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Isospin mixing in deformed nuclei*
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The effect of nuclear deformation on the isospin mixing matrix elements has been investigated for deformed
configurations in ' F. An enhancement of the mixing with deformation is found.

NUCLEAR STRUCTURE Isospin mixing.

The mixing of isospin states through the Cou-
lomb interaction has been studied in detail some
time ago by MacDonald. ' In this early work, part
of the isospin mixing in light nuclei was consider-
ed to result from the interaction of a core, con-
sisting of completely filled shell. s, with the "val-
ence" nucl. cons outside of this core. MacDonald
treated the core as a uniform, spherical. , charge
distribution of radius A, providing a Coulomb po-
tential.

3A+2 if+2

V(r)= „1-,, r 8

Using this potential and harmonic oscillator wave
functions, he calculated the Coulomb mixing ma-
trix ele me tn( T=1 JV(r) ~

T =0) for two and three
nucleons outside closed shells.

Following the general approach of MacDonald,
we have investigated the effects of nuclear defor-
mation on isospin mixing in "F. We feel the re-
sults have greater generality, however. The
present study was motivated by the suggestion
(see Friedman, Ref. 2) that the excitation func-
tion for the isospin forbidden reaction "0(d, o.,)-
"N* might be understood in terms of pairs of sim-
ple configurations call.ed "bridge states, " for which
isospin mixing is especially strong. It was further

(u' = (u,'(1+ -', 6),
(ds =(do (1 —

~ 6)
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(sb)

where 6 is a measure of the deformation and (do

can be related to the rms radius through h/me,
= —,'(r') in the case of "0 core. We make the con-
ventional assumption that the oscil. lator deforma-
tion parameter 6 is related to the core deforma-
tion parameter P by

1/2

p —= 0.946p .
2 4n

To calculate the isospin mixing, we coupl. e the
valence proton and neutron to states with T =0
and T =1 and take the wave function for the whole
system to be

(4)

suggested in Ref. 2 that these pairs of bridge states
in "F might be composed of a proton and neutron,
coupled either to T =0 or T =1, outside of a '60*
core treated as a "C+n cluster configuration.

As a further simplification to facilitate the cal-
culation of isospin mixing matrix elements, we
now employ the Nilsson model' and consider the
valence proton and neutron to be strongly coupled
to a spheroidal "0 core via the potential

V(r, 1, s) =-,'m[(u'(x, '+x,')+(u, 'x, 'J+Cl s+Dl' .

(2)

The ~'s are parametrized by

1 aA. , I30„IMlC, 7) =
( '+) 1+6 S~n, n,

"'

&&+ C,". „C, „[g(j,Q,j,Q, T)D~„+(-1) ""'$(j,-Q,j, —Q, T)D„'r], (6a)

where

g(j Q j &Q&T) = [Q, & (1)Q, n (2)+ (-1) Q, n (l)gz o (2)] [E|(z)az( 2) —(-1) -ez(- 2)E2(z)] (6b)
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In Eq. (5) we have used the expansion of the Nils-
son states y „ in terms of spherical harmonic-
oscillator states Q, „with coefficients Cg„.
The coefficients are taken from Ref. 4.

We represent the potential for the Coulomb in-
teraction of each valence particle with the core by
the potential V~ arising from a uniformly charged
prolate spheroid of semimajor axis b and semi-
minor axis a, with a'b =8' =(3.42 fm)'. The value
of R, the radius of the equivalent uniform distri-

bution (R' = ,'(—r'&), is taken from electron scatter-
ing from the ground state of "O.' The precise
form of the Coulomb potential can be found in
Ref. 6. In order to relate the core deformation
parameter P to a and 5, we use the self-consis-
tency argument that the density distribution has
the same shape as the Nil. sson potential. Hence, '
a'/6' = &o,'/e' = (1-1.2616P)/(I + 0.6308P).

Using Eq. (6) and the deformed Coulomb poten-
tial, we find the Coulomb mixing matrix element,

M = (aQ„PQ„T= 1 l g —,
'

Vc(x,.)(1+i", &)
l o.fl. , J3g„2 = 0& (6}

reduces to

I=a[(x o, l lclx n, &-(xsc„l ~clxeo, &] ~

Note that M is the difference between the Coulomb
energies of the two configurations occupied by the
valence particles. It foll.ows that no mixing can
occur vrhen the two particles are placed in the
same Nilsson level. . This is analogous to the con-
clusion reached by MacDonald in the spherical
case, i.e., no mixing of different isospin states
of (1P,)' can occur.

In Fig. 1 we present the single particle Coulomb
energy

energies into Eq. ('[) yields the Coulomb mixing
matrix elements, which are tabulated in Table I,
for all possible pairs of N=2 levels and for. . P =0.0,
0.1, 0.2, and 0.3.

Note that the deformation allows for an increase
in the Coulomb mixing over vrhat is possible with
a spherical nucleus. For example, the maximum
Coulomb mixing matrix element for the spherical

&x o. l I'clx c,&

for the N=2 Nilsson levels. Substitution of these

3700- i12 [2oo]

Nils son
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-,'-[22O] -', [211]
—,'[22o] & [2o2]
2[220] @[211]
—,'[22o] —,'[2oo]
—,'[22ol 2[2o2l
& [211]& [202]
2[211]2[211]

—;[211]—,'[2OO]
y[211]m[202]
& [2OO] —,'[211]
& I. 2o2] —,'[2ool
—:[2o2] $[2os]
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P =0.0

0
0

-25.8
0
0
0

-25.8
0
0

-25.8
0
0

25.8
25.8

0

P =0.1

0.1
15.8

-17.0
-15.3

13.9
15.7

~17e1

-15.4
13.8

-32.8
-31.1
-2.0

1.7
30.8
29.1

P =0.2

-7.6
25.5

-14.5
-47.2

22.9
33.1
-6.9

-39.6
30.5

-40.0
72~7
~2o7

-32.8
37.3
70.1

P =0.3

-19.0
33.9

-21.4
-78.2

31.3
52.8
-2.4

-59.2
50.3

-55.2
-112.0

-2.6
-56.8

52.7
109.5

TABLE I. Coulomb mixing matrix element I (in keV)
between &=0 and &=1 Nilsson configurations for various
values of deformation parameter P.

3600

X
O

5500

tie [2[i)
312[2ti]

&~2 [2zo)

6~2 [2O2]
612 [boa]

54000. , 0.) 0.2 0.5

FIG. 1. Variation of the singLe-particle Coulomb
energies for N = 2 Nilsson levels with deformation
parameter p (R =3.42 fm).
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case is 26 keV, while the maximum for the de-
formed nucleus (with P = 0.3) is 112 keV, an in-
crease of over a factor of 4. Also important is
the fact that the increase in Coulomb mixing
through deformation is achieved without an ap-
preciable increase in the sum of the nuclear en-

ergies &,. of the valence particles. For example,
the spherical configuration involving (ld„,)' has
~=0 and ~, +~a=6.8@0, while the deformed con-
figuration (P = 0.3) involving orbits 2[220] and
—,'[200] has &= 78 keV and &, + &2 =6.8h&uo (the ex-
act agreement of e, +&, is coincidental. ).
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