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The equivalence of Harris model equations with those of the generalized variable-moment-of-inertia (GVMI)
model given by Das et al. is examined in the light of the backbending feature of the rotational states. It is shown
that this feature is absent in the Harris model taken to any order. The GVMI model equations are found to
be consistent and in one-to-one correspondence with an expansion of the square of the angular velocity in terms of a
polynomial in the moment of inertia rather than with the Harris expansion and may give a backbending feature in
some cases depending on the relative values of the parameters appearing in the potential energy term.

NUCLEAR STRUCTURE Variable moment of inertia, angular velocity,]
cranking model, backbending, high spin rotational states.

One of the successful descriptions of low-lying
rotational states of the ground- state band of even-
even nuclei was proposed by Harris.! Retaining
higher-order terms in w (nuclear angular velocity)
in the cranking model? Harris obtained the follow-
ing expansions (we use the units 7=1):

E,=—a§(80+3Cw2+5Dw4+-~-) (1)

and
IT+1)]%=w(g,+2C w2 +3Dw++++). (2)

Self-consistency of these equations is through the
relation

%= wg% [Za+1)p/2. 3)
One may eliminate w up to any desired degree of
approximation, and energy can be expressed in
terms of the parameters 9,, C, D,..., etc.
Another remarkably successful description is the
variable-moment-of-inertia (VMI) model proposed
by Mariscotti, Scharff- Goldhaber, and Buck.® The
model makes use of the energy expression

=I(I+1)

Er==33

+V(9), (4)
with the potential energy term
= CZ 2
V(e) =530~ 8., (5)

and the moment of inertia g being determined by
the equilibrium condition

(),

A link between the two formulations was found by
Mariscotti, Scharff-Goldhaber, and Buck® who,
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employing the semiclassical relation
Jw=[1I+1)}/2, (7)

showed that the VMI model and the Harris two-pa-
rameter model equations are mathematically equi-
valent. Later, Klein, Dreizler, and Das* general-
ized the VMI model equations by taking the follow-
ing expansion for the potential energy V(9) in Eq.

@
VE) = Y 8- 8" (®)

and showed that the resulting equations of the
generalized variable- moment-of-inertia (GVMI)
model are formally equivalent to Eqs. (1) and (2)
of the Harris model, if taken to all orders.

In this paper we reexamine the equivalence of the
two descriptions in the light of recent experimen-
tal findings®® on the high- spin states. As is now
the well-established procedure, the experimental
data are represented in terms of an 9- «? plot,
these quantities being derived from the experimen-
tal transition energies. Such plots®® show that as
the high- spin states are reached, g as a function
of w? deviates from a straight line (VMI behavior)
and becomes a multivalued quantity, thus produc-
ing a “backbending” curve.

In the Harris description, the moment of inertia
[Egs. (2) and (7)] is given by

9=9,+2Cw?+3Dw*+ (9)

and is a single-valued function of w2?. For the ex-
istence of backbending the derivative d9/dw? should
equal infinity at some point, and it is easily seen
that such a point does not exist for any parameter
values. Thus one can never describe the experi-
mental feature of high-spin states in such an ap-
proach by including any number of terms. This is
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also demonstrated in a recent exhaustive calcula-
tion by Saethre et al.” using the Harris-model
equations wherein they restrict themselves to
low-spin (I < 10) states and show that increasing
the number of parameters from two to four im-
proves significantly the fit to these states, but as
higher- spin states (multivalued region of g) are
reached even the four-parameter results are
worse off.

We now show that the GVMI model equations
have an altogether different 9- w? behavior and in
some cases can give rise to backbending. Firstly,
we find that in the VMI approach, without specify-
ing the dependence of the potential function V(9),
Egs. (4), (6), and (7) give the following relation-
ship between the square of the frequency and the
potential function:

2_o AV

w =2 a5 (10)
Secondly, we remark about an interesting observa-
tion that even in the region where 9 becomes a
multivalued function of w2, the inverse relation-
ship, i.e., w? as a function of 4, remains single-
valued (except in a case or two where downbending
occurs as still more high-spin states are reached
resulting in multivaluedness of w? also). A study
of w?-9 plots® for several nuclei in the rare-earth
region suggests that w* can be nicely expressed in
terms of a polynomial in 9, and backbending occurs
at the points where dw?/d9 equals zero. Hence
purely from a phenomenological point of view it is
more appropriate to try for such a polynomial re-
lationship. In fact, combining Egs. (8) and (10) we
get for the GVMI model equations:

w2=2§ Egnl—)—!(s-so)"-l. (11)

The inverse procedure of getting the potential
function from integration of w? over g using Eq.
(10), as long as w? remains a single-valued func-
tion, has been suggested earlier by Thieberger.®
Our conclusion is that the GVMI model equations
are consistent and in one-to-one correspondence
with the expansion (11) rather than with the Harris
expansion (9). Equation (11) shows that for the
VMI model (» =2) we have the relation w?
=2C,(9-9,), which can be rewritten as 9=9,
+w?/2C, and is therefore identical with the two-
parameter cutoff of Harris, Eq. (9), if C,=1/4C.
We do not present the results of any numerical
calculations using Eq. (11), which is the same as
using Eq. (8) for potential energy in the VMI ap-
proach. Varshni and Bose!® have done extensive
calculations (referred to as the VMI23 model) re-
taining two terms (» =2 and 3) in the expansion

(8), and recently Das and Banerjee'* have im-
proved the calculations by including terms up to
n=4. Here we discuss only the backbending fea-
ture of 9- w? plots in the GVMI model which, as
mentioned earlier, occurs at 9- w2 points for
which dw?/d9=0. Using Eq. (11), this takes place
for the GVMI model at 9 values given by the solu-
tions of the equation

qu%)—!(s-so)"*:o. (12)

» Equation (12) may or may not have a physically ac-

ceptable solution depending on the relative values
of the parameters, but it is clear that retaining m
number of terms in the potential-energy expansion
(8) we have at the most (m — 1) number of 9 points
at which backbending may occur. Thus backbending
is ruled out in the VMI model for which m =1. It
must be noted, however, that the acceptability of
a solution is finally to be decided by the energy
equation. We show this for the case of the VMI23
model which retains the first two terms (involving
C, and C,) in the potential-energy expansion (8).
Equation (12) then shows that backbending occurs
in the VMI23 model for the 9 values given by

g9=9,- C,/C,. (13)

The parameter C, must be positive as a condition
for stability, and, therefore, backbending occurs
at physically acceptable values of 9 in only those
nuclei for which C, is negative. However, as ob-
served by Varshni and Bose,!° in such cases the
energies become complex beyond a certain spin
level and are interpreted as providing a natural
cutoff to the rotational band, which is not sup-
ported, however, by the experimental data. Ex-
tension of the VMI model by Das and Banerjee*!
retains three terms in the expansion (9), and Eq.
(12) shows that in this case backbending may occur
for two g values given by the roots of the quadratic
equation

C,+Cy(9-9,) +3C (9~ 4)2=0. (14)

Again the equations do not remain meaningful*! in
giving energies beyond a certain spin level for
nuclei with parameter C, negative, but calculations
performed for a representative set of nuclei show
that the observed backbending is satisfactorily re-
produced.

Thus we have shown that the equations of the
GVMI model may produce a backbending feature,
are consistent, and are in one-to-one correspon-
dence with an expansion of the square of the angu-
lar velocity in a polynomial in the moment of in-
ertia rather than with the Harris expansion, which
can never give backbending. Incidentally, our de-
rivation also shows the futility of the attempts of
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Varshni and Bose!® who, in order to show the cor-
respondence of a special case of the VMI23 model
with an expansion similar to that of Harris, in-
cluded terms which are noninvariant with respect
to time reversal.

Finally, we may mention that, whereas the the-
oretical foundation of the GVMI model is given by
several workers,'?'!3 it is also possible to derive
Eq. (11) in the framework of a simple classical
model given by Thieberger!* to show the classical
analog of the VMI model. Thieberger observed
that in this model the deviations from the VMI

predictions can be interpreted by modification of
the relation involving potential-energy change and
the mass term, and, in fact, higher-order terms
(n>2) in Eq. (11) correspond to taking higher-or-
der mass terms in the basic relation (3) of Ref.
14.
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