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From the pion-nucleus Low equation in the one-meson approximation we obtain an uncoupled, nonlinear,

singular integral equation to determine the crossing symmetric elastic pion-nucleus scattering amplitude. The
driving term of this equation is evaluated in an impulse single-scattering approximation for (J"=0+,I = 0)
ground state nuclei. It is found that unitarity requires that we include the effects of the strong absorption of
the low partial waves in the entrance and exit channels. Thus, we introduce distortion of the pion waves by a

procedure used in the inelastic peripheral scattering of elementary particles. Numerical results are presented

for the iterative solution of this equation for m-' C scattering in the energy region of the (3, 3) resonance.

NUCLEAR REACTIONS. ~-nucleus scattering theory with field-theoretic Low
equation. ~2C(r, r), E in (3, 3) resonance region; calculated o, o(8).

I. INTRODUCTION

There have been a large number of different ap-
proaches to the theoretical analysis of the elastic
scattering of pions by nuclei in the energy region
of the (3, 3) resonance. ' Prominent among these
have been optical models (both relativistic and
nonrelativistic), Glauber theory, and direct ap-
plications of multiple scattering theory. These
analyses have generally been successful in inter-
preting the pion-nucleus interaction in terms of
the elementary pion-nucleon interaction.

In this work we consider another approach to the
analysis of elastic &-nucleus scattering which is
based on the field-theoretic equation of Low. ' This
approach exhibits several useful features. First,
this equation explicitly displays both the crossed
&-nucleus processes and the elastic nuclear re-
scattering of intermediate state pions. Thus, the
importance of these processes can be readily de-
termined. And second, this equation can easily be
generalized to determine any inelastic scattering
amplitude or even a coupled-channel-type set of
equations for evaluating both elastic and inelastic
amplitudes. '

Here we apply the Low equation to the elastic
scattering of pions by "C in the energy region of
the (3, 3) resonance. In the context of this problem
we discuss in detail the features of this equation
which are of importance to the unitarity condition
on scattering amplitudes and the general problem
of its solvability, both of which will be important

considerations in further applications of the Low

equation.

Jf~
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The matrix element of this current, given in Eq.
(2), can be shown to satisfy the Low equation by
reducing out the final state pion and inserting a
complete set of states into the resulting causal
commutator of currents. We then find

II. PION-NUCLEUS LOW EQUATION

We consider the process

&&'~(k) +A —»&&(k') +B,
where an initial state pion with isospin n, space
momentum k scatters from a nucleus whose initial
state is completely specified by the symbol A, go-
ing into a final state of a pion (P, K') and nucleus B.
By reducing out the initial state pion, the S-matrix
element for this process can be written

&Pk', B;in IS I ~k, &; in& = &BIA.& &Pk'
I n&&

—2&Ti5(Es +&a„—Z„—&u, )

x
&pk', B;out I ~&tk i A&,

(2)

where +,' = k'+ m„' and the pion current J „- is ex-
pressed in terms of the interpolating pion field by

&tt lot„ ln;out&&n;out&a t llew& &ttls „-ln;out&&n;outlsntllA&)
&t&, +B -Z„+is &t& +Z„—Z„+i@ (4)
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where ST denotes the so-called seagull term given
by the integral

gleet this term.

1
(2~,)

1 / 2
'x dt's(t) III. SPECIALIZATION OF THE LOW EQUATION TO

DETERMINE THE ELASTIC SCATTERING AMPLITUDE

FOR (J =O', I=O) NUCLEI
X[e "'-" (t s, )(E l[y, (x, t), g„'„-)l~)]

where [I',(tB,)I"2]—= t[I', (B,I'2) —(B,I',)I',]. This
term has been shown to describe the contribution
from diagrams in which two pions interact at the
same space-time point, such as occurs in pion-
pion interactions and pion-nucleon interactions
which are quadratic in the pion field. 4 With the
view that the main features of medium energy pion-
nucleus scattering are a consequence of the strong-
ly attractive P-wave pion-nucleon interaction, and
assuming the validity of an impulse approximation
treatment of this term, we can conclude from the
study of the pion-nucleon problem that the seagull
term will be small in comparison to other terms
in Eq. (4). In the following we will therefore ne-

We now consider a method for evaluation of (4)
to determine the elastic scattering amplitude for
pions on nuclei in the state (Z'=O', I=O) with the
scattering energy in the region of the (3, 3) reso-
nance. (For numerical illustration we will exa-
mine x-'2C scattering. ) Since we expect that nu-
clear recoil will be negligible for this problem,
our analysis will reflect this fact.

As in the Chew-Low theory of pion-nucleon
scattering, ' we neglect the multimeson states in
the completeness sum in (4). The neglect of these
states will be valid if the cross sections for in-
elastic (&( production) processes are small com-
pared to the elastic ones for all values of the en-
ergy. We then have for the ground state to ground
state amplitude in the one-meson approximation
(ignoring "in" and "out" labels and the seagull
term)

(PIP»» I")&v(IP'»I» &PIP-'» I»&wlP»» I»)
+E@—E~+ $6 A~~ +Eg —E@+z6

A

pp (pip»pl»(, vp&&x, «pip„'»Ip& &pip„'»lw, vp&&v(, «pips»-, lp&)
(27() (d2 +E@s—((&p —E& + 2E (s)2» + (d2 +Eg —Esp + 'LE

p'p (pips»-, lp, vp&&s, «pip„'»ll» &pip.'»Ilp, vp&&p, «flips»ll»)
(27()2

4U& i —(d& + 26 CO& i + CO& + Z 6

where 4 denotes the nuclear ground state and the
sum over A denotes a sum over the nuclear states.
We shall now consider models for the evaluation
of the first two terms on the right of this equation.
These terms will then serve as the driving term
of the resulting nonlinear singular integral equa-
tion for the &-nucleus elastic scattering amplitude.

A. Plane-wave impulse approximation

To develop models for the evaluation of the in-
elastic matrix elements appearing on the right of
(6), we will first ignore absorption effects due to
competition from other inelastic channels and
treat the basic &K interaction in the generalized
impulse approximation. ' Thus, we shall be de-
scribing the incoming and outgoing pions by plane
waves. However, the use of this plane-wave im-

pulse approximation (PWIA) will be seen to result
in a violation of the limits imposed on the elastic
amplitude by the unitarity condition of the S ma-
trix. In particular, we will find that it is the low-
est partial waves which exceed the unitarity limit.
Consequently, to include the effects of the strong
absorption of the low partial waves in the entrance
and exit channels into the numerous competing
channels, we introduce distortion of the pion
waves. This will be discussed in the text subsec-
tion where we consider a procedure which has
been successful in describing the distortion due to
strong absorption in the inelastic "peripheral scat-
tering" of elementary particles.

Proceeding with the evaluation of the first term
on the right of (6) using the plane wave impulse ap-
proximation, we assume that (E„-E&()averaged
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over nuclear states satisfies (E~ —E~) «&, . We
can then use closure on this term and get

—(e I
[z»-., z„';]le),

where the circumflex denotes that only the part of
the current which conserves pion number is to be
considered. This Born term can be evaluated in
impulse single-scattering approximation assum-
ing that the &W interaction is described by the

pseudoscalar coupling, so that

(8)
) f ~ o .k~(n)eik'r„

rrk (3(g )1/2 ~ ~ n rx

fl =].

Here, ()(k2) is the form factor (cutoff) of the )re
interaction, f is the renormalized unrationalized
mN coupling constant (f '=—0.08), and for the nth
nucleon r„ is the position vector, 7'"' is the nth
component of the isospin operator, and o„ is the
spin operator. We then have

where ~„are the Born amplitudes gives

p(q) k'k
r( )'

+2

(10) i(, = s6 ()p(q) k' k= a, ,

a, =-', 5~()P(q) k'k,

p(n) (pkr

p(n) (pkr

p(n) (pkr

p(n) (pkr

Qk) = -'T '"'1 '"'(T ~ k'0 k8 n n n

ok) = 3T() "'7„"'[3%' k —O„k'(7 k],
~k) (6 rT (n) ~ (n)]c»

~k) [6 r~ (n)~ (n)]

x [3k ' k —c„k'v„k] .

With the ground state nucleus defined to have
(J', I) =(0', 0), only the scalar, isoscalar, and
even-parity part of the operator shown in Eq. (9)
will contribute to the nuclear expectation value.
The three nucleon vector operators v„, o„, and r„
which are present in this expression can be cou-
pled to obtain the relevant part using standard
techniques, as described in the Appendix. Defin-
ing

(C,
I Q ei(k -k ') ' r „p(n) (pkr ~k)

I

C,)

and the P~„"~ are projection operators onto states of
definite angular momentum and isospin acting with
respect to the variables of the nth nucleon

P(q)= i.( q) (p )rd'~,

where q= lk' —kl, and p(r) is the nuclear density
which is normalized to the number of nucleons.

We therefore find

=0.

We now consider the evaluation of the second
term on the right of Eq. (6). This requires a mod-
el for the nuclear ground state to excited state
matrix elements. Again assuming that the pion
current acts as a single-particle operator we can
evaluate these matrix elements in impulse approxi-
mation using the transition opera, tor of the Chew-
Low theory. Writing

(A, v p I
z tk

I 4) = (A I w(v p, nk) I c'),

the nuclear transition operator 8' is expressed as

(16)
4 (d ~(r)n

where h„((d~) are the Chew-Low amplitudes for ((N elastic scattering. We then have for the second term of
Eq. (6)

f'@'de. &@III"(~p, Pk') IA)(&III'(~p, ~k) IC& &C III"(~p, ~-k) l&&&&III'(~p, P-k') I@&'
(2)))n

{d~~ —(d~ —Q+ $6 (d~~ +(de+4+ 'l6

(17)
where we have used closure on the denominators; and the constant 6= E(„E@)is again as-sumed to satisfy
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(jn the following we use 6 =0.1m„.)
rgnoring Pauli principle effects, we approximate the sum over excited nuclear states

g la) && I=-1.
A ~4

(18)

Then, using the orthogonality property of the projection operators

dQ~P~" ~(vp, pk')Pq" (vp, ak) =4vpz5„q 5„„P~"(pk', ok), (19)

we readily obtain

(4m)' v(h')v(h")
(2v)' (4e (u )'~z

p'dp, , ~ ~ (@ le"" "' ''"P'„"'(teak', o.'k) IC'&lh„(~, ) I'
CO~ I —(d p

—6 + 2 6
Tl P

(4 I

e'~~ ~ ~
' " ~P~ "~ (o.'—k, P —k')

I 4) Ih g (& ) I
'

Cg~ ~ + (dp + 6 + 2 E
(20)

Using Eq. (13) then yields

p'd~, v'(p')-,'[lh, (~,) I'+4 lh, (~, ) I'+4 lh, (~,) I']
4~a~a'

(
1 1

x . — . p(q)5„8k' k,
40~~ —(d~ —6 + 2 6 (d~~ + COt, + 6 + 2 6

(21)

where we have used the fact that A, =I2,. This equation can be further simplified by considering the defining
equation for the Chew-Low amplitudes

„() ~ d p. .(p) I ~( ~)l g„ I .( .)I
z ~ ~ co, -z "' cop+z

V

(22)

where A„, is the crossing matrix

1 -4 -4 16

-2 -1 8 4

8

4 2 2 1

From Eq. (22) we obtain

[h, (z) +2h, (z) + 2hz(z) + 4h4(z)]

u'&~~'(y')fl&, (~) I'+& l&,(~)I'+& I&.(~)I'+4 I&,(~)I'1 (-„,~ „), (&4)

where we have used the relation

Q [&„Ih, I'+2&..Ih, I'+2&..Ih, I'+4&,.Ih. I']= Ih, I'+2 Ih. l'+2 Ih. I'+4 Ih. I'

and the fact that

A.~ +2k.q+2A. 3+43,q = Q .

Using Eq. (24) in (21) then gives

—4&,&,
H' (~, —~)P(q)5—zk' ~ k,

v(h')v(h") 1

4~a~~'
H('i —=h, + pps~+2AS+4I24, (2'f)

where corrections of relative order 6 are ignored.
Equation (27) is thus the complete expression for the driving term of the pion-nucleus Low equation for

(O', I) =(0+, 0) nuclei. Denoting this term by V(k', k; v„.), we consider the partial wave expansion
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V(k', k; (u~ ) = —4v—,/, Q(2l+1) V, (k', k; (u„)P((k'k)6„g.

Similarly, expanding the elastic amplitude

&4, pk' ~Zt„;, ~C &
= —4&,/, p (2l+I)T, (k', k; u, )P, (k'k)6 8,4~a~a'

the Low equation (6) can be written'

1 d,{, T,*(P, k'; cu, )T, (P, k; ~,) Tf(P, k; &u,)T, (P, k'; &u, )

p

where

(29)

(30)

+1
V, (k', k; ~, .) = — dx P, (x)xp(q)k'kH" (~, , a), x==k" k.

l
(31)

We now specialize the driving term (31) to "C
by choosing for the ground state density

p(r) —tx(I + 4 &2/k2)e-"/~'

(y = 12[g27p/2(I +2 g /k2)]
(32&

which is the form used to pararnetrize electron
scattering, ' with values of a and b as corrected
for the nucleon's spatial extension'

This density yields the nuclear form factor

P(q) 4~x3/3 e ( 1/4) 0 0 n3 +
1 a' a' 2

4 2b' 12b~

Expanding this in partial waves according to

p(q) =4& g $ (k' k)P (k'k)
l= 0

(34)

(35)

a =1.59 fm, b =1.66 fm. (33) gives

' a' a' 1 1 a'z
$, (k', k) = no e ' —+ —, ———y (2 I+i)i, (x) + 2 [li, ,(z)(1 —5„)+(1+1)i„,(x)]

where

x= —,'k'ka' y =-,'(k'+k")a'

and i, (z) is a modified spherical Bessei function of the first kind. 'o From Eq. (31) the driving term is
finally obtained as

4x (1+1)$„,(k', k) I ), ,(k', k) „, (,)

(2 I+I) (2 I+3) {2I- I){2I+I)

(36)

This completes the evaluation of the driving term in the plane w3ve impulse approximation.
From the structure of the Low equation, the on-shell x-nucleus amplitude T, (k', k'; e, ) can be related

to phase shifts as follows. Using Eq. (2) and the unitarity relation for the S matrix

S 8= 1,
the elastic scattering amplitude can be shown to satisfy the equation

&4, &k'I&.'g IC& -«, ~i I IB'gl+&*=-2&I Q 6(Ee+~, -E.)&n l&8'&-, IC&*&nI&.'&-, IC&

(39)

(40)

for ~, = cu„. In the one-meson approximation this gives

——,6((u, . —(o,)&4, v p (Z8~„- )C &
*

& 4, v p (
J'„-[4»

d3p—2vi g g —--;6(u~ —u~-E„+E@)&A., vp~Z&t&-, , ~C&*&A, vp~ J~tp~c'&.

Using Fq. (29) to expand the ground-state to ground-state amplitude and Eq. (15)et. seq. to evaluate the
ground-state to excited-state amplitude„we obtain

(41)
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T, (k', k; ~, ) —T,*(k', k; ~, ) = 2 ik' v'(k") T,*(k', k'; ~„)T, (k', k; ~, )

+ f -', v{P'~'(p')[lk, (~,) I'+2 1k.(~,) I'+ 2 lk, (~,) I'+ 4 1k,(~,) I']]

dx I', (x)xp(q)k'k . (42)

Setting k' =k and using Eq. (31) and the unitarity
relation for the Chew-Low amplitudes

directly from the driving term of the Low equation
according to

lm ",(~,) = P'~'(P"-) I» „(~,) I' (43) a I„"„(~,) = —,u'(k") (2 I+ I) Im V, (k', k'; cu, ) .
then yields

ImT (k' k'~ )=k'v'(k")iT (k' k'&u )i'
+ Im V, (k', k' „cu„). (44)

(45)

where 5, are real phase shifts and the inelasticity
pax'ametex' s, is given by

B& (4)&~) =1 for &d&~ & lH„+6

n, '(~, ) = 1 -4k'v'(k") Im V, (k', k; ~„}
for u~ ~ m, +b, , (46)

where, as usual, the unitarity condition requires
that 0 ~n ~ 3.. This result then establishes that
the &-nucleus inelastic cross section is determined

We note that Eq. (44) can also be obtained quite
trivially by taking the imaginary part of Eq. (30),
after setting 0' =k. This latter result is a con-
sequence of the fact that any amplitude which sat-
isfies the Low equation (6) will identically satisfy
the unitarity relation (40), and that we have applied
an identical set of approximations to these equa-
tions.

Equation (44) 18 'the statement of tneiastic unl-
tarity for the partial. -wave amplitudes T, . It im-
plies that we may write

(47)
Using for the &~ form factor the same expres-

sion which has been successfully used in the Low

equation analysis of &N scattering, "
+2(k&2) 8-k /4!}m~

we find that the PODIA model for the driving term
leads to a violation of the unitarity limits on the
inelasticity parameter. In Table I we show the
values of 4k'u'(k")Im V,(k', k'; &u„) for several ener-
gies in the range from 57 to 290 MeVwith all rele-
vant partial waves included. Using the classical
correspondence between impact parameter and
angular momentum given by kb=—1+—,', and a radius
for "C equal to the equivalent charge radius B
=3.2 fm, we find that the unitarity limits are vio-
lated when (roughly) the pion's classical impact
parameter is less than or equal to the nuclear
radius. (In Table I an asterisk is used to denote
that k «8 for the number displayed. ) However,
when the unitarity limits are not violated (corre
sponding to the higher partial waves), we find that
the inelastic partial cross sections computed using

'

Eq. (O'I) agree quite well with those determined
from an optical potential calculation.

As mentioned earlier, the PWCA treatment of the
driving term is unrealistic in that it ignores the
many competing open inelastic channels which

TABLE I. Values of 4@'q (0' ) ImV&(P', &'; ~&i) for several energies in the range from 57 to 290 MeV with all relevant

partial waves included. An asterisk denotes that the classical impact parameter is less than or equal to the equivalent

chrkrge radius,

56.987 82.591
Pion kinetic energy (MeV)

125.39 153.77 172.69 222.17

0.27976*
0.334 3.8+
0.11502
0.020 20
0.002 32
0.000 20
0.000 01

1.5045~
1.3292+
0.642 74*
0.172 61
0.030 85
0.004 09
0.000 43
0.000 04

4.3994* 6.9110* 8.3304+
3.4346 + 5.2307+ 6,3932*
1.9831* 3.2873+ 4.3501+
G.704 25 1.3796~ 2.1976~
0.170 76 0.406 10 0.816 13
0.030 93 0.090 15 0.23305
0.004 44 0.015 94 0.053 47
0.000 52 0.002 34 0.010 20
0.000 05 0.000 29 0.001 66

7.6363~
6.0253~
4.2589*
2.3581~
0.99146+
0.325 58
0.086 57
0,019 23
0.003 66

6.5143+ 5.4585~ 4.2325+ 3.6975+
5.3487+ 4.6618* 3.7980~ 3.3858~
3.9404+ 3.5753~ 3.0897~ 2.8359*
2.3877+ 2.3352~ 2.2172~ 2.1258+
1.1420+ 1.2477+ 1.3620~ 1.3911+
0.435 83 0~544 62 0.708 71* 0.785 38+
0.13625 0.19746 0,31398 0.382 90+
0,03580 0.06069 0.11984 0.16247
0.008 09 0.016 11 0.039 94 0.060 63
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exist at the energies we consider. The single in-
elastic channel (i.e., nuclear excitation} repre-
sented by the driving term (38) should actually
constitute only a fraction of the total inelastic
cross section. In particular, numerous reactions
with more complex final-state configurations are
also expected to contribute to this cross section.
On intuitive grounds, one expects these complex
reactions to be initiated by collisions with impact
parameters which are small (low partial waves).
Thus, the existence of competing open channels
is expected to reduce the driving term in low par-
tial waves below the values given by Eq. (38).

To describe the effects of the competing open in-
elastic channels on the driving term of the &-nu-
cleus Low equation, we consider the modification
of this term which results from the use of distorted
waves for the incoming and outgoing pions. In ad-
dition to simulating the loss of pion flux into the
various inelastic channels, the use of distorted
waves should also approximately take into account
the shadowing or absorption effect caused by the
fact that each quasifree collision of the pion with a
nucleon reduces the undeflected pion flux seen by
the other nucleons. Consequently, this modifica-
tion should further improve on the generalized im-
pulse approximation treatment of the driving term.

B. Distorted wave impulse approximation

The necessary information concerning absorption
in the entrance or exit channels will be inferred
from the elastic scattering in the initial and final
state in a manner first proposed by Sopkovich, "
and subsequently discussed in detail by Gottfried
and Jackson. " The distortion of the pion waves

resulting from this absorption will be introduced
in the form of a modified Born approximation sug-
gested by the solution of a two-channel potential
scattering problem with absorptive potentials in-
troduced in each channel to represent the net ef-
fect of all other channels.

We first consider an inelastic process which,
in lowest nonvanishing order, is caused by the
interaction V. Letting U ' and U ' be the re-
maining interaction between the colliding systems
in the initial and final state, respectively, the
scattering amplitude to first order in V and all
orders in U ' is given by

(49)

where

qI'=y, . + [Z-(a- V)+i~]-'U'& y, ,

=Q~+ [E-(H —V) -ie] U(-) (-)

The interactions U ' are taken to be complex (op-
tical) potentials; and at sufficiently high energies
and small momentum transfers the wave functions
can be determined using the Glazer approxima-
tion, "which gives

(„"(b, z) = e'" ' ' exp —— U ' (b+ zz')dz'
v~

(51)

In obtaining this expression, the z axis was chosen
along the vector Tr =%'+k, where k and k' are the
initial and final projectile momenta; the relative
velocity is v, and b is the impact parameter vec-
tor chosen such that it is perpendicular to a. %Ye

then have for the scattering amplitude

+ OO oo Za()~d'5 dze'~'~p +zz exp —— U ) *b+ ~' z' exp —— U ' + Kz 2'"
~ oo v + ~OO

(52)

8 ~& ed e —2gJ(qb)' (53)

the scattering amplitude can be expressed as

51I&,. = 2m Jo(qb)e'"'"B(b)b db (54)

where q =k' -k is the three-momentum transfer.
Assuming that the interactions in the initial and
final channels are the same, so that U *= U '
=—U, and v, =—v =-v, and using the integral repre-
sentation for the Bessel function"

We note that the ordinary Born approximation is
obtained from Eq. (54) by setting exp[i)t(b)] equal
to unity. Thus, in this approximation the effects
of absorption in the entrance or exit channel are
introduced by multiplying the Born amplitude by
the factor exp[-,'ix(b}] for each channel.

To determine this distortion factor we use the
fact that y is related to the elastic scattering am-
plitude in the initial and final channels according
to'~

where

B(b) =—
+ OO

V(b +kz)dz,

f(q, k) = —ik Jo(qb)[e'"~'~ -1]bdb,

so that

(56)

1 +"
X(b) =——— U(b+ kz)dz .

V
e'"'" =1+— Jo(qb)f(q, k)qdq.

0
(57)
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We also use the fact that, from Eq. (56), the total
inelastic cross section follows in the form'~

g. =2II [1 e 2~mII~~~]5dk.

PI (cos 8) —=J,(2(l+ —,')sin-,' 8) . (6O)

Equation (54) establishes that to include the ef-
fects of absorption on an incoming or outgoing pro-
jectile of momentum k, simply multiply the partial
wave Born amplitude by ex[p-'2I}(tI)k]. Thus the
driving term of the I ow equation in the distorted
wave impulse approximation (DWIA) is given by

V (k' k ~ (g, )—:e l "I V (k' k- (gp, )

x e-(1/2) Im y&(k) (61)

where V, is given by Eq. (38) and, as discussed
above, we have neglected the real part of X com-
pared to its imaginary part.

Note that we are here distorting only the initial
and final state pions, while allowing the inter-
mediate state pion to propagate freely. In the

As pointed out by Gottfried and Jackson, the
amplitude f is not the actual elastic amplitude ob-
served when the constituents of the initial (or
final) states are allowed to collide, as the true
elastic amplitude also includes terms where V
acts an even number of times. If, however, the
inelastic channel in question has a cross section
which is small compared to the total inelastic
cross section, the true elastic amplitude will not
differ appreciably from that given by Eq. (56). Qur
previous discussion suggests that this condition
can be assumed to be true (at least for the low par-
tial waves), so we shall henceforth identify f with
the amplitude which describes the elastic scatter-
ing of the initial or final system.

At pion energies near the (3, 3) resonance re-
gion, the &-nucleus elastic cross sections are
found to extrapolate to the optical theorem point at
zero momentum transfer. " Hence, at least at
small angles, the elastic amplitudes are essential-
ly imaginary, implying that the elastic scattering
is almost entirely the shadow of the inelastic pro-
cesses. It then follows from Eq. (57) that we may
neglect the real part of y compared to its imagi-
nary part, at least for near forward scattering.

To proceed with the evaluation of y, we transform
from the impact parameter representation used
above to the partial wave representation. This is
easily accomplished using the classical correspon-
dence between impact parameter and partial wave

b = (l + —2)/k, (59)

and the asymptotic formula (valid for small scat-
tering angles 8) between the Legendre and Bessel
functions

present approximation the distortion of the inter-
mediate state pion can be effected by a modifica-
tion of the phase space factors in Eq. (21). Thus,
provided that the IIN cutoff v2(p2) remains the
dominant phase-space factor, the distortion of
the intermediate state pion can reasonably be neg-
lected. For the present analysis we will assume
that this latter condition is satisfied.

The expression Eq. (47) for the II-nucleus in-
elastic partial cross section then becomes, in the
DWIA,

IIlIlI(&u2 ) = —,v2(k' )(2l+1) ImV, (k', k'; &, )

= —,v2(k")(2 l+1) ImV, (k', O' Id t)
4m

X -~mX, g ) (62)

Comparing this with the corresponding expression
obtained from Eq. (58),

II I~(Id, )
—

(2 1+1)[1 e-2lrn~ i~2 ]

nI2(&u, )=1 for &u, .&2II, +b,

III'(~„)=1—4k'v2(k")ImV, (k' O'Id )

for co~~ &» pl ~ + Q.

(65)

Using fo»e» form factor the expression
(48), we find that the inelasticity parameter is
within the unitarity limits for all energies and all
partial waves considered. In Table II we show the
values of 4k'v2(k")1m V, (k', k'; &o, ) for several en-
ergies in the range 57 to 290 MeV with all relevant
partial waves included. We find that the distortion
factor succeeds in reducing the magnitude of the
driving term sufficiently to bring the inelasticity
parameter within the unitarity limits, and that for
the lower partial waves the inelastic partial cross
sections determined from Eq. (62) are in good
agreement with those obtained from optical po-
tentia, l calculations. However, the higher partial
cross sections are found to be significantly smaller
than those determined from optical potential cal-
culations. This results in the magnitude of the
total inelastic cross section generally falling below
the experimental values, as shown in Fig. l.
Though several expressions differing substantially
from Eq. (64) have been proposed for the evalua-
tion of the distortion factor xa' "'"all such expres

allows the evaluation of the distortion factor in
terms of V, . We find

e
-Im II I (2 ) (g, 2 + I )

I /2

(64)
A, ~ ——2k' v'(k ")Im V, (k ', k'; (u, ) .

The expression for the inelasticity parameter in
the DWIA takes the form
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TABLE II. Values of 4k'v (k' ) IrnV)(&', &'; ~k~) for several energies in the range from 57 to 290 MeV with all relevant
partial waves included.

Partial
wave 56.987 82.591 106.47

Pion kinetic energy (MeV)
125.39 153.77 172.69 196.57 222.17 164.96 290.25

0.243 35
0.282 97
0.108 60
0.020 00
0.002 32
0.000 20
0.000 01

0.750 89
0.712 60
0.468 56
0.158 36
0.030 38
0.004 08
0.000 43
0.000 04

0.953 07
0.927 13
0.826 37
0.498 65
0.156 80
0.030 45
0.004 43
0.000 52
0.000 05

0.979'90
0.965 90
0.921 43
0.724 35
0.33193
0.086 18
0.015 81
0.002 33
0.000 29

0.985 99
0.976 66
0.952 10
0.850 29
0.548 43
0.207 47
0.052 06
0.010 15
0.001 66

0.983 42
0.973 88
0.950 22
0.865 33
0.615 10
0.276 86
0.082 91
0.01904
0.003 65

0.977 48
0.967 29
0.942 76
0.867 89
0.662 97
0.351 08
0.127 28
0.035 17
0.008 05

0.968 52
0.957 79
0.932 04
0.863 32
0.692 21
0.416 14
0.178 93
0.058 88
0.015 98

0.949 66
0.938 89
0.912 73
0.852 25
0.720 30
0.500 75
0.268 53
0.112 87
0.039 15

0.935 93
0.925 31
0.89942
0.842 81
0.726 93
0.535 35
0.31655
0.149 81
0.058 82

sions are found to result in an even stronger sup-
pression in the magnitude of the higher partial
cross sections than results from the use of this
expression. This reduction in the magnitude of
the higher partial waves clearly results from our
identification of the amplitude f of Eq. (56) with
the amplitude which describes the elastic scatter-
ing of the initial or final system. In a more care-
ful treatment, we would expect the higher partial
wave components of f to differ from the corre-
sponding components of the true elastic amplitude,

so that the effects of distortion on the higher par-
tial waves would be lessened.

IV. ITERATIVE SOLUTION OF THE PION-NUCLEUS

LOW EQUATION

With the driving term evaluated in the distorted
wave impulse approximation, the partial-wave
pion-nucleus Low equation for the elastic scatter-
ing amplitude takes the form

T, (k', k; &u„)

(kl k, ~ ) ~ Pd~ ~2(P2) ( (P$ i P) l (Pl i P) + P d~ ~2(P2) l (Ps i P)Tj (Ps i P) (66)
l » k'+7r (d —(d ~ —Z6 lr (d + CO i+SF

m7r p mm k

where V, is given by Eq. (61). The diagrammatic
structure of the m-nucleus Low equation is similar
to that of the &N Low equation. The final two terms
on the right of Eq. (66) are the rescattering inte-
grals; the first integral corresponds to the direct
&-nucleus processes and the second corresponds
to the crossed processes. Thus, for example, the
role of crossing in the &-nucleus interaction can be
determined by solving Eq. (66) for the elastic scat-
tering amplitude both with and without the final in-
tegral on the right.

Nonlinear singular integral equations of the type
shown in Eq. (66) are not uncommon in strong-in-
teraction physics where, as in our problem, they
arise quite naturally through the combination of
crossing symmetry and unitarity. Some of the
techniques which have been used to solve such
equations have been reviewed by Warnock. " One
finds that often a solution is obtained only after
some mutilation of crossing symmetry. Though
fixed-point theorems which give sufficient condi-
tions for the solvability of such equations have

500—
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300—
E

tLJ

200-

100—

0
0

I

50
I I I

100 I 50 200

PION KINETIC ENERGY (MeV)

I

250 300

FIG. 1. 71-~2C inelastic cross section as determined
from the pion-nucleus Low equation {66), with driving
term evaluated in DWIA. The data points are from Binon
etal. , Ref. 15.



1604 J. BARRY CAMMARATA AND MANOJ K. BANER JEE

been proved, the necessary conditions for solva-
bility are unknown. Furthermore, all of the work
with these theorems only proves the existence of
solutions which are unphysically small; for the
theorems to be applicable, the coupling constant
(or some other measure of the magnitude of am-
plitudes) must be somewhat smaller than its known
experimental value.

Qf the several fixed-point theorems on the solv-
ability of nonlinear singular integral equations,
only one is constructive and so gives a solution
algorithm. This is the Banach-Cacciopoli theorem
(also known as the contraction mapping principle),
which establishes sufficient conditions for the so-
lution of these equations by iteration. When applied

to equations of the form Eq. (66), the Banach-
Cacciopoli theorem has been shown to predict that
a solution can be obtained by iteration provided the
driving term is sufficiently small and the expres-
sion k'v'(k')&u„ is Holder-continuous. (This latter
condition is discussed further in Ref. 17, where
it can be seen that the form factor (48) meets
this constraint. )

Guided by this analysis, me have studied the
iterative solution of the &-nucleus Low equation
(66) using the &N form factor of Eq. (48). The
integrals appearing in this equation mere evaluated
using Gauss- Legendre quadrature. To evaluate
the principal-value integral we added and sub-
tracted

l "d k'v'(k")Tf(k', k'; v, )T, (k', k u& )

(dp((d~ —(d~i)

= ——k'v (k' }T,*(k', k';(u, )T, (k', k; (u„) + 2ln ~ ', (67)

so that at the principal value point the integrand of
the first integral in Eq. (66) becomes a well-de-
fined derivative.

For pion energies below 125 MeV the iterative
series diverges for the lower partial waves. We
find that the rate of divergence is inversely re-
lated to the pion energy, and that the cause of this
divergence can be traced to the large magnitude of
the driving term and the small energy denominators
in the rescattering integrals at these lower pion
energies. For pion energies greater than 125 MeV,
the iterative series is found to converge for all
partial waves. For the lower partial waves the
rate of convergence is slow, requiring as many as
15 iterations. However, the higher partial waves
prove to be strongly convergent, requiring in gen-
eral only tmo or three iterations.

As with the inelastic cross sections determined
from the driving term of Eq. (66), the m-'~C total
cross sections are found to fall below the experi-
mental values. In Table HI we show our calculated
values for the &-"C total cross sections at 150 and
200 MeV. The term "with crossing" here refers
to the iterative solution of Eq. (66} as shown, while
the term "mithout crossing" refers to the iterative
solution obtained when the final integral in Eq. (66)
(corresponding to crossed &-nucleus processes) is
omitted. In these figures we see confirmed one of
the results of our optical potential study of cross-
ing": at high energies the crossed r-nucleus pro-
cesses have a negligible effect on the cross sec-
tions.

Finally, in Figs. 2 and 3 we show the &-"C dif-
ferential cross sections at pion energies of 150 and

200 MeV, respectively, obtained from the iterative
solution of Eq. (66). The corresponding cross sec-
tions obtained when the crossed &-nucleus pro-
cesses are not included differ negligibly from
those shown, and are therefore omitted.

TABLE III. Calculated values for the 7(-~2C total cross
sections at 150 and 200 Me V. The term "with crossing"
refers to the iterative solution of Eq. (66) as shown,
while the term "without crossing" refers to the iterative
solution obtained when the final integral in Eq. (66) (cor-
responding to crossed 7t-nucleus processes) is omitted.
The experimental values are from Ref. 15.

Pion
energy
(MeV)

With
cl os sing

0 total (mb)
Without

crossing Exp.

150
200

593.68
501.82

594.34
508.51

696+ 7
637+ 7

V. DISCUSSION

Our treatment of the pion-nucleus Low equation
should be considered as only a preliminary ap-
proach. In our model of the driving term of the
equation we used the generalized impulse approxi-
mation. However, our optical potential studies"
indicate that there are many corrections to this
approximation which individually have substantial
effects on the elastic amplitude. Each of these
corrections, in addition to such features as the
multinucleon processes, should therefore be in-
cluded in the evaluation of the driving term. The
fact that the driving term alone completely deter-
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FIG. 2. The 71-~2C differential cross section at 150
MeV as determined from the iterative solution of the
pion-nucleus Low equation (66). The data points are
from Binon et a/. , Ref. 15.

mines the total inelastic cross section further re-
quires a careful treatment of the effects of all the
open inelastic channels. And finally, if one de-
sires a reasonably accurate solution of the Low
equation over a wide energy range there is evi-
dently a need to study further the techniques for
the solution of such nonlinear singular integral
equations. %e note that the most promising tech-
nique, that of matrix N/D, mo requires a careful
treatment of the left-hand cut discontinuity in view
of the importance of the crossed &-nucleus pro-
cesses at low energies ls
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200 MeV.

for ~4) having the quantum numbers (J~, I) = (0', 0),
so that only the part of the operator shown which
is an even parity scalar and isoscalar will contri-
bute. %e illustrate the technique by considering

A

(C, ~ei(k-k')'r&T(n)&(n)c, kI & kIC)

(A2)

where Eq. (11) has been used to determined Pt,"'.
As the coupling of the nucleon isospin operator

7 to the position or spin vectors is not physically
defined, the only contribution from the isospin
factor will occur when o.= P so that v ~8~v~"='8 = 1.
Thus
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A

+ l ~g @ ei(k-k ') ' rno

(AS)

APPENDIX

In relation to Eq. (12) we wish to evaluate the
nuclear expectation value

where o„k'e„~k=k' k+io„~ (k'xk) has been used.
This expression is evaluated using the expansion

(Al) e'~k k ~'' =4n Pi'j, (qr„)F,* (j)F, (r"„), (A4)
lm
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where q= ~k' —k
~

and q= (k'- k)/q. In the first
term of (AS) the only contribution will result from
the scalar term in (A4) involving F»(r"„). As there
is no way to couple I;„(i„).and o„ to form an even.
parity configuration space scalar, the second
term in (AS) vanishes. Therefore

n=1

= —', ll, sk' k d'rj (qr) Q (4)5(F-r) ~s)

where the nuclear density is normalized to the
nucleon number

d 'r p(r) = A . (A6)

a, =-,'5„sk' kp(q) = a, ,

Proceeding with a similar analysis for the re-
maining terms, we find

= -,'8 sk' ~ k d'rj, (qr)p(r) a =
—,8„sk' 'kp(q).

= 35 k' k p(q)

0(q) =- d'r j.(qr) p(r),
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