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To study the qualitative features of elastic scattering in the presence of strong absorption, the scattering
amplitude is decomposed into what the semiclassical approach calls positive- and negative-deflection-angle
contributions. For an amplitude obtained from partial-wave summation this is done without approximation by
considering the two amplitudes corresponding to the decomposition of each I.egendre polynomial into its two
traveling-wave components. It is necessary to separately consider the amplitude arising from the infinite-range

Coulomb interaction which does not admit a partial-wave expansion. To decompose this amplitude we follow

an approach which leads to increased understanding of the "diverging lens" effect of the Coulomb field and
the related Fraunhofer and Fresnel diffraction structure of angular distributions. In addition, the absence or
presence of oscillation at back angles is shown to be related to the dominance of reflective or "encirclement"
scattering. By examining the phase of the positive-deflection-angle contribution to the scattering amplitude, we

are able to conclude, in agreement with Frahn, that the smooth fall in tandem heavy-ion elastic angular
distributions arises from a diffractive shadow and not a refractive or Coulomb-rainbow shadow.

NUCLEAR REACTIONS HI elastic angular distributions interpreted.

I. INTRODUCTION

It has long been realized that Coulomb and
strong-absorption effects play an important role
in heavy-ion elastic scattering. ' In the absence of
Coulomb interaction, strong absorption gives rise
to diffractive angular distributions characterized
by marked oscillation in the forward direction.
By optical analogy, this is often referred to as
Fraunhofer diffraction. In the language of a semi-
classical approach this oscillation arises from in-
terference between the positive- and negative-de-
flection-angle contributions to the scattering am-
plitude. A more immediately physical interpreta-
tion identifies the interfering contributions with
waves which have scattered from opposite sides of
the interaction region.

With increasing Coulomb interaction Fraunhofer
oscillation moves to larger angles. In fact, it is
completely absent in much heavy-ion data. Frahn'
has explained the absence of Fraunhofer diffrac-
tion by noting that the repulsive Coulomb interac-
tion provides divergence of the two components
which interfere in its absence. In the presence of
a sufficiently strong Coulomb force and strong ab-
sorption, this implies that one sees only the scat-
tering contribution from one side of the interaction
region, and the angular distribution is qualitative-
ly that of Fresnel scattering from a semi-infinite
absorptive screen.

Much of the more recent discussion of heavy-ion
elastic scattering has stressed the importance of
the attractive nuclear interaction and its interplay
with the repulsive Coulomb interactions, e.g. Ref.
3. Concentration on these refractive aspects of

the scattering problem has led Goldberg and Smith~

to conclude that the characteristic smooth fall in
elastic scattering angular distributions (plotted in
ratio to Rutherford) can be interpreted as scatter-
ing from the dark side of a "Coulomb rainbow"
arising from the dominance of nuclear attraction
at small inter-ion separation. This is to be con-
trasted with Frahn's Fresnel diffraction interpre-
tation in which this smooth fall results from ab-
sorption out of the elastic channel. The question
is simply which wins —absorption or attraction'P
In addition, Da Silveira has argued that the oscil-
lation forward of the smooth fall can be under-
stood in terms of the interference on the bright
side of a Coulomb rainbow. On the other hand,
Rowley and Marty' have shown that the smooth-
cutoff diffraction model, which contains no rain-
bow, generates such oscillation by the interfer-
ence of the dominant Coulomb amplitude with the
peripheral component of the nuclear amplitude.
Goldberg and Smith4 stress the importance of a
"nuclear rainbow" which can only be studied
within an approach which includes nuclear attrac-
tion.

The purpose of this paper is the development of
consistent concepts appropriate for the qualitative
understanding of heavy-ion elastic angular distri-
butions. This requires the study of scattering
amplitudes calculated from interactions which in-
clude attraction as well as absorption. Phenome-
nological optical-model potentials are used
throughout, although the qualitative conclusions
should be valid for folding-model potentials. All
arguments will be based on amplitudes obtained by
summing the optical-model partial-wave series or,
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in many cases, the Rutherford amplitude itself.
With this approach we hope to resolve convincingly
the conflicting concepts mentioned above which
have generally resulted from approximation in the
evaluation of the scattering amplitude or approxi-
mations to the 8-matrix elements.

Qur approach will rely on the separate consid-
eration of positive- and negative-deflection-angle
contributions to the scattering amplitude. ' Study
of the positive-deflection angle, or "near-side"
contribution, leads us to conclude there is gener-
ally no "Coulomb rainbow" for the strongly absorp-
tive interactions characteristic of heavy-ion scat-
tering. This result implies that the near-side
amplitude probes the entire range of angular mo-
menta or impact parameters in qualitative agree-
ment with Frahn's picture. The far-side ampli-
tude does exhibit behavior which may be inter-
preted as arising from a nuclear rainbow. Sepa-
ration of positive- and negative-deflection-angle
contributions to the Rutherford amplitude provides
quantitative understanding of the "diverging lens"
effect of the Coulomb field' and shows how the in-
finite-range Coulomb interaction separates the
forward angle far and near scattering contribu-
tions, thereby pushing the Fraunhofer diffraction
arising from their interference away from forward
angles.

It will first be necessary to discuss separation of
the far and near elastic amplitudes, which will re-
quire an approach which uses a partial-wave ex-
pansion of the nuclear amplitude and does not use
asymptotic expressions for Legendre polynomials.
In turn, this approach is generalized to consider
the Rutherford amplitude where a partial-wave ex-
pansion is not possible. We then turn to a discus-
sion of angular distributions, which develops a
consistent and rather complete qualitative picture
of elastic scattering. This discussion relies par-
tially on the study of the phase of the scattering
amplitude which leads to the introduction of the
concept of local angular momentum.

II. SEPARATION OF "FAR" AND "NEAR" CONTRIBUTIONS

TO THE SCATTERING AMPLITUDE

This section will be devoted to the development
of work sketched in an earlier paper. ' Its primary
task will be separation of the two components of
the scattered wave which emanate from opposite
sides of the interaction region. The far and near
components of a scattering amplitude obtained
from summation over partial waves correspond to
replacing the Legendre polynomial by its traveling
wave comPonents, Qj'~ and@ &, respectively';
l.e.,

P
g (cose) = Qj" + qj-&

where, for large l,

Qj'l(cose)-[2s(l+-,') sin8] ' 'exp[+ i(l + ~)8 —~Ar],

1-'s es w —l-' (2)

Friedman, McVoy, and Shuy" used these asymp-
totic expressions for the traveling waves in their
study of distorted-wave Born-approximation
transfer reaction angular distributions where only
peripheral partial waves participate. Since elastic
scattering is not entirely peripheral, expressions
for the traveling waves valid for all / are required.
In terms of the Legendre function of the second
kind, Q, (cos8), they are

Qj (cos8) = g P, (cos8) v i —Q, (cose) . (3)
m

Using asymptotic expressions for P, and Q, in this
equation gives the asymptotic expressions of Eq.
(2). The far and near components of an amplitude
obtained by partial-wave summation are then
given, respectively, by

fz(8) = g (21+1)a,Qj'~(cose) (4a)

and

f„(8)= Q (2l+ 1)a, Qj i(cose) . (4b)

-1&x&1, x=cose, (5)

while its discontinuity across the cut is given by

-ixP, (x) =
Q) (x+ ie ) -Qg (x —ie) . (6)

The notation in Eq. (5) is confusing but convention-
al.""From Eqs. (6), (5), and (3), it followsthat
the traveling waves are given by the continuation of

Before decomposing the Coulomb amplitude,
where a partial-wave expansion is not possible, it
is first useful to study the traveling waves as dif-
ferent continuations of the same function. This
will lead to an understanding of how (and when) our
physical expectation that near and far amplitudes
are continuations of one another through 8 = 0 and
8 = m is imposed by the traveling waves; i.e., our
naive expectation is that positive- and negative-de-
flection-angle contributions merge at 8 =0 and 8 = w.

We shall find that the fulfillment of this expectation
is intimately related to the convergence of the par-
tial-wave expansion.

The single function of interest is the Legendre
function of the second kind, Q, (z), defined in the
complex z -plane cut from —1 to + 1." The aver-
age of Q, (s) across the cut is by definition the
Legendre function of the second kind appearing in
Eq. (3), i.e.,

Q, (g) = ~[Q, (g+ ie) +Q, (x —ie)];
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Q, (z) to the cut from above and below, i.e., fz(8) = —
2&, . „&exp[2io, -iqlnsin'(~6)]

2

=fz(z)( 1 ) (10)
For an amplitude given by a partial-wave series,
one may introduce the single amplitude

fq(z) = Q (2I+ I)a,q, (z) (6)

whose continuation gives the far and near ampli-
tudes of Eqs. (4):

Zf,(x) = f,-(x-—ic),
(9)

f))((x) = fq(x+ —is) .
ir

Since Q, (z) may be analytically continued around
its branch points at z =1 and z = -1, so may fq(z),
and therefore Eq. (9) shows that f„&»(x) is the
continuation of -f„&»(x}when the branch points
are encircled, i.e., the magnitudes of the far and
near amplitudes merge at 6} =0 and 8 = w if the par-
tial-wave series for the full amplitude converges.

These arguments assume that the singularities
in the far and near amplitude allow their continua-
tion into a region of the z plane near the cut. In
writing a partial-wave series for the amplitude,
we have implicitly assumed that the singularities
of the scattering amplitude f(z), continued into the
complex z plane, lie some distance from the cut;
i.e., any finite sum of partial waves is a polyno-
mial in x which cannot represent a function with
singularities close to the cut. More rigorously,
the partial-wave series of f(z) converges within an
ellipse whose foci lie at z =1 and z = -1, which
passes through the singularity of f(z) nearest the
cut." In any case, the partial-wave series for the
so-called nuclear amplitude encountered in
charged-ion scattering presents no problems and
its far and near amplitudes merge at 8 = 0 and 8 = m

in the manner discussed above. This will be seen
explicitly in calculations discussed in a later sec-
tion.

Not surprisingly, this is not the case for the
Coulomb amplitude. Simple classical considera-
tions would argue that repulsive Coulomb scatter-
ing has only a positive-deflection-angle contribu-
tion and, in fact, this is almost the case. The
long-range character of the Coulomb force leads
to the contribution of all partial waves in the for-
ward direction; the Coulomb amplitude is singular
at 8=0, where the partial-wave series diverges.
The singularity at 8=0 is a branch point, since the
Rutherford amplitude is given by

The cut emanating from this singularity will ren-
der continuation of the far and near amplitudes
into one another at 8 =0 impossible, and this leads
to the dominance of the positive-deflection-angle
contribution in the forward direction. On the other
hand the Coulomb amplitude is regular near back
angles where the positive-deflection-angle ampli-
tude continues to a nonzero negative deflection-
angle amplitude. This "leakage" around 8 = m is
responsible for the existence of a negative-deflec-
tion-angle contribution.

To decompose the Coulomb amplitude we need an
approach which projects the traveling-wave com-
ponents from the full amplitude since the Coulomb
amplitude does not admit a partial-wave expan-
sion. It is first useful to see how the partial trav-
eling wave is obtained from the Legendre polyno-
mial. The analytic properties of Q, (z) reflected
in Eqs. (5) and (6) lead to the equation

I-1

q, (z) =—,) dt(z -f} 'P, (t)
2 V l

for z not on the cut. If we introduce the amplitude
fq(z) by

1
fq(z) =- @(z—f) 'f(f), (12)

1

then the far and near amplitudes for an amplitude
which admits a partial-wave expansion follow upon
interchanging the order of summation over partial
waves and integration in Eq. (12) and using Eqs.
(ll), (8), and (9). Obviously, Eq. (12) may be used
to obtain the amplitude fq(z) directly from the full
amplitude, and the continuation of fq(z) prescribed
by Eqs. (9) then gives the desired decomposition.
We follow this approach for the Coulomb ampli-
tude and check the result by direct calculation.
Underlying this approach is the assumption that
Eq. (12}provides the appropriate continuation of
the amplitude into the complex z plane to allow use
of Eqs. (9).

Substitution of the Rutherford amplitude Eq. (10)
into Eq. (12) gives

( 1 l
f„q(z) = 'f (w) dv 1 — —v I(1-v) ' '".z+1., z+1

(13a)

The integral is a hypergeometric function. "
Rather straightforward manipulation yields

f„()='zf„z( )I-(1 1 z)'E(), 1++Z(Z, Rz—(Z—'(1-z))+ . ,(z —1) 'Z

sinh mg
(13b)
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where the hypergeometric function F(1, 1+ ig, 2+ it}, —,(1 —z)) is continuous across the cut, while the
second term has a branch point at z =1.. We take the cut emanating from this branch point to be along the
real axis, Re(z) &1. Continuation to the cut as prescribed by Eqs. (9) follows upon taking x+is —1
= (1-x)e"' which gives

f»(8) /f„(8) = (1 —e '"") ' ——[ sin'(s8)]'+'"S(8), (14a)

fs,s(8) &fz(8) =-e '""(1-e '"") '+2 [»n'(s8)]"'"S(8), (14b)

where

S(8) = (1+ ig) 'P(1, 1+i'q, 2+i q; sin'( —,'8)) = g s [())(k+1)-g(k+1+i@)—in cos'( —,'8)] cos'~(s8) . (15)
@~p

Again, notation in Eq. (15) follows Ref. 12. We
will find the near-Rutherford amplitude dominant
at forward angles while the near and far ampli-
tudes merge at back angles. This implies that the
first term in Eq. (14a) is dominant at forward
angles for a repulsive Coulomb interaction. Note
that the algebraic values of the first terms of Eqs.
(14a) and (14b) are interchanged for Coulomb at-
traction, leading to the expected far-side domi-
nance at forward angles for attraction.

Before discussing optical-model calculations it
is useful to display some simple properties of the
traveling-wave Legendre functions. The Legendre
function of the second kind, Q, (z), which we have
previously introduced, is given by"

Q, (z)=-'.&, (z)&n( ()—w„,(z),

where W„,(z) is a polynomial in z of degree n —1.
Continuation to the cut from above and below is
again effected by replacing z —1 by (1-x)e"v to
give

Q„(x+ is) = ,P„(x) w i s+ lo—g
1

—W, (x) .~ 1 ~ 1. +x

(17)

The logarithmic singularities at x=1. and —1 are
"soft" and generally present no problems. Figure
1 shows plots of (sin8)'l')Q, (cos8)( for lower par-
tial waves. Indicated in each of the plots is the
asymptotic value [2s(l+ s)] ' ' of this quantity as
given by Eq. (2).

The orbital angular momentum is just the angu-
lar frequency of the asymptotic traveling partial
waves, i.e., for

Again the asymptotic values are indicated. All
phase derivatives in this paper are numerically
evaluated by the two-point formula

(20)
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with ~= —, . These plots, along with Fig. 1, indi-
cate that the asymptotic expression is valid in at
least the angular region indicated in Eq. (2).

QI' (cos8) = (Q, '(cos8)) e's'ts )
60 90

d8
'-(l+ —,') .

Figure 2 shows plots of the phase derivative of
Q['~ for the same Ps used in the previous plots.

(19) FIG. 1. The magnitude of the traveling-wave Legendre
function plotted as )Q, (8)I x(sins}'l2 for the l values in-
dicated. The asymptotic value [27t (E+ 2)] ~ is indicated
by the dash-dot lines.
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III. ILLUSTRATIUE CALCULATIONS AND DISCUSSION

A. Near-far decomposition and interference

(21)f (8) =fs(8) +f (8),
where f (8) is obtained from a partial-wave expan-
sion in terms of the point-Coulomb phase shift o,
and the so-called nuclear S matrix S, as

All calculations in this paper utilize %oods-Saxon
form factors in both the real and imaginary parts
of the optical potential. The parameters used in
the calculations are given in Table I. These par-
ticular potentials were used simply because their
angular distributions illustrate a wide range of
interference patterns. Their angular distributions
will be interpreted in the full angular range, al-
though they were generally fitted to data only in the
forward hemisphere. 5-matrix elements are gen-
erally calculated by the optical-mode code ABA-

In the customary fashion the Rutherford
amplitude, Eq. (10), is isolated in the calculation
of the elastic scattering amplitude to give

0
6

0

6

2
12/-

IO

A=0

@=2

f (8) =(2ik) ' Q (2l+1)e ' )(S —l)P, (cos8) .

(22)

+=5

Equations (14a), (14b), (4a), and (4b) give the far
and near amplitudes

4

~N(P)( 8) fR,F(F)(8) +f~(~)(8) )

where

(23) 16

14

f„(g )(8) = (2 i%) ' Q (2l+ 1)e' ~i(S, —1)

x Q,"(cos8) . (24)

12

IO

We refer to (f„~z&(8)(' as the "near (far) differential
cross section" or the "near (far) angular distribu-
tion". %e shall often plot the differential cross
section do/d8 = 2n sin8(do/dQ) since this quantity
can be more amenable to theoretical interpreta-
tion. In addition, we shall have occasion to study
the "nuclear amplitude" f(8) separately and shall
refer to )f„&z&(8))' as the near (far) nuclear dif-
ferential cross section or the near (far) nuclear
angular distribution.

The first set of calculations illustrates both the

8 (dog)
60 90

FIG. 2. The derivative with respect to the angle 0 of
the phase of the traveling wave Q& (&). Its asymptotic
value, l+ 2, is indicated by the dash-dot line.

dominance of positive-deflection-angle Coulomb
scattering at forward angles and the importance of
the negative-deflection-angle Rutherford amplitude
at large angles. In addition, the difference in the
back-angle angular distributions of far- and near-

TABLE I. Optical model parameters. The radii are xo(A + A. ).i/3 2/2

Real Imaginary
Strength Radius ~0 Diffuseness Strength Radius xo Diffuseness

{MeV) (fm) (fm) (Me V) (fm) (fm)

56 Mev «Oon«O
56 MeV «O on'SCa
96MeV ~ Con20Pb
46 MeV ~2C on ~Mg

—17
37

—40
-100

1.35
1.35
1.256
1.24

0.49
0.42
0.560
0.48

-34.9
-78
-25
-27

0.83
1.27
1.256
1.36

0.805
0.28
0.560
0.22
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side dominated angular distributions is discussed.
Figures 3, 4, and 5 show calculations for 56 MeV
"Q scattering from "Ca. The optical potential is
taken from Ref. 16. Figures 3 and 4 show the far
and near angular distributions calculated with the
naive assumption that the Rutherford amplitude is
totally near-sided along with those calculated with
the correct decomposition; i.e., the naive approach
adds the full Rutherford amplitude, Eq. (10), to the
near-nuclear amplitude and takes for the far am-
plitude only the far-nuclear amplitude of Eq. (24),
while the correct approach uses Eq. (14) in Eq.
(23). The near-sided nature of the Coulomb am-
plitude at forward angles is indicated by the agree-
ment of the two calculations for both the near and
far angular distributions in the forward direction.
The importance of the correct near- and far-side
Rutherford amplitudes is indicated by the diver-
gence of the naive from the correct calculations at
larger angles.

The full and far-side differential cross sections
are plotted in Fig. 5. First note the dominance of
the near amplitude which is also apparent in com-
paring Figs. 3 and 4. This follows from the domi-
nance of Coulomb scattering at forward angles and,

8—y

4—

as discussed previously, the singularity in the
Rutherford amplitude which leads to a "jump" dis-
continuity in going from the far to the near Ruther-
ford amplitudes at the 8=0. It is this discontinuity
which provides the "divergent lens" effect' of the
repulsive Coulomb field by guaranteeing that the
near-side amplitude predominates at forward angles,
thereby pushing oscillation arising from its inter-
ference with the far-side amplitude to larger
angles. By comparing the near-side angular dis-
tribution of Fig. 3 with the full angular distribution
in Fig. 5, we conclude that the very weak oscilla-
tion in the full angular distribution for 80 a Hs 140'
arises from interference with the far-side ampli-
tude.

Two features of the angular distributions in Fig.
5 still require explanation; first, the oscillation in
the far-side amplitude at large angles and second,
the absence of oscillation at back angles in the full
amplitude even though the magnitudes of the far and
near amplitudes differ by less here than in the
mid-angular range where their interference, al-
though weak, is apparent. These two features
have a common explanation which follows from the
merging of the far and near amplitudes at 8= n. As
will be shown later, the near-side amplitude at
large angles is the reflection amplitude for small
impact parameter or, equivalently, small angular
momentum trajectories. If the far-side amplitude
is to merge with the near-side amplitude it can

-2-—

-l4—

-J8—

80
e~ ~(deg )

I 20 I 60
4Q 80

8 (deg )

t20 I 60

FIG. S. Logarithmic plots of sins~ f„„,~ 2= do „„,/dS
for 56 MeV O on Ca. The dashed line shows the
naive calculation which assumes Rutherford scattering
in near-sided, while the solid line uses Kq. (14a) for
the near-Rutherford amplitude.

FIG. 4. Plots of far-side quantities for 56 MeV ~~O on
Ca. The dashed line shows the naive calculation which

assumes there is no far-side contribution to the Ruther-
ford amplitude and the solid line uses Eq. (14b) for the
far-Rutherford amplitude.
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only contain small angular momentum components
near 8= m. Again, it will be shown that the rate of
change of the phase of an amplitude is a measure
of its angular momentum content, small angular
momentum implying a slowly varying phase. If
both the near and far amplitudes have slowly vary-
ing phases, the interference cannot range from
constructive to destructive and there will be no
oscillation in the angular distribution.

In this case we know the nature of the far ampli-
tude forward of its oscillation. The linear fall in
the far angular distribution do;„/d8 is the signature
of the Regge pole previously discussed for this po-
tential (8) and found by Wolter's code." The angu-
lar dependence of the amplitude for the pole at the
complex angular momentum n = n, + i n2 =- 31.7 +2.8i
is just e' " ' . If this pole contribution inter-
feres with an amplitude n(8) whose phase is slowly
varying, the angular distribution is approximately

) n(8) + ge'&" + ' ~'&
)
' = n(8) + ) g 'e '"2

+2n(8)l]l costa. , + 2)8-X1,

(25)

since n(8) may be taken to be real without loss of
generality. This would predict a valley to valley
spacing of &8=2m/(n, +-,')=ll', which agrees with
the period of oscillations in the far-angular dis-
tribution and leads to the conclusion that the far-
side amplitude backward of the regular oscillation
indeed has a slowly varying phase. Physically,
near-side dominance implies that the back-angle
scattering arises from small impact-parameter
reflection whose signature is the absence of back
angle oscillation in the full angular distribution.

Figure 6 shows the far-side, near-side, and
total unsymmetrized angular distributions for "Q-
"Q elastic scattering at 26 MeV center-of-mass
energy for the extensively studied" '" potential
introduced by Maher et aL." Here the Coulomb de-
flection is weaker and the far-side amplitude is
less strongly damped than for "Q-"Ca scattering.
Still the predominantly near-sided Rutherford am-
plitude enforces near-side domination at forward
angles and the Fraunhofer diffraction oscillation
resulting from the interference of the far and near
amplitudes is pushed awa, y from the forward direc-
tion to 8=60'. This Fraunhofer diffraction oscilla-
tion must appear in angular distributions dominated
by far-side scattering at large angles simply be-
cause the near-side amplitude is dominant at for-
ward angles. In contrast to the 16Q-~'Ca case,
where the back-angle scattering is domjLnantly
near-sided, we now have back-angle oscillation.
This obviously arises from interference of the
dominant far-side amplitude with its continuation
to the near-side amplitude at 6 = m. Again the

4

-l2

40
8 (deg )

l20

FIG. 5. The solid line is the logarithmic pIot of
do'/do for 56 MeV ~ 0 on SCa. The dash-dot 'Line repeats
the correct far-side calculation shown in Fig. 4.

linear fall in the far-side angular distribution is
the signature of a Regge pole which Tamura and
%olter17 have found at z =19+1.4i. This pole re-
sults in a far-side amplitude

4(C(+1/2)(r 6) ~ 4(I+1/2)m'~ C.28~+5(C(1+1/2)e

and a near-side amplitude

~+ $(a+ 1 /2 ){g -6 )

near 0= @; i.e., for 0=m, the angular dependence
of the scattering amplitude is given by P„(-cos8),
resulting in back-angle osciBation given by
cos[2(o., + ~)8]. Again we have interference struc-
ture in the dominated component, which is now the
near-side contribution. This can be interpreted as
the interference of the Regge pole component,
which ties onto the dominant far-side amplitude at
jg = m, with the essentially reflective component at
smaller angles. Again, the angular distance be-
tween the two valleys is roughly what this picture
would lead us to expect.

%e have chosen amplitudes whose fa,r-side com-
ponents are Regge-pole dominated because we



H. C. FULLEB

120 160

pIQ, 6. Logarithmic plots of do'/d~ (sol&d),

(dash dot) and do)-, /d'g (dash) for 28 Me+ (c.m. ) 0- 0
elastic scattering.

Although heavy-ion elastic scattering is known to
be absorptive, the quantitative nature of that ab-
sorption is an open and difficult experimental
question. It should be recalled, however, that
"encirclement-component" domination of back
angles requires the far-side amplitude to pass
through the near-side amplitude, which necessarily
predominates at forward angles. The resulting
interference oscillation in the angular distribution
will appear at forward angles where cross sec-
tions are generally larger than at extreme back
angles.

B. Angular dependence of near-side scattering

%'e now address the problem of contradictory
explanations of the qualitative features of heavy-ion
angular distributions. In the language used in this
paper our concern is the near-side amplitude which
is generally the dominant amplitude in tandem
heavy-ion experiments. %hen plotted in ratio to
the Rutherford cross section the angular distribu-
tion consists of oscillation, decreasing in frequency
and increasing in magnitude, followed by a precipi-
tous and smooth fall. As mentioned earlier, this
has been interpreted as the signature of a Coulomb
rainbow4' or of Fresnel diffraction. ' The resolu-
tion of this contradiction is important because the
two interpretations can imply that 'quite different

could then cleanly interpret interference structure
in the angular distributions. However, we will
find that the far-side amplitude generally describes
peripheral components of wave function which have
encircled the interaction region, while the near-
si . amplitude at large angles describes small-
ir. ,&act-parameter reflection. The arguments con-
cerning the "splice" in the dominated amplitude
and the existence of back-angle oscillation depend
only on these attributes of the far and near ampli-
tudes. Supporting evidence for this assertion is
the smooth back-angle angular distribution of the
far-side dominated cross section of Fig. 8 and the
oscillation at back angles in the far-side dominated
0.-'8Ni angular distribution shown in Ref. 9.

In this connection it is interesting to recall
Austern's" "black nucleus" model of strong ab-
sorption which follows from the imposition of an
incoming boundary condition on the three-dimen-
sional wave equation at the "nose" of the interac-
tion region; the wave function is constrained to be
totally incoming for I9 = rr at the interaction radius.
Austern found the angular distribution oscillated at
back angles and this was shown in Ref. 22 to arise
from the encirclement component of the scattering
w ave func tlon,

I

&c
or f MPAC T PARAME TE R

FIG. 7. Schenlatic plot of the deflection angle typical
of heavy-ion calculations. The portion of the curve
around the local maxirlum is enclosed to indicate that
the dark-side, OH&8c, of the Coulomb rainbow arises
from a Localized set of angular momenta. For the
dashed region around the local minimum the SRIMe coxY1-

ment appl. ies to the dark side) 0" &0"„y, of the nuclear
rainbow.
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portions of the interaction region are being probed.
We shall discuss rainbows and then ask if we are
seeing a Coulomb rainbow. Since the answer is no,
we then discuss the problem in terms of absorption
or diffraction.

The dark side of a rainbow is associated with a
classically inaccessible scattering region. Clas-
sical positive-deflection-angle scattering is lim-
ited to forward angles because the attractive nu-
clear interaction bends small impact-parameter
trajectories forward. However, the effective at-
tractive force is generally, at most, sufficient to
bend trajectories to a limited negative deflection
angle which restricts classical negative-deflection-
angle scattering to forward angles. Figure 7 is a
schematic plot of a deflection function which is typ-
ical of heavy-ion scattering and which suggests the
Coulomb- and nuclear-rainbow interpretation. The
Coulomb rainbow is associated with the local max-
imum, while the local minimum is associated with
the nuclear rainbow. Expansion of the deflection
function'e(l) about a local extremum at I = lz yields
for the positive- and negative-deflection-angle
rainbows the respective amplitudes

0.6

b
b

2

20
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80
fg'&(8) =e"en"&A, (8),

where

Pn(8) =(4+ a)8+(,

(26)

(27)
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with $ constant, contains the rapidly varying com-
ponent of the phase. " On the dark side of a rain-
bow, I8l~l &pl, IA~(8) l falls rapidly and smoothly,
describing propagation into a classically forbidden
angular region, while on the bright side I 8I & I 8s I,
interference from different branches may give rise
to oscillation in IA(8) I. In any case, the signature
of a rainbow resides both in the magnitude and the
phase of the amplitude. Frahn' has shown how

strong absorption can give rise to a diffractive
shadow described by an amplitude whose magnitude
falls smoothly but which has a different phase de-
pendence than the amplitude describing the refrac-
tive shadow on the dark side of a rainbow. This
difference in phase dependence allows us to dis-
tinguish between the two interpretations.

The derivative of the phase of the scattering am-
plitude is obtained numerically by using Eq. (20).
The signature of a Coulomb rainbow is then an ap-
proximately constant phase derivative for the near-
side amplitude, as is indicated by Eq. (27). Calcu-
lations displayed in this discussion use one of two
optical-model potentials; (a) a potential fit by a
Saclay collaboration' to 46 MeV "C elastic scat-
tering from "Mg, and (b) a potential fit by an
Oak Ridge collaboration" to 96 MeV "C scattering
from '"Pb. Both potentials are given in Table I.

FIG. 8. 96 MeV ~ C- Pb calculations. Upper plot
shows cr(0)/O'R«h(~). The lower portion of the figure
shows superposed plots of three quantities. The ordinate
indicates l both for the reflection coefficient IS&l plotted
on the l.eft, and for the deflection function (dash-dot)
2(&&-&& &), where i5& is the sum of the nuclear and Cou-
lomb phase shifts. The ordinate aLso indicates values of
the phase derivative dQ„„,/&0 of the near-side scattering
amplitude. The quarter-point (Q.P.) value of o'(8)/o'R«h(0)
corresponds to the value of the phase derivative indicated.
In turn, this value of the phase derivative is associated
with the angular momentum to give a qualitative indica-
tion of the I values scattered to the quarter point of
~(~)/'~R. th(e)

The upper plot of Fig. 8 shows o/oa„s, for the
completely near-side dominated "C-'"Pb calcula-
tion. The lower portion of the figure shows the
phase derivative of the near-side amplitude. The
same plot also shows the deflection function ob-
tained numerically from the Coulomb-plus-nuclear
phase shifts. The abscissa for this plot gives the
deflection function while the ordinate gives the l
value. The reflection coefficient is also plotted.
Note that there is no angular region where the
phase derivative is approximated by a constant,
although the deflection function has a local maxi-
mum at l-5V.

The upper plot of Fig. 9 shows o"/o„„s, for the
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range. For this potential Fig. 10 contains the same
information as the lower plot of Fig. 8 with the ad-
dition of a plot of the phase derivative of the far-
side amplitude. Again, the near-side phase deriv-
ative is not anywhere constant as it would be for a
Coulomb rainbow, although the local maximum in
the deflection function is here more pronounced
than in the previous case. The far-side amplitude
does exhibit the phase behavior of a nuclear rain-
bow. In fact, the linear fall in the far-side angular
distribution, do„„/d8, in Fig. 9 implies that this is
an example of what McVoy has called a Regge rain-
bow. 26

Having failed to find Coulomb-rainbow behavior
in the near-side amplitude, we turn to a diffraction
explanation of the qualitative behavior of the near-
side angular distribution. In the following discus-
sion it is assumed that the angular distribution is
near-side dominated and therefore the full ampli-
tude is well approximated by the near amplitude.

The first problem to be confronted is the forma-
tion of a shadow by absorption. The shadow in
question occurs at larger angles which, in the
classical picture, correspond to absorbed trajec-
tories. This implies that the reflection coefficients
for angular momenta associated with these trajec-
tories are small, i.e., I 8, I«1 for l & l» where I~
is the angular momentum of a peripheral trajec-
tory. The nuclear amplitude [Eg. (22)] for the
scattering of these absorbed partial waves is then

0
f b, (8) = (2ik) ' g (2l+1)e"'s(-1)P,(cos8),

So 0

Esl~. (28)

-IO

I I I I I I I I I I I I I I I I I t I I

0 30 60 90 I 20
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FIG. 9. The upper pl.ot shows a'(8)/a'R„th(8) for 46 MeV
~ C scattering from GMg. The lower plot shows da'/d8

(solid) as well as the far-side angular distribution
da'fgf/d~ (dash-dot), and the near-side angular distribu-
tion da „,~/d8 {dash). Interference of the single-side
contributions is apparent in the full angul. ar distribution. .

2C- Mg calculation while the lower plot shows
how the oscillation in the angular distribution
arises from far-near interference even though the
near amplitude is dominant over the entire angular

IO—
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~~ Hr I
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40=
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8, (deg)

I
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FIG. 10. The same quantities appearing in the lower
portion of Fig. 8 are here plotted for 46 MeV ~ C on 2 Mg
with the addition of the phase derivative + dQq„/d8 (dash}
of the far-side phase derivative. -dQ„, /d8 (solid), and
the deflection function -2(&&-&f f) (dash-dot) are shown
with the conventions of Fig. 8 for the ordinate. The
reflection coefficient is shown on the left.
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On the other hand, the phase of the Rutherford am-
plitude, Q„„~(8)= —qlnsin'8/2q, has the phase de-
rivative

dP „,„/d8= —q cot—', 8, (29)

which if identified with the angular momentum l
yields the classical Coulomb relation

8 =2 tan '(v)/l) . (30) -i0
Since the Coulomb phase shifts satisfy the recur-
sion relation

2(o, —cr, ,) = 2 tan-'(q/l), (3l)
-l5

where the left-hand side is approximately the Cou-
lomb deflection function 2', /d/, Eq. (30) also fol-
lows from the stationary phase evaluation of the
semiclassical partial-wave integral involving the
Coulomb S-matrix alone. For angles satisfying

-20

-20—
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-soy-I'
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I I I I I I I I I I I

50 60 90 )20 l50
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) I I

0 90
8 (dg)
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I I

180

FIG. 11. The upper plot shows derivatives of phases
of the near-nuclear amplitude f~{8)-fz &{0) (dash-dot)
and near-Rutherford ampl. itude (solid) for 96 MeV ~2C

on Pb. The Lower plot shows Logarithmic plots of the
near-nucl. ear (dot-dash) and near-Rutherford (solid)
angular distributions. Again the quarter-point angle is
shown.

FIG. 12. The same plots appear here for 46 MeV C
on 8Mg as appeared for 98MeV C on Pb in the pre-
vious figure (Fig. 11).

8& tan '(q/I. ), Eq. (28) for the absorptive nuclear
amplitude can therefore be expected to approxi-
mate -f~„~(8). This discussion is offered as a
heuristic argument for the formation of a diffrac-
tive or Fresnei2 shadow for 8a tan '(q/L) and is
supported by calculations shown in Figs. 11 and 12.
For the "C-' 'Pb case previously discussed, Fig.
l1 shows the near-nuclear angular distribution and
the phase derivative of the near-nuclear amplitude
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along with the same qualities for the Rutherford
amplitude. Obviously, the near-nuclear and near-
Rutherford amplitudes are approximately equal for
angles somewhat greater than the quarter-point
angle indicated, Figure 12 shows the same quanti-
ties for the 46 MeV "C-"Mg case, and the same
observation made for the "C-' Pb calculation is
valid. It is this near cancellation of the near-side
Rutherford and nuclear amplitudes in the presence
of strong absorption which generates the diffractive
shadow.

Further insight follows from the identification of
the derivative of the phases of the far and near am-
plitudes with the "local angular momentum". This
is in analogy with the semiclassical identification
of the derivative of the phase of a one-dimensional
traveling wave with the local linear momentum.
The validity of this identification for the Rutherford
amplitude follows from Eqs. (29) and (30), but it is
less immediate when there is same-side interfer-
ence where both the magnitude and phase of a
single-side amplitude may vary rapidly. This is
apparent in the correlation of structure in the near-
side phase derivatives in Figs. 8 and 10, with
structure in the near-side angular distributions in
Figs. 8 and 9. This structure is presumably as-
cribable to interference between the Coulomb and
nuclear amplitudes in the shadow region where
they pass back and forth through one another as
indicated in Figs. 11 and 12. Again, the structure
in the phase derivative of the near-nuclear ampli-
tude in Fig. 11 is closely correlated with structure
in the near-nuclear angular distribution, most of
which is not shown. However, even in the presence
of this interference oscillation the phase derivative
can be qualitatively useful.

The short-range nuclear interaction requires
that the nuclear amplitude, (S, —1)/2ik in Eq. (24),
decrease rapidly to zero as l increases beyond the
angular momenta describing peripheral collisions.
This limits the angular momentum content in the
near-nuclear amplitude, which is reflected in their
phase derivatives peeling away from the Rutherford
phase derivatives which continue to larger negative
values with decreasing scattering angle. For the
"C-'o'Pb calculation, shown in Fig. 11, )dQ„„c/d8(
= 60 at 8 = 0, and l = 60 is approximately the maxi-
mum angular momentum contained in the nuclear
amplitude. This follows from the plot of the re-
flection coefficient in Fig. 8 which shows ( S«~ =1.
For "C-"Mg, ( dPN„c/d8( = 25 at 8=0 and again
l =25 is in the upper shoulder of the reflection co-
efficient shown in Fig. 10. For our arguments
concerning the qualitative behavior or o/o„„,„ it is
important to note that the magnitude of the phase
derivative of the near-nuclear amplitude always
lies below that of near-Coulomb amplitude in the

angular region where they differ appreciably.
Again, this is presumably a reflection of the lim-
ited angular momentum content of the nuclear am-
plitude and simply means the phase of near-nuclear
amplitude is changing less rapidly than that of the
Coulomb amplitude.

One might guess that the deep shadow starts at
the scattering angle where the local angular mo-
mentum of the near-nuclear amplitude lies in the
lower shoulder of the reflection coefficient, i.e.,
for S, = 0 where l sL the shadow starts at the angle
8~= 2 tan '(r)/L). This would result from the argu-
ments following Eq. (28) and is also consistent
with the most naive physical argument which says
absorbed partial waves generate the shadow.

By way of defining the "start" of the deep shad-
ow we note that in both Figs. 11 and 12, the near-
nuclear angular distribution approaches the Ruth-
erford angular distribution with which it coalesces
shortly after reaching its maximum. Therefore we
associate this maximum with the start of the deep
shadow. En Fig. 11, do'~Uc/d8 peaks at 8~=66'
where dQN„c/d8= —42, and in Fig. 8 we see that
L =42 indeed falls in the lower shoulder of the re-
flection coefficient. For S6 MeV ' C- Pb scatter-
ing q =27.4 and 2 tan '(q/'L) = 2 tan '(27 4/42) .= 66'
= 6~, which might be called the "strong absorption
angle". The same analysis may be repeated for the
46 MeV "C-"Mg case in Fig. 12; da„Uc/d8 peaks
at 8s = 38' where dPN„c/d8= 17 = L which again falls
in the lower shoulder of the reflection coefficient
shown in Fig. 10. Further, 2 tan '(q/L)
= 2 tan '(5.79/17) =38' =8&, the strong absorption
angle.

We now have the following qualitative picture of
near-side elastic scattering. There is a diffrac-
tive shadow extending forward to the strong ab-
sorption angle where the near-nuclear amplitude
peaks and one begins to probe angular momenta in
the refractive region of the reflection coefficient.
Within the angle 0~ the near-nuclear angular dis-
tribution fall rapidly and the total angular distribu-
tion rapidly climbs to approximate the Rutherford
cross section which is dominant at forward angles.
As will be discussed shortly, the forward angle
structure in o/oR„, h can be understood in terms of
the limited angular momentum content of the nucle-
ar amplitude.

The near cross section in the shadow is small
and arises from reflection at, or within, the inter-
action surface. Unlike a Coulomb-rainbow-near-
side angular distribution which is determined by
peripheral S-matrix elements, the (local) angular
momentum in the absorptive shadow decreases
with increasing scattering angle. As mentioned
earlier, the resulting lower centripetal barrier
can allow the reflected components to emanate



QUALITATIVE BEHAVIOR OF HEAVY-ION ELASTIC. . .

from the interior of the interaction region. There-
fore, back-angle near-side scattering can probe
the interior of the interaction region. This quali-
tative picture of near-side scattering follows from
the absorptive nature of heavy-ion elastic scatter-
ing and does not depend on the detailed nature of
the interaction of two appreciably overlapping ions,
which is presumably complicated by effects such as
those arising from the Pauli exclusion principle.
On the other hand, quantitative features of large-
angle near-side dominated scattering can be ex-
pected to depend sensitively on details of the inter-
Rctlon.

Forward of the strong absorption angle the angu-
lar distribution is best discussed in the customary
fashion as the ratio of the near cross section to
Rutherford, i.e., we consider

where

is the difference of the phases of the near-nuclear
and Rutherford a,mplitudes. From both Figs. 11
and 12 it is obvious that d4/d8 & 0 for 8& 8z, which
implies C(8) decreases as 8 decreases from 8~.
This, in turn, implies that g(8), considered as a
complex phasor, rotates in the clockwise direction
as 8 decreases from 8~ starting with the phase x.
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FIG. 3.3. Argand plot of fag)/fz z(~) =g(0) for 96
MeV ' C on I'b. The running variabJ. e is the scatter-
ing angle 0 with g (8) shown at degree steps.

= 1+g(8),
where &««/&R„,h«„=)g(8}('. For a near-side dom-
inated cross section this is virtually identical to
+/o R th. Since

~ f„(8)) peaks at 8 = 8„where f„(8)
= -f~ «(8), while ) fs „(8)[ continues to increase
with decreasing angles, ~ g(8) ~

& 1 for 8 & 8~ . We
now write
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FIG. 14. For 46 MeV C on 6Mg this figure contains
the same pl.ots as Fig. 13 shows for 96 MeV ~C on Pb.

Since f~(8) and fz „(8)generally diverge both in
magnitude and phase, g(8) rotates at an ever in-
creasing rate as it shrinks in magnitude. It is this
behavior of g(8) which leads to the Cornu-spiral-
like appearance of the complex behavior of g(8)
shown in Figs. 13 and 14 and this, in turn, is re-
sponsible for e/o„„,„oscillating with increasing
magnitude and period, as 8 increases, until it falls
from its last local maximum as the phase of g(8)
increases from 0 to approximately m at the strong
absorption angle 8~.

This completes our discussion of the near-side
amplitude. The qualitative picture which has
emerged is just Frahn's Fresnel diffraction inter-
pretation of o/aR„, h. It should be remembered,
however, that the angular distribution for an angle
8 & 8z (the strong absorption angle), the nuclear am-
plitude is determined by the refractive S-matrix
elements, i.e., the peripheral nonzero S-matrix
elements. This means the quantitative behavior of
o/oR„h in the forward direction depends on the de-
tailed behavior of the peripheral S matrix. IIow-
ever, the qualitative behavior of o/o~„,„for a near-

'd d
' td gl d' t'bt' 'sdt '

d

by absorption, and not by the diffractive aspects of
the S matrix such as the Coulomb rainbow.

%e do not contend that the angular distributions
discussed in th1s paper exhaust all the possibilities;
however, it is hoped tha. t the concepts used in their
discussion are sufficiently broad to be generally
useful.
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