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The differences in the interactions of m+ and m particles with neutrons and protons can be used to investigate

relative neutron and proton densities in nuclei. The use of aligned targets with n. + and m beams presents
considerable advantages for the extraction of neutron density information. As a framework for estimating pion
scattering from aligned targets we use the Kisslinger optical potential including a deformed nucleon density

distribution. The di6'erence between aligned and unaligned differential cross sections {deformation efIIect) is
found to be linear in P and aHows for the extraction of neutron density shape information.

NUCLEAR REACTIONS Scattering theory, r~ elastic scattering from aligned
'

targets. ~@Ho (m, ~)„T„=100-200 MeV; calculated 0&;g„,d(&) „o„„„;„,d(~).

I. INTRODUCTION

It was suggested' some time Rgo that differences
in the interactions of w' and m- particles with neu-
trons and protons could be used io investigate rel-
ative neutron and proton densities in nuclei. A
recent experimental measurement' using pion total-
cross- section data obtained the experimental re-
sult that the neutron and proton rms radii are quite
similar. This result agrees with data from other
experimental techniques. ' Very little information
exists on the higher moments of the neutron density
distribution. Analyses4 of charge exchange inelas-
tic scattering indicate a. rather substanti, al differ-
ence in the neutron and proton deformation param-
eters p(n) and p(p), but the results are rather
sensitive to the uncertai~ reaction analysis em-
ployed.

Cross-section measurements from aligned tar-
gets using conventional nuclear projectiles have
been helpful in determining certain parameters of
the optical potential. Fisher, Tabor, and %atson'
have investigated proton scattering from an aligned
'"Ho target in order to obtain an estimate of the
nuclear deformation parameter P. Their results
were in reasonable agreement with the value P
= 0.33 derived from Coulomb excitation measure-
ments. In a subsequent experiment, ' using n
particles, a previous ambiguity which existed in
a scattering from rare earth nuclei was resolved,
thus establishing unique values for parameters of
the optical potential.

The use of aligned targets in elastic scattering
with m' and w beams presents considerable advan-
tages for ihe extraction of neutron density informa-
tion. The quadrupole interaction of the pion with
the deformed target yields a. scattering amplitude,
dependent upon the angular momentum projection,

which xnterfer68 %1th the QsQRl spherical tax'get
scattering amplitude. ThQs the Rllgned elRsilc
cross sections contain a term Linear in P which can
be measured by comparing aligned and unaligned
cross sections. Further comparison of p' and m

data allows for the differentiation. , in principle,
of proton and neutron deformation effects. Present
state-of-the- art techniques promise' a, tempera;
ture of 0.1 K with an alignment B,/B, (max) = -0.48
(compared with -0.5 for 0 K and 0 for an un-
aligned system) and perhaps 0.4% accuracy in rela-
tive cross sections. Such data should provide
stringent tests on theories of pion-nucleus scatter-
ing and perhaps allow for some measurement of
neutron density shapes.

The use of pions with aligned ta,rgets ha, s some
advantages' from an experimental. Standpoint in
terms of target heating and beam handling. The
ability to employ both m' and m beams is especially
useful in the 100-200 MeV "resonance region'"
where a factor of almost 3 appears between the
resonating m'p (or vr n) interactions compared with.

the v P (or m'n) interactions. Thus a, microscopic
theory of m' scattering from a neutron rich nuclear
target will yield a significant difference between
the different charged pions. The effect is further
enhanced by the Coulomb iield which mcreases m

cross sections relative to g"' Rnd provides for an
additional Coulomb- nuclear interference region.
These features cause substantial density-dependent
effects which differ appreciably from the 4~go

black nucleus estimate. '
As a framework for estimating pion scattering

fx'om aligned tax'gets we use R derived Gptxc83. po--

tential including a deformed nuclear density dis-
tribution. ' The quadrupole effects are treated.
using the distorted-wave Born approximation
(DWHA. ) which is found to be very accurate even
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for the large deformation (P-0.33) appropriate
for '"Ho. Section II gives an outline of the forma-
lism and Sec. HI presents the results for n' elastic
scattering from the ground state of '"Ho. The re-
liability of the calculations is discussed in Sec.
IV. Conclusions concerning the possibility of an
experimental measurement of neutron density
shapes are presented in Sec. V.

rise to a deformed Kisslinger potential'

II(r) = U"'(~)+ II"&(~, e'),

where U"' is the usual spherical term as in Eq.
(1) and

(3)

V" ~ = P; (— -b,-a'F(r)I",(6')+ b, V [r(r)I', (e')V jj,

II. THEORY OF PION SCATTERING FROM DEFORMED

NUCLEI

In order to obtain quantitative estimates of the
scattering of pions from aligned targets we employ
the Kisslinger optical potential which is derivable
from g-nucleon phase shifts using the Watson mul-
tiple-scattering formalism. " This potential gave
good fits' to z -"C elastic scattering data" and a
collective-model generalization' yielded 2' and 3
inelastic. scattering cross sections in agreement
with the data without adjustable parameters (the
extracted deformation parameters were found to
be energy-independent and in agreement with those
obtained by other techniques). It should be noted
that other theories of elastic and inelastic pion-"C
scattering also give reasonable fits to the Binon
data. " For example, a WEB-Qlauber ap-
proach, ""a local (i.e. , Laplacian) model, "a de-
formed black-nucleus model, "and a. field theoretic
Low- equation approach" all work quite adequately
in the region where the data exist. The use of
aligned targets may provide a means of discrimi-
nating between these theories. The generalized
Kisslinger potential which we use is convenient for
treating spin and Coulomb effects and should give
reasonable estimates of what structure information
might be deducible from experiments using aligned
nuclear targets.

We begin with the Kisslinger optical potential
which for a spherical target is given by"

II(~) =
ZZ ( —b.I'p—(~-)+ b, ~ [p(~)~j),

(Kc)'A

where A is the mass of the target, k and E are the
lab momentum and total lab energy of the incident
pion, respectively, p(r) is the nucleon density
normalized to unity, and b, and 5, are directly re-
lated to the pion-nucleon phase shifts as shown in
Hef. 19.

For a deformed target, the density in Eg. (1) is
generalized to be functionally dependent upon the
body-fixed polar angle 8:

r A(8')-
p(p, e ) = po 1 + exp

It(e') =It,[1+P,r', (e') j (2)

for a quadrupole deformation which in turn gives

B„=(2I+I)'"Pp„„,(JIMq /JM'/), (6)

where 0«J~2J'. If the spin system ha.s an axis of
symmetry and this is chosen as the z axis, then
only Q =0 survives in Eg. (6) and one speaks of
pola. rization (odd I) and/or alignment (even I).
For definitiveness we will consider the simple
I=2 alignment in which case Eq. (6) simplifies to

B = ~5 P p (Z2MO
~
JM) . (7)

The ratio B,/B, (max) is often called the nuclear
alignment where B,(max) = ~(J2J'0 ~ZJ') is obtained
from Eq. (7) when M =aJ'. For the unaligned case,
B, is obtained using p„„=(2J +1) in Eq. (7) result-
ing in [B,/B, (max) j„„„,„=0.

The transition amplitude for elastic scattering
from the state with angular momentum projection
M to the state M' is

&~j +&~~ ~
(o) &i)

where T"' is the usual elastic scattering transition
amplitude obtained from the outgoing wave bounda-
ry condition to the spherical optical model poten-
tial scattering solution. The M-dependent part is
written in the DWBA as

Z(~) =It,—Bp

0

If the neutron and proton density distributions are
not the same, one can easily generalize Eq. (4) by
making the replacement

P, AF (~)-P, (n)II@„(r)+ P, (P)ZZ, (r) . (5)

The nuclear target is described in the rotational
model by its total angular momentum J, projection
M along a space fixed axis (z axis), and projection
K along the nuclear symmetry axis (z axis). Be-
cause Eg. (4) contains no dependence on the azi-
muthal angle Q, the value of K does not change in
the scattering process.

The degree of orientation of an ensemble of nu-
clei may be specified by a density matrix p», or,
equivalently, by a set of statistical tensors' BI@
defined by
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T(N'N) = d'xx(y)*kg, r JMK U(') g, e +V(c)0 1x 8 JMK Xi() k r

where the Coulomb excitation part Vo",'„,(r, 8 ) is
obtained in a manner similar to U'"(x, 8 ) of Eq.
(4) and is therefore also proportional to the proton
deformation parameter P, (p}. The distorted waves,

y,'.
"and y&

' are solutions to the Klein-Gordon
equation (including a Coulomb potential) with ap-
propriate outgoing or incoming boundary condi-
tions. It is seen that T~„', depends on the nuclear
quantum numbers through the matrix element

«M'K I&,'(8')
I
JMK& = (72M ~ I

JM') (J2KO
I
JK')1','(~),

where p. =M' —M. Here r refers to the space-
fixed set of axes and we have used the properties
of the rotation matrices' to evaluate the integral.

Expanding the distorted waves in multipoles and
performing some angular momentum algebra yields
the expression

Tg~ = T"'4~ + W&(J2M~ I&M )(J2KOI«)Ty)(2, V),

(9)

where Tz, (L, M) is independent of Z or K and is
written as'

T„.(I., i ) = — P, g (f)'-'1,"(k,)1't'(I,.), ,— (LiOO It'0)(ui 0 It'i )

x [—b,k'G, + b,G„+b,G,z,h~. .]+Coulomb . (10)

The radial integrals are

G, = a~ q,(,-'Sq,",
G 4 ~~~~ g&~ + 4g& X

(-) (+)
G = ch ' -I'

AIL

where yI" (yI ') are the radial wave functions for
partial wave f in the incident (or final) channel.
The quantity h~. arises from the V operator in
the Kisslinger potential and is given by'

I T- I'=(I T"'I'+ ~5(J2M0
I
JM)(J2KQ

x(2Re[T'@TP,.(2, 0)]])&z~ & (11)

where terms of order (U'")' have been ignored.
These are negligible except near deep minima in
the elastic cross section when

I

T"' I' is anoma-
lously small.

The interpretation of experimental results is
most straightforward if the symmetry axis of the
nuclear spin system (often'-' the c-axis of a single
ferromagnetic crystal) is chosen to be coincident
with the incident beam direction. Then the density
matrix is diagonal in M and the differential cross
section is given by

b~i, =-,'[L(L+1)—l'(t'+1) —l(l+1)].

Using Eq. (9) we write

{gg 2'tr 2

d 5 NM'

Substituting Eq. (11) and using Eq. (7) yields

(12)

4

(13)

for the cross section in terms of the alignment
B,/B, (max).

Experiments with aligned targets often measure
the ratio

n, o(8) do'/dQ(aligned) —do/dQ(unaligned)
o(8) do/dQ(unaligned)

ent particles (m' or m }, or different neutron and
proton density distributions. Using Eq. (13) and

Eq. (7), we have the deformation effect

&o(8) B,/B, (max) Re[T"'TP, (2, 0}]
&(8) o(8)

since the unaligned measurements may be conve-
niently made by warming the target. The quantity
6o/o is sometimes called' the deformation effect.
It may be compared for different energies, differ-

where o(8) denotes the unaligned differential cross
section. Since TP,.(2, 0) is proportional to P, the
sign of the deformation effect is directly related
to the sign of P.
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III. SULTS FOR 16~'Hp
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IV. RELIABILITY OF THE CALCULATIONS

A possible shortcoming of the formulation in
Sec. II for pion scattering from aligned targets is
the use of the DWBA in Eq. (8) to obtain the first-
order M-dependent term. This is especially sig-
nificant in that low energy neutron scattering
shows' rather larger higher-order effects even for
p=0.2.

It is certainly possible to obtain the scattering
amplitude T„ in a full coupled- channel treatment
although this was awkward and time consuming.
A simpler and more instructive procedure was to
compare the two parts of Epi. (9) separately using

0.05

I-
b

ba

0.02

O. OI .

'0 I

0.2
I

0.4 0.6

FIG. 3. The deformation effect in the total cross sec-
tion as a function of P2(n) for m' (solid curve) and 7t

(dashed curve) at 150 MeV. The total cross sections
(aligned and unaLigned) were calculated using a lower
cutoff at 7'.

reasonable angles such as the first shoulder or
second maximum (-15 and 30'), deformation ef-
fects of order 10% are predicted and these should
be easily measurable.

The deformation effect in the integrated elastic
cross section was calculated using a lower cutoff
at 7' as appropriate for a typical experiment.
(When the deformation effect in the total cross
section is calculated as a function of the lower lim-
it of scattering angle it is found to have a maxi-
mum for a lower cutoff angle near 7'. For angles
much smaller than this, Coulomb scattering is so
large that nuclear effects are completely invisible. )
The results are shown in Fig. 3. A "black nucleus"
calculation estimated the deformation effect in the
total cross section to be 4%, which is somewhat
larger than our result. However, considerable in-
formation is available in the differential cross
sections, as we have seen.

a coupled-channel calculation for a spin zero tar-
get with an artificially degenerate 2' excited state.
The elastic scattering term is thus comparable to

~

T~p' ~' in Eq. (9) and was found to differ by «2%
from the spherical optical model approximation
except for angles near deep minima. The artifi-
cial 2' inelastic scattering yields Z„~Tz;(2, M) ~'

which gives a measure of the accuracy of T&,.(2, 0)
if one looks at several angles. These were found
to agree with the DWBA approach [Eq. (10)j to
about 8%. Adding quadratically as appropriate for
b,v(8)/c(8) in Eq. (15) gives an over all error of
about 5% due to the neglect of channel coupling.
This is certainly small compared with nuclear pro-
jectile scattering and is traceable to the relative
sneakiness of the pion-nucleus interaction as dis-
cussed elsewhere" and is a useful feature in
analyzing such data.

The inelastic scattering calculations which we
performed may also be used to estimate the effect
of pions inelastically scattered by the target but
unresolvable from the elastically scattered beam.
The sum of the inelastic cross sections leading to
states formed by coupling 2' and,-' should be ap-
proximately that of a single inelastic 0'-2' tran-
sition (i.e. , the sum-rule result of a weak-coupling
model). Furthermore, Coulomb excitation experi-
ments" indicate that this multiplet dominates low-
lying inelastic excitations and thus the 0'-2' re-
sult should give a reasonable estimate of this
source of "contamination. " For the forward angu-
lar region 8 ~ 20' we calculate about 10-30 mb/sr
for maximum differential inelastic cross sections
compared with the several b/sr from the elastic
scattering. Thus for measurements of d,cr/vr or
forward angle measurements of bo(8)/o(8), the
neglect of inelastic scattering is justified; at the
more backward angles inelastic scattering may be
a problem and should be included [at least in the
denominator v(8) where it is a straightforward
correction].

V. CONCLUSIONS

Higher moments of the neutron density distribu-
tion may be studied by looking at the deformation
effect do/a with aligned targets. Sample calcula-
tions for '"Ho using rotational wave functions and
a DWBA theory with the Kisslinger optical poten-
tial suggest a rather striking sensitivity to the
model parameters which should allow for some
differentiation of the many theories of pion-nucle-
us scattering. Our calculations give an angular
dependence of the deformation effect which behaves
roughly like the derivative of the unaligned cross
section. Because of the relative weakness of the
pion-nucleus interaction the effect of channel cou-
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pling is rather unimportant.
The g mesons are more sensitive to the neutron

distribution because of both the pion-nucleon inter-
action and the Coulomb interaction. As a function
of P(n), the deformation effect in the n total cross
section has a much steeper slope than the corre-
sponding slope in the m' total cross section (Fig.
3). Thus the difference between m' and n deforma-
tion effects depends on the value of the neutron de-
formation parameter P(n) and may provide a means
of determining p(n). The DWBA calculations also

yield the result that the deformation effect is
linearly dependent on P. This feature msy be use-
ful in some nuclides (not '"Ho) where the sign of

P is in question.
Finally, it is expected that with an experimental

accuracy of a few percent in measuring the de-
formation effect in the differential cross sections,
differences of the order of 20% in the neutron and
proton deformations P(n) and P(p) should be readily
discernible and significant tests of pion-nucleus
scattering theories can be performed.
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