Xi(Q) =-& '(Q)(Ps)'[2L+1] '

(35)

(36)

are the energy dependent complex coupling coef-
ficients used previously. ' These coupling coeffi-
cients carry the gross properties (multipolarity,
isospin character, total width, and spectral dis-
tribution) of the giant resonance doorway states.
Specifically, each deformation parameter P~ re-
flects the transition strength for formation, from

where U is the appropriate optical model poten-
tial. These form factors thus determine that the
effective interaction is

sUT
v']o'o) = g v,'])]'2)g, ,[v, ]o ) v, ]o)](

Or„r (0')Or „r(0)51).6Afr 0 &1

str (2,)
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the ground state, of an isoscalar (T =0) or isovec-
tor (T=1) giant resonance of multipolarity L=A. .

The values of these deformation parameters can
be constrained by energy weighted sum rules
(EWSR).' " In the case of N = Z nuclei, for each
excitation with L&1, the EWSR is

S2
g&L Lg2L -2

2m 4n
(37)

to which, using the collective model description,
the giant resonance contributes an amount

2 g2I
E" "'(~') 4~ 2L+1 (38)

=[87L(2L+1)R '(~~ ) ']' ' (39)

Similar expressions can be obtained for the iso-
vector dipole excitation, "'whence, again for
N =Z nuclei,

P', =t1044(1+0.8x)R '(AK&u, ) ']' '.
These deformation strengths so extracted from the
sum rules provide estimates of the magnitude of
the coupling coefficients y~(Q), but the strength
distribution with energy still requires a detailed
knowledge of S '(Q). If any particular giant reso-
nance consisted of just one isolated doorway state
(extreme collective model) then the D '(Q) is
known. However, in practice, this is not the case
and so the yz(Q) variation with energy, which can
be determined from experiment by a least squares
search procedure, must be explained in terms of
a more sophisticated theory of the giant reso-
nances.

III. APPLICATIONS

To apply the foregoing theory of inelastic nucle-
on scattering, measurements were made of proton
scattering from "C in the energy range between
22.5 and 45 MeV. The experiments were per-
formed using the JUI IC cyclotron and data ob-
tained in approximately 2 MeV steps for an energy
resolution of 100 keV. The relative accuracy of
this data was better than 5%%u~ and the uncertainty
in the absolute normalization is of the order of
10%%uo

The target was chosen for a number of reasons.
For this light nucleus, the discreet states as well
as the giant resonances are well separated. In ad-
dition, all significant resonance strength is ex-

Thus, the maximum deformation parameter value
is that for which the giant resonance exhausts
100%%up of the EWSR, namely

a' 4~
P~ = L(2L+1)

3
R '(Ku)z) '

2' 3A

pected to lie in the excitation region from 20 to
45 MeV so that compound effects in the transitions
to be studied are negligible. Further, consider-
able information about this excitation region in
"C has already been obtained from photonuclear, "
particle capture, "electron scattering, "and hadron
scattering experiments, as well as from several
resonance analyses" of reactions on "C. Most
important, however, is the existence of discreet
states in "C, the transitions to which are particu-
larly suitable for analyses with this reaction theo-
ry.

While the low lying excited states in "C are
well reproduced by shell model calculations, the
associated electromagnetic transition strengths
are usually grossly underestimated. This is par-
ticularly the case for the 2+ (4.43 MeV) excitation.
However, P shell calculations" are successful for
the isoscalar and isovector 1' states that have
excitations of 12.71 and 15.11 MeV, respectively.
Specifically, they are both dominated by the (IP, &,

-
1P, &,

') configuration upon a doubly magic "C core
and therefore their excitations by inelastic proton
scattering are favorable for detailed numerical
studies based upon the theory already discussed.

Inelastic proton scattering to unnatural parity
states has the additional advantage that the direct
scattering processes are strongly hindered.
Specifically there is no core polarization renor-
malization since these states exhaust about 90%%uo of
the appropriate sum rules' and since the transi-
tions are dominated by the spin-flip amplitudes,
the associated cross sections are small. Then,
since the resonance amplitudes are not hindered
by a spin-flip requirement, their effects will be
most evident in data.

Of course, for the appropriate projectile ener-
gies, all transitions are influenced by these reso-
nance effects and in Sec. IIIA this is demonstrated
for the elastic and quadrupole transitions. The
detailed analyses of the 1+ transitions are pre-
sented in the subsequent sections. In Sec. GIB,
the calculation specifications are given while in
Secs. IIIC and IIID, the significance of the ex-
tracted resonance coupling strengths is discussed.

A. Evidence of the resonance effects in the elastic

and 2+ (4.43 MeV) excitations in ' C

Because of the limitation of spectroscopy, no
detailed calculations of resonance contributions to
these transitions have been made. Rather, stan-
dard analyses have been made with the optical mod-
el and collective coupled channels methods to re-
veal the discrepancies between the results of such
analyses and data. These discrepancies are con-
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sistent with additional resonance contributions to
the scattering processes.

In Fig. 2, experimental excitation functions" for
proton elastic scattering from "C in the range be-
tween 20 and 30 MeV and at three scattering angles
are compared with the results of a smooth energy
varying optical model calculation. The obvious
variation of the data about the optical model pre-
diction is not a diffraction effect explicable by a
better optical model potential scattering analysis
since the variations are too rapid with energy.
Thus, there are resonance effects with the strong
resonance region of 18 to 24 MeV.

Coupled channels analyses of the angular distri-
butions for the inelastic scattering of 30 to 38 MeV
protons exciting the 2+ (4.43 MeV) state in "C are
compared with the data in Fig. 3. These results
illustrate the character of resonance effects in
angular distributions. Specifically, resonance
contributions are responsible for the back angle
peaks in the data. This results since individual
resonance cross sections are symmetric about 90'
scattering angle, due to parity conservation, '
whereas the nonresonant direct reaction cross
sections are quite forward peaked. Identical ef-
fects are observed in other inelastic scattering
transitions in "C that are not reported herein. "

B. Specifications of the 1+ transition calculations
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Most details of the calculations for these transi-
tions, namely the spectroscopy of the target states,
the parametrization of the effective force, and the
procedure by which the complex coupling constants
y~(Q) of the resonance contributions are extracted
have been published" and are therefore not re-
peated. Only the optical model parameters re-
main to be specified. For proton energies be-
tween 20 and 45 MeV, those4' that gave the smooth
results in Fig. 2 were used, while for proton en-
ergies below 20 MeV, the optical model parame-
ters were taken from the literature. 4'

Using the least squares fitting procedure' to de-
duce the optimum resonance coupling constants,
the resultant fits to data for the isoscalar magnetic
dipole transition at 12.71 MeV are shown in Figs.
4(a) and 4(b). The results for the isovector mag-
netic dipole transition at 15.11 MeV obtained by

I I I I I I

20 22 24 26 28 30 32

E (MeV)

FIG. 2. Excitation functions at the three designated
scattering angles for elastic proton scattering from C.

0 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE (c.m. ) (deg)

FIG. 3. Coupled channels analyses of proton inelastic
scattering to the 2 (4.43 MeV) state in C for projectile
energies between 30 and 38 MeV.
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the same procedure are shown in Figs. 5(a) and

5(b)

C. Giant resonance characteristics from the 1+

transition analyses

The fits to the data shown in Figs. 4 and 5 were
obtained by a least squares search for the complex
coupling coefficient y~(g) built upon a direct reac-
tion amplitude' that was computed with the fixed
effective interaction. " The magnitudes and phases
of the coupling coefficients for g =1, 2, and 3 are
shown in Fig. 6 since no other multipolarities,
notably those for x =0 and 4, were required in
these analyses. It is noteworthy that, by angular
momentum selection and independent of model

form factors, monopole contributions in these res-
onance analyses would be isotropic. As such, they
are quite distinct from other multipole contribu-
tions, in particular from those of the quadrupole
resonance. (This technique, therefore, can be
used to resolve monopole" and quadrupole reso-
nance structure that is inferred by direct excita-
tion to the resonance region by electron and hadron
scattering. )

In each distribution, acceptable ranges of cou-
pling coefficient values are given. These ranges
result in part from the compromises needed to fit
both 1' transitions (12.71 and 15.11 MeV excita-
tions) and in part from uncertainties in the reso-
nance form factors due to uncertainties in optical
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FIG. 4. {a) Differential cross sections for inelastic proton scattering to the 1+ T =0 (12.71 MeV) state in '~C for pro-
jectile energies between 24 and 32 MeV. The 24 MeV analysis shows the contributions of the direct processes labeled
valence and the semidirect resonance contributions labeled by core. (b) Differential cross sections for inelastic proton
scattering to the 1+ & =0 (12.71 MeV) state in ' C for projectile energies between 34 and 45 MeV.
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model parameters. This is particularly the case
below 26 MeV, and estimates of these uncertain-
ties were obtained by making repeat analyses us-
ing different sets of optical model parameters. "

.

The ranges of the coupling coefficients below 26
MeV mostly reflect these form factor uncertain-
ties.

It is unfortunate that the large range of tolerable
values is associated with the El excitation since
other experimental and theoretical studies" "
provide detailed knowledge about this resonance.
Despite this variation, the dipole resonance ef-
fects dominate analyses of data below 26 MeV suf-
ficiently that gross structure of the resonance can
still be ascertained. This is important since it is
evidence that the resonances are those of the "C

subsystem in the total compound system of "N.
These distinctions are discussed in the next sec-
tion.

The tolerable ranges of values of the El and E3
coupling coefficients contain additional correlation
effects. These result since the E3 contributions
influence the same outgoing partial waves as do
those of the El. Thus, an increase in y, (g) is
somewhat compensated by a decrease in y, (Q ) and
vice versa. While this does not detract from the
gross structure we can assign to the El, it does
preclude assignation of E3 resonance strength.

No such correlations were observed with y, (Q),
so that information about the quadrupole resonance
is most reliable. Specifically, our results show
E2 resonance strength having an onset at 26 MeV

10
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FIG. 5. (a}Differential cross sections for inelastic proton scattering to the 1+ T =1 (15.11 MeV) state in ~~C for pro-
jectile energies between 22.5 and 32 MeV. (b) Differential cross sections for inelastic proton scattering to the 1+ T=1
(15.11 MeV) state in ~2C for projectile energies ranging between 34 and 45 MeV.
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with a major peak at 28 MeV and having a gradual
decline to the region of 35 MeV. Above this exci-
tation energy, there is weaker evidence of E2
strength which one can conjecture to be the iso-
vector resonance. The energy variation of the

y, (Q ), magnitude and phase, is consistent with
three E2 resonance centroid energies, namely at
28, 32, and 42 MeV, with the widths of the two
components at 28 and 32 MeV of this decomposi-
tion of the E2 resonance distribution being approx-
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FIG. 7. Giant resonance structure from C(e, e') com-
pared with the dipole coupling coefficient
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imately 2 MeV. A binary splitting of this type can
be expected from considerations of a naive shell
model since the E2 resonance should be dominated
by the 2)tu& excitations (1p, &, 'lf, ~,) and (1p,~, 'lf, ~e
or 2p, ~,). The 28 MBV peak should dominantly
contain the (1p,~, 'lf, ~,) amplitude, and be of iso-
scalar nature, since with the y,(Q) as shown in
Fig. 8, 80+ 30% of the isoscalar E2 EWSR given
by Eq. (37) is exhausted by this major peak. It is
this comparison (with EWSR) that determines the
predominant isospin character of the resonance,
since an isovector assignation would overexhaust
the appropriate EWSR by several hundred percent.
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FIG. 6. Strength distributions of the coupling coef-
ficients yy(Q) = ~yy(Q)) e'e and A, =1,2, 3, for excitations
of the giant dipole, quadrupole, and octupole resonances
in an energy range between 22 and 45 MeV.
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(p 'fLO) cross section (curve) as taken from Patrick et al .
(Ref. 43).
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D. Comparison with photonuclear and electron

scattering results

In proton scattering from "C, only the T =
~

fragments of the "N giant resonances can mediate
transitions. This is in contrast to the photo-
nuclear" and electron scattering" results from
the mass 13 system as target in which both the
T =-,' and T =-,' components are excited. A typical
result for the El giant resonance as seen by elec-
tron scattering on "C and, assuming charge sym-
metry, for "N also, is shown in Fig. 7. From
this result, the E1 resonance strength is spread
in the range from 10 to 35 MeV with considerable
fragmentation. The isospins of these fragments
have been established by many experimental and
theoretical studies and are as identified in Fig. 7.
It is to be noted in particular that the T =-,' frag-
ments comprise a pygmy resonance at 13.5 MeV
and a main peak at 20 to 21 MeV and with little re-
maining strength at higher excitations as observed
in "C(p, y) studies, 44 while the T = —,

' fragments
have a single major peak at 25 MeV and further
strength at higher excitations. In our analyses of
inelastic scattering, the range of excitation ener-
gies coincides in the "N("C) system with the T =-,'
fragments. Consequently, our analyses do not re-
flect the giant resonance structure as observed by
"C(ee') and "C(y, n) or, as can be expected, for
"N(y, p). Because of this isospin restriction in
proton scattering from "C, the pertinent compar-
ison would therefore be with "C(p, yo) data. . In
fact, the comparison of the elastic scattering ex-
citation function and the proton capture cross sec-
tions, as shown in Fig. 8, verifies that the T = —,

'
components of the mass 13 giant resonances in-
fluence the elastic scattering. This can be corrob-
orated by the observed abnormalities in the smooth

behavior of the optical model parameters" around
14 MeV, where, in "N, the equivalent of the "C
pygmy resonance is to be expected. However, the
gross structure of the y, (Q) strength distribution
determined from our analyses of the 1+ transitions
is quite different from the "C(p, y, ) results even
allowing the large tolerances in each y, (g ).

Transitions to the 1+ states, unlike the elastic
scattering, require residual particle-hole excita-
tions and these impose severe restrictions upon
the possible set of intermediate states. Specifi-
cally, from all possible 2p-Ih intermediate states
only those in which one particle is in the state
j (0) (=—1p, ~, ) are permitted. Thus the degrees of
freedom of the 13 particle intermediate system
are severely restricted to those associated with
the 12 nonfrozen particles. Consequently the reso-
nance effects as observed in the 1+ transitions are
to be associated with giant resonances in "C.
Specifically, as revealed by electron scattering
from ' C and from proton capture on "B, the El
resonance strength has its onset at 20 MeV, a
major strength concentration around 23 MeV, and

a secondary peak around 26 MeV in excitation.
These features are shown in Fig. 9 for the elec-
tron scattering from '2C and in Fig. 10 for the
proton capture by "8, and are compared with the

y, (Q) distribution resulting from the 1' analyses.

IV. SUMMARY

A direct reaction theory of inelastic scattering
has been developed in which giant resonances are
treated explicitly as doorway states in the reac-
tion process. Evaluations with this theory were
facilitated by imposing approximations, the most
significant of which concerns the spectroscopy of
the doorway states.

From application to proton scattering exciting
the 1' states in ~C, the structure of the isovector
E1 and isoscalar E2 resonance distributions in
"C were extracted. The EI distribution confirmed
the results of electron scattering and proton cap-
ture studies. The E2 distribution is predicted to
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onset at 26 MeV with a major concentration of
strength at 28 MeV and subsidiary strength around
32 and 42 MeV. The latter is conjectured to be
part of the isovector quadrupole resonance. Be-
cause of this fragmentation of E2 strength, it is of
great interest to have 1+ transition data at much
smaller energy intervals, so that a more detailed
specification of the E2 strength distribution can
be made. In addition, because of the sensitivity

of spin dependent data to these resonance contri-
butions, analyzing power and/or polarization data
from these reactions vrould be most significant.
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