Proton states in 87Rb† L. R. Medsker,* H. T. Fortune, S. C. Headley, and J. N. Bishop[†] Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19174 (Received 12 June 1975) The ⁸⁶Kr(³He, d)⁸⁷Rb reaction has been studied at a bombarding energy of 18 MeV. The isotopically enriched ⁸⁶Kr target was contained in a gas cell with no entrance window. Excitation energies and angular distributions were obtained for 60 levels below 7 MeV in ⁸⁷Rb. A distorted-wave analysis was used to determine *l* values and spectroscopic strengths. The results are compared with previous data from transfer reactions and radio-active decay. NUCLEAR REACTIONS ⁸⁶Kr(³He, d), E = 18 MeV; enriched target; measured $\sigma(E_d, \theta)$; deduced ⁸⁷Rb levels, l, j, G_{lj} . ### I. INTRODUCTION Nuclei near A = 90 are receiving increased attention because of the success of various theoretical models. Spherical shell-model calculations have had some success for cases of a few particles outside a 88Sr core. As nucleons are subtracted from the (Z, N) = (38, 50) core, the nuclei may possibly be described also by deformed-nucleus calculations,2 weak-coupling models,3 or the coupling of a few particles or holes.4 Systematic studies of nuclei for (Z, N) < (38, 50) should provide good tests of the various models. In addition, the increasing interest in high-spin states through (HI, xny) reactions requires a complete knowledge of lowlying states as a basis for constructing decay schemes and to identify reaction products. As part of a systematic study⁵ of proton states in this region, we have investigated the N = 50 nucleus 87Rb. ## II. EXPERIMENTAL PROCEDURE The experiment was performed with the 18-MeV ³He beam from the University of Pennsylvania tandem accelerator. The outgoing deuterons were momentum-analyzed with a multiangle spectrograph. Spectra (see Fig. 1) were recorded on IIford K2 emulsion plates at 7.5° and in 7.5° steps from 11.25 to 41.25°. The target was enriched 86Kr gas (99.2%) which was purified and recirculated through a gas cell with no entrance window.6 The pressure in the gas cell was maintained at 12 Torr. which corresponds to an effective target thickness of about $50 \,\mu\mathrm{g/cm^2}$. The energy resolution was 20 keV full width at half maximum (FWHM). Contamination peaks due to 40Ar (~2%) were identified or were negligibly small. The data were analyzed with the program AUTOFIT 7 in order to obtain excitation energies and cross sections. The cross sections, calculated from the measured gas pressure and amount of collected charge, were uncertain to 10%. The measured angular distributions were compared with the results of distorted-wave Born-approximation (DWBA) calculations, using the code DWUCK.§ The optical model parameters used in the present analysis were the same as those in Ref. 5. The spectroscopic strengths $G_{ij} = [(2J_f + 1)/(2J_i + 1)]C^2S_{ij}$ were derived from the differential cross sections by use of the expression $$\frac{d\sigma}{d\Omega} = 4.42G_{ij}\sigma_{\rm DWUCK}/(2j+1),$$ where J_i , J_f , and j are the total angular momenta of the target nucleus, residual nucleus, and the transferred proton, respectively. Unless the spin is known otherwise, the $l_p=1$, 2, and 4 calculations were made for $2p_{1/2}$, $2d_{5/2}$, and $1g_{9/2}$, respectively. (See footnotes in Table III.) ### III. RESULTS In the present experiment, 60 levels in ⁸⁷Rb were observed up to an excitation energy 6989 keV. FIG. 1. Typical deuteron spectrum of the $^{86}{\rm Kr}\,(^3{\rm He},d)$ - $^{87}{\rm Rb}$ reaction. From the DWBA analysis, the l_p values could be determined and the results are shown in Figs. 2-5 and in Table I. The results for the 1579-keV level were reported earlier.9 The information for 10 levels in 87 Rb has been summarized in Ref. 10, and subsequent to that, data have been reported from works on the decay 11,12 of 87 Kr, Coulomb excitation, 13 87 Rb- $(n,n'\gamma)$, 14 , 15 and 88 Sr $(d,^{3}$ He). 16 , 17 These available data are shown in Table II together with the results of the present $(^{3}$ He, d) study. The ground state and 403-keV states have well established $^{10}J^{\pi}=\frac{3}{2}^-$ and $\frac{5}{2}^-$, respectively, and were observed with strong $l_p=1$ and $l_p=3$ transfers in the present (3 He, d) experiment. The strong $l_p=1$ transfer to the 846-keV level is consistent with the tentative $\frac{1}{2}^-$ assignment from 87 Kr decay. $^{10-12}$ That state probably has the major $2p_{1/2}$ strength in 87Rb. States at 1349 and1390 keV were reported in 87 Kr decay and $(n,n'\gamma)$, respectively, but neither were observed in $(^3$ He, d). Therefore, as discussed earlier, 9 the 1349-keV state cannot contain the $1g_{9/2}$ strength in 87 Rb, and the 1578-keV state, reached by $l_p=4$ with $(2J+1)C^2S\approx 10$, is the most probable candidate for the $g_{9/2}$ proton state. The 1468-keV state populated weakly by $l_p=1$ in $(^3$ He, d) may be the same as the 1463-keV state from 87 Rb $(n,n'\gamma)$. As discussed earlier, 9 because of a $(\frac{7}{2})$ assignment from 87 Kr decay and $l_n=(1)$ from $(d,^3$ He), a second state may exist near 1578 keV. However, those assignments are sufficiently ambiguous that further data are necessary to establish the existence of a doublet at 1578 keV. Above $E_x = 1578 \text{ keV}$, only fair correlation was found between levels observed in (^3He , d) and those FIG. 2. Angular distributions of the deuterons leading to states in 87 Rb from the 86 Kr(3 He, d) reaction. The solid lines are the distorted-wave Born-approximation calculations for $l_p=1$ and $l_p=0$ transfers. reported in previous work. The $(\frac{5}{2})$ state at 1741 keV, observed in 87 Kr decay and in $(n, n'\gamma)$ was not observed in the present work but it might be expected to be weak in (3He, d). The 1893-keV state, previously unreported, is populated by $l_p = 1$ transfer and hence has $J^{\pi} = (\frac{1}{2}, \frac{3}{2})^{\pi}$. If the 2378-keV $(\frac{3}{2}, \frac{5}{2})$ level from ⁸⁷Kr decay is the same as the 2396-keV level observed with $l_p = 1$ in (3He, d) then that state has $J^{\pi} = \frac{3}{2}$; however, the difference in energies is outside the expected range. Of the six remaining states up to 3309 keV, the 2548-, 2810-, and 3309-keV states agree in energy with levels reported in ⁸⁷Kr decay. Since $J^{\pi} = (\frac{5}{2}, \frac{7}{2})$ assignments were made in the decay work, the present observation of $l_p = 2$ for the 2548- and 2810-keV states would imply $J^{\pi} = \frac{5}{2}$ for both states. Above 3309 keV, 47 states are reported for the first time from the present (3 He, d) work. The energies, J^{π} restrictions, and spectroscopic strengths are shown in Table I. The summed spectroscopic strengths and energy centers of gravity for the various l_{p} transfers in $^{86}\mathrm{Kr}(^{3}\mathrm{He},d)$ are shown in Table III in comparison with the results for $^{84}\mathrm{Kr}(^{3}\mathrm{He},d)$. Assuming the configurations mentioned earlier, the total strength for $l_{p}=1$, 3, and 4 is 15.25 (this value would change by $\leq 2\%$ if states with ambiguous J assignments have the alternative configurations). The value expected from the sum rule is FIG. 3. Angular distributions for levels excited in the $^{86}{\rm Kr}\,(^3{\rm He},d)$ reaction. The solid lines are the distorted-wave Born-approximation calculations. $$\sum G_{ij} (T_{<}) = (\text{No. proton holes in } N = 50)$$ $$-\sum_{i} G_{ij} (T_{>})$$ $$= 14.$$ This agreement is good, since uncertainties in target thickness and in the DWBA formalism are ~20%. The comparison in Table III shows that in both 84 Kr and 86 Kr the $1f_{5/2}$ orbital is significantly empty. This orbital appears to be more empty in 84 Kr than in 86 Kr, but the sum of $l_{\it p}=3$ and $l_{\it p}=1$ is about the same for the two nuclei, implying a sharper Fermi surface for the closed-neutronshell nucleus 86 Kr. The summed $l_{\it p}=4$ strength is somewhat weaker in 84 Kr, but small fragments of this strength may have been missed. The centroids in Table III indicate that the $1g_{9/2}$, $2d_{5/2}$, and FIG. 4. Angular distributions requiring two l values (implying unresolved states). The solid lines are the distorted-wave Born-approximation calculations for the indicated combinations of l transfers. FIG. 5. Angular distributions for levels reached by $l_p=2$ transfers in the $^{86}{\rm Kr}(^3{\rm He},d)^{87}{\rm Rb}$ reaction. The solid lines are the distorted-wave Born-approximation calculations. TABLE I. Present results for the ${}^{86}\mathrm{Kr}({}^{3}\mathrm{He},d){}^{87}\mathrm{Rb}$ reaction. | E _x ^a (keV) | l_p | J^{π} | $(2J+1)C^2S^{\mathrm{b}}$ | E _x ^a (ke V) | l_p | J# | $(2J+1)C^2S^{\mathrm{b}}$ | |-----------------------------------|---------|---|---------------------------|------------------------------------|-------------------------|---|---------------------------| | 0 | 1 | <u>3</u> − c
2 | 1.36 | 5233 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.11 | | 399 | 3 | $\frac{3}{2} - c$ $\frac{5}{2} - c$ | 1.18 | 5316 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.089 | | 846 | 1 | $(\frac{1}{2})^{-}$ | 2.04 | 5347 | 2 | $(\frac{3}{2},\frac{5}{2})^{+}$ | 0.13 | | 1468 | 1 | $(\frac{1}{2}, \frac{3}{2})^{-}$ | 0.031 | 5491 | 2, | $(\frac{3}{2},\frac{5}{2})^+$ | 0.43 | | 1578 | 4 | $\frac{9}{2}^{+}$ | 9.87 | 5542 ^d | (0 + 2) | $(\frac{1}{2}^+)+(\frac{3}{2}^+,\frac{5}{2}^+)$ | (0.026) + (0.17) | | 1893 ± 10 | 1 | $(\frac{1}{2}, \frac{3}{2})^-$ | 0.023 | 5634 ± 7 | 0 | | 0.17 | | 2396 | 1 | $(\frac{1}{2}, \frac{3}{2})^-$ | 0.17 | 5750 | 0 | $\frac{1}{2}^{+}$ $\frac{1}{2}^{+}$ | 0.044 | | 2548 ± 7 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.11 | 5802 ^d | (0+2) | $(\frac{1}{2}^+)+(\frac{3}{2}^+,\frac{5}{2}^+)$ | (0.016) + (0.081) | | 2731 | 4 | $(\frac{7}{2},\frac{9}{2})^+$ | 0.14 | 5845 | 2 | $(\frac{3}{2},\frac{5}{2})^{+}$ | 0.056 | | 2810 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.024 | 5884 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.051 | | 2973 | 4 | $(\frac{7}{2},\frac{9}{2})^+$ | 0.13 | 5978 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.13 | | 3060 | 0 | 12+ | 0.036 | 6018 | 0 | $\frac{1}{2}^{+}$ | 0.076 | | 3309 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.25 | 6089 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.073 | | 3335 ± 8 | 1 | $(\frac{1}{2}, \frac{3}{2})^{-}$ | 0.058 | 6176 | 0 | $\frac{1}{2}^+$ | 0.030 | | 3692 ^d ± 7 | 1+(4) | $(\frac{1}{2},\frac{3}{2})^{-}+(\frac{7}{2}^{+},\frac{9}{2}^{+})$ | 0.016+(0.12) | 6206 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.071 | | 3764 | 1 | $(\frac{1}{2}, \frac{3}{2})^-$ | 0.021 | 6307 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.085 | | 3834 | 0 | $\frac{1}{2}^+$ | 0.024 | 6375 ^d | (0+2) | $(\frac{1}{2}^+)+(\frac{3}{2}^+,\frac{5}{2}^+)$ | (0.022) + (0.083) | | 3973 | 2 | $(\frac{3}{2}, \frac{5}{2})^{+}$ | 0.24 | 6468 | 0 | $\frac{1}{2}^+$ | 0.034 | | 4146 | 2 | $(\frac{3}{2},\frac{5}{2})^{+}$ | 0.021 | 6512 | 2 | $(\frac{3}{2},\frac{5}{2})^{+}$ | 0.086 | | 4266 ^d | (1) + 2 | $(\frac{1}{2}^-, \frac{3}{2}^-), (\frac{3}{2}, \frac{5}{2})^+$ | (0.014) + 0.031 | 6548 | 0 | $\frac{1}{2}^+$ | 0.056 | | 4379 | 2 | $(\frac{3}{2},\frac{5}{2})^{+}$ | 0.39 | 6618 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.092 | | 4492 | 2 | $(\frac{3}{2},\frac{5}{2})^+$ | 0.19 | 6652 | 2 | $(\frac{3}{2}, \frac{5}{2})^{+}$ | 0.12 | | 4681 | 1 | $(\frac{1}{2}, \frac{3}{2})^{-}$ | 0.034 | 6744 ± 10 | 2 | $(\frac{3}{2},\frac{5}{2})^{+}$ | 0.10 | | 48 62 ^d | (0+2) | $\frac{1}{2}^+ + (\frac{3}{2}^+, \frac{5}{2}^+)$ | (0.003) + (0.008) | 6791 ^d ± 9 | (0+2) | $(\frac{1}{2}^+)+(\frac{3}{2}^+,\frac{5}{2}^+)$ | (0.022) + (0.075) | | 4941 | 0 . | <u>1</u> + | 0.012 | 6838 | 0 | $\frac{1}{2}^{+}$ | 0.056 | | 5118 ± 9 | 2 | $(\frac{3}{2},\frac{5}{2})^{+}$ | 0.12 | | | 2 | | | 5196 | 0 | <u>1</u> + | 0.056 | 6989 | 0 | $\frac{1}{2}^{+}$ | 0.053 | ^a The values for known states in 87 Rb and 41 K were used in the energy calibration. Uncertainties in the energies are ± 5 keV unless otherwise indicated. ^b Calculations for excited states assume $2p_{1/2}$, $2d_{5/2}$, and $1g_{9/2}$ for $l_p=1$, 2, and 4, respectively. ^c See Ref. 10. ^d Doublet. FIG. 6. Comparison of energy levels, JT, and spectroscopic strengths for the (3He, d) reactions on 84Kr (Ref. 5), 86Kr (present), 86Sr (Ref. 18), and 88Sr (Ref. 19). TABLE II. Low-lying energy levels, l_p , J^{π} , and spectroscopic strengths from the present $^{86}\mathrm{Kr}(^{3}\mathrm{He},d)$ study compared with results from previous studies of 87Rb. | NDS, $(n, n'\gamma)^a$, and Coul. ex. | | ⁸⁷ Kr decay ^b | | ⁸⁸ Sr(d, ³ He) ^c | | ⁸⁶ Kr(³ He, <i>d</i>) ⁸⁷ Rb | | | | | |--|---------------------|-------------------------------------|---------------------------------------|---|--------|--|--|-------|--|----------------| | E_x (keV) | J^{π} | E_x (keV) | J^{π} | E_x (keV) | l_p | C^2S | E_x (keV) | l_p | J^{π} | $(2J+1)C^2S^d$ | | 0 | 3- | 0 | 3 - 2 | 0 | 1 | 2.9 | 0 | 1 | $\frac{3}{2}$ $\frac{5}{2}$ $(\frac{1}{2})$ | 1.36 | | 403.0 ± 0.5 | <u>5</u> - | 403 | <u>5</u> - | 403 | 3 | 5.1 | 399 | 3 | 5-2 | 1.18 | | 845.8 ± 0.5 | $(\frac{1}{2}^{-})$ | 846 | $(\frac{1}{2}^{-})$ | 846 | 1 | 0.4 | 846 | 1 | $(\frac{1}{2})^{-}$ | 2.04 | | | | 1349 | $(\frac{9}{2}^{\pm})$ | | | | | | - | | | 1389.7 ± 0.9 | | | | | | | | | | | | 1463 ? | | | | | | | 1468 | 1 | $(\frac{1}{2}, \frac{3}{2})^{-}$ | 0.031 | | 1578.5 ± 1.1 | $(\frac{7}{2}^{-})$ | 1578 | $(\frac{7}{2}^{-})$ | 1578 | (1, 3) | (0.2, ≤0.54) | 1578 | 4 | $(\frac{9}{2})^{+}$ | 9.87 | | 1741.0 ± 0.7 | $(\frac{5}{2}^{-})$ | 1740 | $(\frac{5}{2}^{-})$ | | | | | | | | | | - | 2378 | $(\frac{3}{2}^{-}, \frac{5}{2}^{-})$ | | | | $\int 1893 \pm 10$ | 1 | $(\frac{1}{2}, \frac{3}{2})^{-}$ | 0.023 | | 0.41 5 0 1 0 4 | | 0.41.4 | | | | | 2396 | 1 | $(\frac{1}{2}, \frac{3}{2})^{-}$ | 0.17 | | 2415.0 ± 0.6 | | 2414 | $\left(\frac{7}{2}^{+}\right)$ | | | | 0540+ 5 | • | 5 + | 0.11 | | 2556.0 ± 2.0 | | 2555 | $(\frac{5}{2}^{\pm},\frac{7}{2}^{-})$ | | | | 2548± 7 | 2 | $(\frac{\frac{5}{2}^{+}}{(\frac{7}{2},\frac{9}{2})^{+}})^{+}$ | 0.11 | | | | | | | | | 2731 | 4 | $(\frac{1}{2},\frac{\vartheta}{2})$ | 0.14 | | 2811.2 ± 3.0 | | 2811 | $(\frac{5}{2}^{\pm},\frac{7}{2}^{-})$ | | | | 2810 | 2 | $\frac{5}{2}^{T}$ | 0.024 | | 2962.3 ± 1.3 | | 2960 | $(\frac{5}{2}^{+})$ | | | | (00=0 | | 7 91+ | 0.10 | | | | 3055 | | | | | $\left\{egin{array}{c} 2973 \end{array} ight.$ | 4 | $(\frac{1}{2},\frac{3}{2})$ | 0.13 | | | | | | | | | (3060 | 0 | $(\frac{7}{2}, \frac{9}{2})^+$ $\frac{1}{2}^+$ $(\frac{5}{2})^+$ | 0.036 | | 3309.8 ± 2.0 | | 3308 | | | | | 3309 | 2 | $(\frac{5}{2})^{+}$ | 0.25 | ^a See Refs. 10, 13, 14, and 15. (NDS denotes Nuclear Data Sheets.) TABLE III. Sums of spectroscopic strength and centroid energies (MeV) for various l_p transfers in the $(^{3}\mathrm{He},d)$ reactions on $^{84}\mathrm{Kr}$ (Ref. 5) and $^{86}\mathrm{Kr}$ (present work). The region of excitation energy E_x over which data are available is indicated in the last line. | | 84
36 | $\mathbf{r_{48}}$ | 86
86
87
86
87 | | | |-------|--|-----------------------------|-----------------------------|-----------------------------|--| | l_p | \overline{E}_{x} | G_{lj}^{a} | $\overline{E}_{\mathbf{x}}$ | G_{lj}^{a} | | | 1 | $\begin{cases} 2p_{3/2} & 0.21 \\ 2p_{1/2} & (0.88) \end{cases}^{b}$ | 0.91
(2.16) ^b | 0.0 | 1.36 | | | 3 | $(2p_{1/2}, (0.88), 0.0)$ | 1.78 | (1.15) ^b
0.40 | (2.41) ^b
1.18 | | | 4 | 0.83 | 8.61 | 1.64 | 10.3 | | | 2 | 3.79 | 2.45 | 5.15 | 3.42 | | | 0 | 4.34 | 0.38 | 5.82 | 0.74 | | | Sum | 0.0-6.2 | 16.3 | 0.0-7.0 | 19.4 | | $^{^{\}rm a}$ Unless known otherwise, the orbitals $2p_{1/2},\ 2d_{5/2},$ and $1g_{9/2}$ are assumed in the calculations. The value of G_{lj} for $J=l_p+\frac{1}{2}$ is lower than that for $J=l_p-\frac{1}{2}$ by ~15, 25, and 50% if $l_p=1$, 2, or 4, respectively. b Values for all $l_p=1$ not known to be $2p_{3/2}$. $3s_{1/2}$ strengths all decrease in energy as two neutrons are removed from the 36Kr 50 nucleus. The information from the present work on 87Rb is shown in Fig. 6 in comparison with the results of previous (3He, d) studies 18,19 on 84Kr and 86,88Sr targets. For both Rb and Y, the states with the major $2p_{1/2}$ and $1g_{9/2}$ strengths decrease in energy as neutrons are removed. Furthermore, the $1g_{9/2}$ strength is more fragmented in the two N = 48 nuclei than in the nuclei with N = 50, although ⁸⁹Y does not show as much fragmentation of the $1g_{9/2}$ strength as does ⁸⁷Rb. The similarity of the distributions of strength in the N = 48 nuclei suggests the existence of previously unobserved $l_a = 4$ transfers in 88 Sr(3 He, d). Finally, the $2d_{5/2}$ proton strength extends to much lower excitation energy in 85Rb and 87Y than in ⁸⁷Rb and ⁸⁹Y. These qualitative features should provide motivation for extended shell-model calculations for nuclei below 88Sr. ^b See Refs. 11 and 12. ^c See Refs. 16 and 17. ^d Calculations assuming $2p_{1/2}$, $2d_{5/2}$, and $1g_{9/2}$ orbitals for $l_p=1$, 2, and 4 transfer, respectively. ### IV. ACKNOWLEDGMENT We are grateful to L. Ballard for careful scanning of the nuclear emulsion plates. We thank G. Florey for assistance with the data analysis. - TWork supported by the National Science Foundation. - *Present address: Department of Physics, Florida State University, Tallahassee, Florida 32306. - ‡Present address: Center for Nuclear Studies, University of Texas, Austin, Texas 78712. - ¹D. H. Gloeckner and F. J. D. Serduke, Nucl. Phys. A A220, 477 (1974). - ²W. Scholz and F. B. Malik, Phys. Rev. <u>176</u>, 1355 (1968). ³T. Paradellis and S. Hontzeas, Can. J. Phys. <u>49</u>, 1750 (1971). - ⁴V. Paar, Nucl. Phys. A <u>A211</u>, 29 (1973). Bishop, Phys. Rev. C 11, 474 (1975). - ⁵L. R. Medsker, J. N. Bishop, S. C. Headley, and H. T. Fortune, Phys. Rev. C 10, 2117 (1974). - ⁶R. R. Betts, H. T. Fortune, and R. Middleton, Phys. Rev. C 8, 660 (1973). - ⁷J. R. Comfort, Argonne National Laboratory, Physics Division Informal Report No. PHY-1970B (unpublished). ⁸The distorted-wave code, courtesy of P. D. Kunz, Uni- - versity of Colorado (unpublished). $^9\mathrm{L}$. R. Medsker, H. T. Fortune, S. C. Headley, and J. N. - ¹⁰H. Verheul, Nucl. Data B <u>B5</u>, 457 (1971). - 11 A. Shihab-Eldin, S. G. Prussin, F. M. Bernthal, and J. O. Rasmussen, Nucl. Phys. A A160, 33 (1971). - 12F. K. Wohn, J. K. Halbig, W. L. Talbert, Jr., and - J. R. McConnell, Phys. Rev. C <u>7</u>, 160 (1973). 13P. D. Bond and G. J. Kumbartzki, Nucl. Phys. A <u>A205</u>, 239 (1973). - ¹⁴R. P. Torti, V. M. Cottles, V. R. Dave, J. A. Nelson, and R. M. Wilenzick, Phys. Rev. C 6, 1686 (1972). - ¹⁵E. Barnard, N. Coetzee, J. A. M. de Villiers, D. Reitmann, and P. van der Merwe, Z. Phys. 260, 197 (1973). - ¹⁶J. F. Harrison and J. C. Hiebert, Nucl. Phys. A A185, 385 (1972). - ¹⁷J. R. Comfort, J. R. Duray, and W. J. Braithwaite, Phys. Rev. C 8, 1354 (1973). - ¹⁸J. V. Maher, J. R. Comfort, and G. C. Morrison, Phys. Rev. C 3, 1162 (1971). - ¹⁹J. Picard and G. Bassani, Nucl. Phys. A A131, 636 (1969).