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The elastic scattering of high-energy particles by composite target nuclei is formulated in terms of coupled
equations in which the effect of inelastic processes is represented by an average inelastic channel. The average

fluctuation energy and fluctuation potentials which specify this channel are explicitly constructed and shown

to be related to the two- and three-particle correlation functions. The theory incorporates approximately the

effects of nonlocality, energy-dependence, rescattering, and absorption of all the inelastic channels.

. Systematic improvements of the method as well as several extensions of the formalism to target excitations
and particle exchanges are discussed.

NUCLEAB BEACTIONS Scattering theory of protons and pions by nuclei at
high energies. Construction of the effective inelastic channels.

I. INTRODUCTION

High energy scatterings of protons and pions off
complex nuclei have been treated in the past main-
ly by two seemingly distinct approaches, the
multiple diffraction theory (MDT) of Glauber' and
the multiple-scatter ing-optical-potential theor y
(OPT) of Watson. ' ' These theories attempt to
correctly incorporate the distortion effect arising
from the presence of inelastic channels, which is,
of course, the principal difficulty of the scattering
theory of composite systems. The simplifying as-
sumption common to both approaches is the im-
pulse picture in which the target particle binding
and Fermi motion are negligible during the scat-
tering.

The MDT is based essentially on the eikonal ap-
proximation on each of the target particle-pro-
jectile amplitudes, without the overlapping phases.
The target particles are assumed "fixed" during
the scattering, thus reducing the many-body prob-
lem to a sum of effective two-body situations. As
a result, the theory is extremely simple to apply
and numerous analyses4' ' have been carried out
w'ith the MDT, with excellent results for high en-
ergy, small angle data. The theory often works
well also at much lower energies and larger angles
than that expected from the theoretical estimates,
and as a consequence much effort has gone into
understanding the MDT and obtaining various cor-
rection. terms. There are some indications' that
the corrections to the MDT arising from the lin-
earization, ' the Fermi motion, ' and others cancel
with each other to some extent.

The OPT approach requires a careful construc-
tion of the optical potential which contains all the
effect of inelastic channels. Once this potential is
available in some approximation, the amplitude

can be calculated rather simply. In the course of
simplifying the optical potential calculation, Fesh-
bach and collaborators' converted the earlier re-
sult of Kerman, McManus, and Thaler' into a
finite set of coupled equations which are to repre-
sent the elastic and all the inelastic channels. The
result of their study strongly suggests that, with
further refinements of the theory, it may be pos-
sible to extract dynamical information about the
target system and about the interaction among the
particles involved.

In this paper, we reexamine the effective chan-
nel approach of Ref. 9, and formulate a more con-
sistent procedure of evaluating the various aver-
aged quantities which are needed to specify the
effective inelastic channels. " In its simplest form,
all the inelastic channels are being replaced by a
single effective channel. Therefore it is most
critical that the average fluctuation potentials and

average excitation energy are carefully evaluated.
These points are discussed in Secs. II and III. An

intuitive and physical discussion is first presented
in order to bring out more clearly the content of
the effective channel approach, which is then fol-
lowed in Sec. IV by a more rigorous formulation
using an effective inelastic excitation function.
The connection between these average potentials
and the many-particle correlation functions is also
w'orked out explicitly. Section IV contains a brief
discussion of var ious improvements and extensions
of the formulation.

The representation of all the inelastic channel
effect by a single effective channel may not be suf-
ficiently accurate for some purposes and may be
strongly model-dependent, but this problem can be
systematically improved, if desired. The theory
outlined for the elastic scattering is then extended
to target excitation and particle rearrangement
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H. EFFECTIVE CHANNEL THEORY

For simplicity of discussion, we consider the
scattering of distinguishable particles by nuclei
and neglect the exchange and spin effects as well
as the relativistic kinematic corrections. Then,
for the elastic scattering, we have the scattering
equations"

P(H E)P4 —= PVQ-@,

Q (H E)Q4 -= —Q VP+

with

4=P4+Q4, H=T(R)+Hr(r)+V(r, R),

(2.1a)

(2.1b)

and the elastic channel is projected out by the pro-
jection operator P given by

P=lc.( ))&t,*( ')1 . (2.2)

The target is assumed to be in its ground state g,
initially, where

H.(r)4.(r) =E.4. (r), (2.3)

while all the inelastic channels are contained in
the space projected by

As usual, (2.1) may be formally uncoupled to obtain

and exchange processes. The actual application
of the formalism to the proton-helium system will
be given in paper II." The pion scattering can
also be treated with little modifications so long as
we incorporate the pion absorptions phenomenologi-
cally.

where E, could be energy-dependent. For a pro-
jectile energy large compared with typical interac-
tion energies between particles, the scattering be-
comes semiclassical, and the contribution of many
soft collisions may be effectively described by a
smooth local interaction generated by (2.6) for
small angle scattering, as

P H —E+ P+c =0 (2 7)

and

Q4, = QVP4, .1
E —E (2.8)

Both in (2.7} and (2.8}, the proper evaluation of
E, is essential in estimating the amplitude, where
E, is in general expected to be complex when the
Q channels are open. A form such as (2.6) has
been used previously for bound states"'" and also
for low energy scattering' x8. i4 problems.
the effect of the Go term in (2.4) is large, (2.6)
can at best be only a crude first approximation.

B. High energy (slow) collisions of heavy particles

Although (2.6) reduces (2.4) to a simple form
(2.7}, the replacement of the entire QHQ by a
single constant E, may be too drastic an approxi-
mation. When high energy heavy ions are involved,
the collision may take place with little change in
the projectile kinetic energy, but slozv enough to
significantly affect the target structure. Then, an
improved approximation would retain the Hr(r)
term in QHQ but replace Q(T +V —E,')Q by its
average U(r}+E, , with E,'= E —E„ i.e—.,

P(H —E+VGeV)P+ =0,
where

G =[Q (E+ ie —H)Q]

and similarly using (2.5),

Q4 =GoVP+ .

(2.4)

(2.5)

(2.5a}

GQ 1
Q(E, —Hr(r) —U(r) —E, )Q

Zonation (2.4) reduces to

Q (E —H —U —E,)Q

(2.S}

Obviously, the complication of the original scat-
tering problem with H is now entirely contained in
the "effective channel" Green's function G. Once
a simple and explicit form for Go is given, (2.4)
can be solved immediately. Thus, it is of special
interest in developing proper procedures to con-
sider some simple approximations on G~ which
are used in high energy scattering problems.

A. Closure approximation

and similarly for Q+, , with

E=E„+E„' (n=0, 1,2, . . . ).

(2.10)

Presumably, (2.9) is also an improvement over
the usual adiabatic approximation without the aver-
age quantities U and E, , where

Q 1
Q(E -Hr)Q Q(E -H„—V)Q

'

We start with the simplest approximation in
which'4

(2.6)

The effect of the projectile motion on the distortion
pctential is approximately takeo into account in
(2.9} through fT(r) and E, . Note that both (2.S)
and (2.11) are local in the projectile coordinate R
and related to the polarizability of the target nu-
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clei. (If the projectile has its own structure as in
the heavy ion reactions, distortions of both sys-
tems are involved. ) 9o=[Q(E+ ie-H-VG, . V)Q] '

C. Fast collisions

(2.12)

and thus

In complete analogy to (2.9), (2.6) may be im-
proved for high energy fast collisions by'

Q(Hr+V —E,)Q- V(R)+E~ —E,

The form (2.19) is especially useful, because the
second term on the right hand side is symmetric
and involves the simple functions P+& and P@& .
For convenience we denote the "energy-weighted"
excitation functions related to them as

gQ
E —T(R) —V(Q) —E~+ ie

(2.i3)

Except for the projection Q, the target coordinate
r is completely eliminated in (2.13}, so that we
have effectively a two-body scattering problem for
6 . That is, the target is providing a distortion
V and energy shift E~ during the collision. The
resulting scattering equation is

x, = QvP+-f= (H E)p-4' ~,

X~=QV+P-4~~=(H+-E)P4~ .

Then, (2.19) becomes

&„=V'„+(X~,9oX, ) .

III. AVERAGE FLUCTUATION POTENTIALS

(2.21)

(2.22)

E+ie —T(R) —V(R) —E~

(2.14)

and (2.1}reduces to a simple set of coupled equa-
tions

P(H E)P4~ =—-PVQ4~, (2.15a)

Q(T +V —E~)Q@„=-QVP@~, (2.15b)

where Er = E —E~. -Relations (2.15) are the basic
equations we will analyze in detail in the following
sections, with regard to the evaluation of V and
El

The elastic amplitude is given by

(Xg, 9oX))-(XI,Xg )I(E—@) . (3.1)

If we were to approximate 8~ by a simple, sepa-
rable, variational form" as an alternative to (3.1),

The approximations on Go introduced in (2.6),
(2.9}, and (2.13}involve average quantities E, ,
E„E~,U, and V, which are left unspecified so
far. The effective channel formulation is incom-
plete without a proper way of evaluating these
quantities, and we consider in this section a varia-
tional procedure to estimate them. '4 For this pur-
pose, we return to the expression (2.24) for the
elastic amplitude and consider the closure approxi-
mation

V'„= (4'q, V@, ) = (@q,V [PC', +Q @;]), (2.16) l.e.,

P4'( P4', +G, V—Q4, (2.1I)

where @~ is an unscattered plane wave with the
target in its ground state. We now rewrite (2.16}
in a form more convenient for the discussion of
V, U, Er, and E, given in Sec. III. From (2.1a)

9q 1 QV'~}(QP~
Q(E+ is —3C)Q (QP, [E+ie —30]Qcp) '

(3.2)

then (3.1) and (3.2) give a relationship between h
and the trial functions Qy, and Qy, , i.e.,

where

P(H —E)P4', =0,

P(H —E)G; =-P
(2.i6)

(x g, q ) )(q ), x)) (xy, x ))
(QV'g ~ [E+ && —+]QPg ) E —8 (3.3)

By rearranging the terms in (3.3), we finally
obtain

= q',
1 + (P%'~, V9o VP@; ), (2.19)

and similarly for P4&. Then, we have from the
two-potential formula'

1'„=(4~, VP4, ) + (P4y, V Go VP4'( )

g E, (X&, X, )(Q4&, Qy, )
(xg, v'~)(t~, x&)

(xs, x;)
(x q)(y x) (3.4)

where

g'„—= (4~, VP4', ) (2.20)

Obviously, by choosing a higher rank approxima-
tion to 9s in (3.2}, it should be possible to improve
the accuracy of 8. However, we limit our discus-
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(X~, QHQX, ) A(H)
(Xy, Xg)

(3.7)

which is obtained by omitting the shift operator
VG V =.X-QHQ in (3.6}.

Writing out (3.7) explicitly, we have

z =(p+,'[v'-&v&']p+, ') (s.8)

A(H) =A(T)+A(V)+A(Hr),

where

(3.9)

A (T) = (P4'y, [VTV —( V & T ( V & ]PC', ), (3.10)

A(V) =(P@~,[V' —2V2( V&+ & V&']P(I'; ), (3.11)

A(Kr) = (P@~, [VHrv —Zo(V)']PC'( ), (3.12)

and where

( ) )f~"l("(~-=)I')'"(r, a) . (3.13)

Note that ( & in (3.13) denotes the dr integration
only with the weight

~ g, ~

' included. We will also
use ( &-, , with the subscript r, for the dr integra-
tion when g, is explicitly indicated. Although the
form (3.7) is perhaps the simplest, its accuracy
is not yet fully investigated. However, in view
of its usefulness in a wide range of high energy
scattering problems involving electrons, pions,
and nucleons, it warrants a more extensive anal-
ysis, both in formalism and in applications.

If, instead of the approximation (2.6), we choose
(2.12), then the construction of the Q channel re-
quires the evaluation of V and E~. As the approxi-
mation (2.12) requires quantities which are aver-

sion to the simple form (3.2) and (3.4), which fur-
ther simplifies by the choice"'""

/

Q((()q =Xq and Q((()q =X) (3.5)

(3.4) then reduces to"

g (Xj t+X j)
(x&, x;)

(P+q, PVQ[T+V +Hr+VG V)QVP@, )
(pe' pVqVp+r)

(s.6)

The various terms in (3.6) immediately suggest
that we may also set for Z, in (2.6),

&&„VQVC,&; = &C„V(I -P) VC, &-,

=&&„V'C,&; &~„-VC, &

-=(v'& -(v&'

while the numerator becomes

(3.14a)

&y„vq [H, +v —z, ]qvq, &;
= &4„VH (1 -P}v(1),& +&(I)„Vqvqvk, &,

—z,&4„vqvf, &;

=[(VH,V &
-Z.(v&'].[(V'& —2&v'& &V&

+(V &'] —Z,[(V'& —(V&'] . (3.14b)

The input for the evaluation of the average poten-
tials and energies are closely related to the corre-
lation functions among the nucleons inside the
nucleus. ' ' The C's defined by (3.18) and (3.21)
below carry the correlation information. From
the definition for V

V(r, R) =Q v, (r, —R)

-Nv(r, —R),
for v's inside the integrations involving the proper-
ly symmetrized function $0, we have

)'(t))=,~ J dxe ' '*v(x)=Nii(q) .

(3.16)

If we define

W2=—&V'& —&V&',

IV, =-(V'
&

—2 (V & ( V'& + (V &' etc. ,
(s.i6}

aged over the target variables only, we may write
for V and Ez

&y., vq [H, +v -z„]qvy. &;
( 4., VQVO, &;

(3.14)

This form is suggested by (3.6) and by comparing
the approximations involved in (2.6) and (2.13). As
will be shown in the next section, (3.14) is correct
except for the factor (J«) which arises from the
noncommutativity of the averaging procedure and
the operator T(R). More explicitly, the denomina-
tor of (3.14) can be written as

then

N N

iv, (q, q'}—= 4„P +exp(iq r, +iq' ~ r~)&(q)~(q')P,
5=1 1=1 „ge' '~z (q)(I, g„g e""'v(q')y. ;
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where

C.(q, q'} =D, (q, q') -Dl(q}D»(q'}

and

N

D, (q) =—g (4., e»"'» 0, };= C, (q),
f=1

(3.18)

(3.19)

N N

D (q, q'}= 2 Q g (g„exp(iq ~ r, +iq' r&)(,); etc
i=a

(3.20)

Note that C, (q, q'), from its definition, contains "self-correlation" terms of the form

e»(q+q') r
y }

as well as the correlations which are of dynamical origin. We have not taken them out in our definition of
the C's. Obviously, D„(q, . . . , q„) contains both connected and disconnected parts, and can be expressed
entirely in terms of the fully connected correlation functions C„(q, . . . , q ), for 1(m( n. The cluster ex-
pansion of this kind has been given previously, "and we have for example

C,(q,q,q, ) =D, (q, q q, ) -D, (q,q, )D, (q, ) -D~(q,q, )D, (q, ) -D, (q,q, )D, (q, ) + 2D, (q, )D, (q,)D, (q,), (3.21)

where
N N N

&,(q,q,q, )=—&, P P P ((I)„exp(i»h r, +iq, r&+iq, r),)g,};.
f =1 i=1 k=1

(3.22)

The Fourier transform of the W, function which appears in (3.16) may be written as

W (q q q ) =Ã U(qi)v(q )v(q ){D (q»q2q ) —3 [D (q )D (q q )+Dz(q )D~(q q )+D»(qs)D2(q q»}]

+D, (q, )D, (q.)D, (q, )]

=N'v(q, )v(q )v(q, )(C,(q, q2q, )+—', [C,(q, }C,(q q, )+C, (q~) C2(q, q,)+Ci(q, ) C2(qadi, )]], (3.23)

which has been made symmetric in all three q's
by averaging.

The evaluation of (3.14) for E~ is more involved
because of the appearance of the target Hamilto-
nian II~. This requires that we construct a spe-
cific Hamiltonian Hr from which $0 and Eo are
generated. Thus, a simple spin-averaged form
for II~ is, e.g. ,

model assumed here. Although H~ with v, and v

appears explicitly in (3.14), the actual form for
U~ is not required in the evaluation of E~+V be-
cause of a partial cancellation between the first
and third terms on the right hand side of (3.14b}
when (2.3) is used. Of course, the effect of Ur
is reflected in»l), and E,. We define

N N

Hr = g V'» — + g v, (r»)+ g v(r» —r, )
5=1 i) j

Y»»(R) =—((0, VHrV$0), —Eo(V)'

from which, of course,

(3.25)

=t U (3.24} &(Hr) = (P@y', Ye~»} (3.26)

where v, is the particle-core interaction for the Let

N N 2

M(q, t)')=, g P exp(it) r, +iq' ~ ri) — [ ——', » (t(.+j")() +i» q' vi»" +(»,"q v, () ])-
2 gyes

0, 0 0 0 0 0

(3.27)

Then,

Y„(q,q') =N'»)(q)»)(q')[M(q, q')+ —E C (q, q')].

(3.28)

In terms of these functions, we finally have

E, -=llm[Y„(R)i&,(R)],

provided the limit R-~ exists, and

(3.29)
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W, (B) I'„(B)
W.(B) (3.30)

where we have added the term J«, the presence
of which will be discussed in the next section.
This additional term ~« is missing in the above
derivation because the averaging of the operator
QHQ over the function y, as we have done in (3.7)
for example, does not in general commute with
the kinetic energy operator T(B) contained in
QHQ. This point is often overlooked in many pre-
vious formulations, and we present in the next sec-
tion a derivation which is mathematically more
cons istent.

~I/5u +0=0 and 6I /6ut+=0,

we obtain the set of coupled equations

[T+(V) -E,']u, (R) =- V, „ur,

[X+V«+E~+ &«- E]w =- V~, u, ,

where

(4 4)

(4.5a)

(4.5b)

where V', denotes the asymptotic amplitude of the
trial function +, and

@,= g, ( r) u, ( R) + y (r, R)ut(R),

in which y =@*. Taking the variations with respect
to u,*and*, as

IV. IMPROVEMENTS AND EXTENSIONS

In this section, we consider several aspects of
the elastic scattering formulation presented in
Secs. II and III which may be improved and ex-
tended.

A. Variational formulation of the effective channel

E =(y, H tItt), „=„E
~~~ =

& a', I ~s't), f«=0" t&q't,

V ~ = Vo ~
= Q, Vt|t0), =Ns W, =W~' ~2 .

Comparing (4.6) with (3.30), we can identify

(4.6)

(4.7)

The intuitive derivation of (2.15) and (3.14) over-
looked one important aspect of the averaging pro-
cedure carried out over the target variable r.
Since the replacement of the operator (Hr+ V —E,)
by its averaged form should depend on the scat-
tering solution, the spectral averaging procedure
does not in general commu~e with the projectile
kinetic energy operator T(R). To correct for this,
we may start with an ansatz for the form of the
wave function +. This will give a mathematically
more rigorous derivation of the coupled equations,
although the relevant physical picture is obscured
somewhat. Thus, we write"

4(r, B)=P@+Q@

=$,(r)u, (R)+y(r, R)ao(R)=—4, , (4.1)

with the choice for the average excitation function
y of the form

cp(r, R) =NsQV$0

(4.2)

The normalization factor N~ is given explicitly
by

N„'=(g„VQVg, ), -=W, (R) .
Such a normalization factor can always be ab-
sorbed into ut(R) but the inclusion of Nz in p sim-
plifies the resulting equations as will be seen be-
low.

Now, we construct a variational functional of the
form

(4.3)

V =V q~+E~+ ~q~- E„,
thus further exhibiting the mutual consistency of
the choice (4.2) for y and the origin of &«. For
the perturbation theory argument for the choice
of y, we refer to Ref. 11.

We now briefly compare (4.5) with (2.15). The
operators on the left hand sides of the two sets
are exactly the same; on the other hand, the
coupling potentials in (2.15) are still dependent
on the variable r, while V, ~ in (4.5} is dependent
on the variable R only. Therefore, (4.5) is definite-
ly simpler to apply and will be studied in great
detail in connection with the proton-helium scat-
tering as reported on subsequently.

Incidentally, (2.15) can still be solved for P@z
and Q+z using the Green's function (E~+ie —T
—V) ', although the operator Q is still present
explicitly.

B. Average excitation functions

The derivation of (4.5) does not depend on the
specific choice (4.2) of the excitation function y,
so long as it represents a function in the Q space.
Thus, we can generalize the form to be"''

(4.8}

where V may in general contain one or more vari-
ational parameters. Some of these parameters
could be determined by additional experimental in-
formation, such as the total cross section through
the optical theorem.

When the projectile-nucleon interaction is very
short-ranged, the form (4.2) will contain an ex-
cessive amount of high momentum component,
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while we expect physically that the q's should be
spread out more in the coordinate space than the
ground state (,. This unsatisfactory situation is
often brought about by the closure approximation
introduced in (2.12}for the target Hamiltonian Hr.
That is, the approximation

[Q(E —H )Q] ' =Q(E —E ) 'Q

target nucleons is probably negligible at high en-
ergies, ' the situation is bound to change as the
energy is lowered, and also for larger angles.
The processes such as (p, d) with neutron pickup
should be useful in probing the neutron distribution
inside the target. As a typical example, we con-
sider the (P, d) reaction, and write the reduced
matrix equations"'" for it, as

automatically places too much weight on the higher
excited states of H~. A smoother V than V often
compensates partially for this error.

The elastic amplitude calculated may turn out
to be sensitive to the particular form of y chosen.
This difficulty can easily be treated by simply in-
cluding additional excitation functions in +, . Thus,
we may write

@,=g,(r}u,(a}+X„(r,B), (4.9)

(H~ —E)4~ = - V~ @„,
(H~ —E)@„=—V~ 4'~,

where, in the obvious notation,

and

H =H~+Vp =H~+V„.

(4.13)

(4.14)

where

X„=g q „(r,%}~„(R}. (4.10}

To preserve the Q-space character of y„, we still
take the form

=N„QV„f, , (4.11}

where the QV„P may be chosen to be approximate-
ly orthogonal to each other in order to optimize
the efficiency and minimize cancellations. " As
M increases, the sensitivity of the amplitude on
the form for y should decrease.

C. Inelastic excitations and rearrangement scatterings

When the particular final state of interest is
weakly coupled to the initial channel &, the +&

of the form (4.1}or (4.9}would be sufficient to
obtain the transition amplitude for i -f. The
well-known distorted wave Born approximation
procedure can also be used. Thus, we consider
here only those reactions in which the channels
i and f are strongly coupled.

For the inelastic excitations i-f, we may set
simply

Q) Q
g + $y Qy +Xg (4.12)

where X„ is now in the Q space defined by Q =1
-P, -P& with P, P& —-0 and P&Q ~P&Q =0. (Again,
the orthogonality requirement of I& is not nec-
essary but convenient in improving the accuracy
of the theory. } Experimental data have improved
sufficiently in recent years to make such analysis
meaningful.

The rearrangement and exchange channels are
more difficult to incorporate because of the non-
orthogonality between these channels. Although the
exchange effect of the projectile nucleon and the

This form avoids the nonorthogonality problem,
P~P~40. Following (4.9}, we set

@p = 4q, ——(~oupo+Q~X~p, Q~ =1 P~, -
+~ = @„~=g~ou~o+Q~X~~, Q~ =1 P~ . -(4.15)

The detailed discussions of these equations will be
omitted, as they have already been given else-
where. 22

D. y-t conversion

and assume that the target states are properly
antisymmetrized. (For simplicity, we neglect
here the complication of the antisymmetrization
of operators in the intermediate states. '0) By
defining the scattering operator & by

t =v+voot, (4.1'7)

The theoretical description of scattering pro-
cesses in terms of the two-particle potential v

is basically a low energy approach and is on a
less solid foundation at higher energies mainly
because of the importance of the particle crea-
tions and the coupling to many other species of
particles, as well as for the fact that the two-
nucleon interaction can be singular at small dis-
tances. Therefore, the formalism with the s's
is often rewritten such that the &'s are replaced
by the two-particle transition operator I'F. The
use of the I'F has additional advantages in that the
on-shell information of I'F can be obtained directly
from the experimental data and that the &F al-
ready contains all the multiple scattering informa-
tion pertaining to a given scattering pair. How-
ever, this modification necessarily involves ap-
proximations, as will be discussed below.

We start with the SchrMinger equation:

(T+Hr+V —E)+=0, with V =P v, , (4.16)
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where

v4' = tk' (4.19)

The amplitude t of (4.17) is still an (%+I)-body
operator and requires further approximations
before it can be identified with the two-body oper-
ator t~, i.e.,

E~tp =v +vgt~ (4.20)

where g is purely a two-particle free Green's func-
tion. In actual applications of t~ in (4.18), how-
ever, we make the additional approximation

(4.21)

where I'„ is the experimental on-shell amplitude.
Taking a particular analytic form for t„
amounts to assuming a specific off-shell exten-
sion. Presumably, t,„already contains the correct
relativistic kinematic and other corrections, and
these should be consistently accounted for when

(4.17) and (4.18) are modified. Some efforts are
being made recently" to correct for the errors
involved in (4.20) and (4.21).

Alternatively, as has been done in Secs. II and
III, we may solve (4.16) for +, with the v's ob-
tained from t,„via (4.20}. The effective v in

this case contains a particular off-shell exten-
sion, but we avoid the introduction of the operator
t altogether. Thus, provided Go and g have a
"mutually compatible" structure, with the same
relativistic extensions, the use of v seems more
direct. Undoubtedly, the off-shell behavior of v

and resulting t~ should be model-dependent, but
this is one of the points which the study of high
energy scattering is to explore. For pion pro-
jectiles in the energy region below approximately
500 MeV and for proton beams of roughly 3 GeV
or less, we expect that the effective potential
description for the projectile-target nucleon in-
teraction should be reasonably effective. Thus,
the potential approach w'ill be adopted in our anal-

'
we can rewrite (4.16) into an analogous form'

(4.18)

where +' is related to the original + by

ysis of the proton-helium scattering at 1 GeV, to
be reported on in the second paper, with the proper
kinematic corrections incorporated both in Go and
g. Provided the corrections mentioned above, in
connection with (4.20) and (4.21), are properly
taken into account, the calculation with the t op-
erator should give a result which is consistent
with the v operator formulation if both the t and
v operators used have in fact the same off-shell
extensions. This problem is being carefully ana-
lyzed.

V. DISCUSSION

We have reexamined the effective channel theory
of high energy scattering and explicitly constructed
the average fluctuation potentials and average ex-
citation energy, all of which are needed to com-
pletely specify the theory. Although they involve
the two- and three-particle correlation functions
and the related quantities ~H and ~«, the resulting
set of coupled equations (4.5) for the elastic scat-
tering is extremely simple and should be useful
in a wide range of physical problems. The average
excitation function q chosen in (4.2) is basically
a quasiadiabatic form, but the discussion given
in Sec. II, (2.12}and in Sec. III, (3.3), strongly
suggests that the set (4.5) with (4.6), (4.7), and
(4.8) should be reasonably effective at high en-
ergies as well. A detailed examination of the
range of validity of the theory w'ill be the subject
of the second report" on proton-helium scattering.

As noted earlier, the various kinematic'o and
relativistic corrections to the formulation pre-
sented here using the Schrodinger equation may
be incorporated as usual, and this will be dis-
cussed explicitly when the theory is applied to
specific scattering systems. The theory assumes
that the input information on the interaction v and
the target function $0 is a Priori known. Since the
actual situation is often far from this, analyses
of nuclear scattering with an approximate U and

g, should shed further light on these input quanti-
ties.

One of the authors (Y.H. ) would like to thank
Professor H. Feshbach for several very helpful
discussions on the nuclear scattering at high
energies and also on the proton-helium problem.
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