Proton states in ⁸⁵Y[†]

L. R. Medsker, G. S. Florey, and H. T. Fortune Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19174

R. M. Wieland

Physics Department, Franklin and Marshall College, Lancaster, Pennsylvania 17604 (Received 7 August 1975)

The ⁸⁴Sr(³He, d)⁸⁵Y reaction has been studied at a bombarding energy of 18 MeV to extend the systematics of proton states in the odd-A yttrium nuclei. Thirty-seven states in the previously uninvestigated $^{85}_{39}Y_{46}$ were observed. A distorted-wave analysis was used to determine *l* values and spectroscopic strengths. The ground state of 85 Y is assigned $J^{\pi} = 1/2^{-}$ and the first excited state (at 20 keV) $9/2^{+}$. The results are compared with previous (³He, d) reaction studies on 86 Sr and 88 Sr.

NUCLEAR REACTIONS ⁸⁴Sr(³He, d), E = 18 MeV; enriched target; measured $\sigma(E_d, \theta)$; deduced ⁸⁵Y levels, l, j, G_{lj} .

I. INTRODUCTION

The yttrium nuclei near $A \approx 90$ have been studied^{1,2} with the (³He, d) reaction to investigate the closed-shell behavior of the Z = 38 configuration. The behavior of proton strengths as one goes away from the N = 50 closed shell in ⁸⁹Y is of interest and should aid in testing various deformed-nucleus⁹, and weak-coupling^{4,5} models used in current calculations. The present work extends the systematic study of Z = 39 nuclei to the N = 46 nucleus, ⁸⁵Y. The present work is the first direct information on the levels in ⁸⁵Y. A previous study⁶ of the decay of ⁸⁵Zr assigned three γ rays to transitions in ⁸⁵Y.

In the β decay of ⁸⁵Y, two activities are observed. One, with a transition energy of 3.26 ± 0.01 MeV, has a half-life of 4.8 h and populates states with $J^{\pi} = (\frac{7}{2})^+$ and $(\frac{9}{2})^+$, suggesting that this β -decaying level of ⁸⁵Y has $J^{\pi} = \frac{9}{2}^+$. The other has $T_{1/2} = 2.68$ h, with a transition energy of 3.30 ± 0.02 MeV, and populates $(\frac{1}{2}, \frac{3}{2})^-$ levels in ⁸⁵Sr, suggesting $J^{\pi} = \frac{1}{2}^-$ for the second β -decaying level. Those authors placed the $(\frac{1}{2}^-)$ level above the $(\frac{9}{2})^+$.

II. EXPERIMENTAL PROCEDURE

The experiment was performed with an 18-MeV ³He beam from the University of Pennsylvania tandem accelerator. The outgoing deuterons were momentum-analyzed with a multiangle spectrograph. Spectra (see Fig. 1) were recorded on Ilford K2 emulsion plates in 3.75° steps, starting at 3.75° . The energy resolution was about 23 keV full width at half maximum (FWHM). The target was enriched ⁸⁴Sr (99.78%) and peaks arising from the (³He, *d*) reaction on ¹²C, ¹⁶O, and small amounts of contaminants from the target evaporation were identified or were negligibly small. The data were analyzed with the program AUTOFIT⁷ in order to obtain yields and excitation energies. Cross sections were calculated from the measured integrated charge and the target thickness (~50 μ g/cm²), the uncertainty in the latter being responsible for uncertainties of about ±30% in the absolute magnitude of the cross sections.

The measured angular distributions were compared with the results of distorted-wave Born-approximation (DWBA) calculations, using the code DWUCK.⁸ The optical model parameters used in the present analysis were the same as those in Ref. 9. The spectroscopic strengths $G_{ij} = (2J_f + 1) C^2 S_{ij}$

FIG. 1. Typical deuteron spectrum of the 84 Sr(3 He, d)- 85 Y reaction.

.

12

1452

E_x^a (keV)	l_p	J^{π}	(2 <i>J</i> +1) <i>C</i> ² <i>S</i> ^b	E _x ^a (keV)	l_p	J^{π}	$(2J+1)C^2S^{b}$
0	1	$(\frac{1}{2})^{-}$	1.48	1992	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.028
20	4	$(\frac{9}{2})^+$	6.0		$\begin{cases} 0 \\ 2 \end{cases}$	$\frac{1}{2}^{+}$	0.012
268	3	$(\frac{5}{2})^{-}$	1.80	2156 ^c			0.059
417	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.96		(2	(2, 2)	
436	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.20	2223 ^c	$\left\{ \begin{array}{c} 0\\ 2\end{array} \right.$	$(\frac{\frac{1}{2}}{\frac{3}{2}},\frac{5}{2})^+$	0.054
639	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.072				0.31
803	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.041	2427	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.050
883	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.015	2472	0	$\frac{1}{2}^{+}$	0.050
936	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.054	2519	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.066
962	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.138	2551	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.10
1212	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.078	2748	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.22
1278	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.084	2840	(0)	$(\frac{1}{2}^{+})$	(0.040)
1375	0	$\frac{1}{2}^{+}$	0.030	2939	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.56
1428	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.034	3041	0	$\frac{1}{2}^+$	0.058
1607	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.053	3110	0	$\frac{1}{2}^{+}$	0.096
1716	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.040	3168	(0)	$(\frac{1}{2}^{+})$	(0.036)
1776	4	$(\frac{7}{2}, \frac{9}{2})^+$	1.10	3230	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.16
1837	0	$\frac{1}{2}^{+}$	0.036	3270	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.22
1896	0	$\frac{1}{2}^{+}$	0.054	3375	0	$\frac{1}{2}^{+}$	0.088

TABLE I. Present results for the 84 Sr(3 He, d) 85 Y reaction.

^aExcitation energies if the lower member of the g.s. doublet is assigned $E_x \equiv 0$. The values for known states in ¹³N and ¹⁷F from target impurities were used in the energy calibration. Uncertainties in the energies are ±4 keV below 1 MeV excitation energy and ±6 keV above.

^bCalculations assume $2p_{1/2}$, $2d_{5/2}$, $1f_{5/2}$, and $1g_{3/2}$ for $l_p = 1, 2, 3$, and 4, respectively. ^cDoublet.

were derived from the differential cross sections by use of the expression

$$\frac{d\sigma}{d\Omega} = 4.42 G_{ij} \sigma_{\rm DWUCK} / 2j + 1,$$

where J_f and j are the total angular momenta of the residual nucleus and the transferred proton, respectively. The $l_p = 1$, 2, 3, and 4 calculations were made for $2p_{1/2}$, $2d_{5/2}$, $1f_{5/2}$, and $1g_{9/2}$, respectively.

III. RESULTS

Thirty-seven levels in ⁸⁵Y were observed in the present (³He, d) experiment up to an excitation energy of 3375 keV. The l_p values and excitation energies determined in the DWBA analysis are shown in Table I and in Figs. 2–5. The "g.s." peak is assigned as a $\frac{1}{2}$ - $\frac{9}{2}$ doublet on the basis of the angular distribution which can be fitted only by a com-

bination of l = 1 and l = 4 calculated curves. Also, the spectroscopic strengths of 1.48 and 6.0, respectively, are consistent with the observed^{1,2} strengths of the $2p_{1/2}$ and $1g_{9/2}$ transfers on ⁸⁶Sr and ⁸⁸Sr targets. The systematics of the $\frac{1}{2}$ - $\frac{9}{7}$ energy differences in the N = 50 and 48 nuclei suggest that the two states should lie quite close in energy in ⁸⁵Y. The question of whether the $\frac{1}{2}$ or $\frac{9^+}{2}$ state is the g.s. was answered from the present $({}^{3}\text{He}, d)$ data by the observed broadening of the "g.s." peak for $\theta_{c.m.} \ge 23^{\circ}$. Beyond that angle, two peaks with energy separation 20 ± 3 keV can be fitted to the g.s. doublet. At small angles where $l_p = 1$ is much stronger than $l_p = 4$, only the lower energy (and hence g.s.) member is observed. We therefore propose the $l_p = 1$ transfer to the g.s., and the $l_p = 4$ to an excited state at 20 keV.

As shown in Fig. 1, two strong peaks were observed at 268 and ~420 keV. The 268-keV angular distribution is reproduced well by an $l_p = 3$ calcu-

FIG. 2. Angular distributions of the deuterons leading to states in 85 Y from the 84 Sr(3 He, d) reaction. The lines are the distorted-wave Born-approximation calculations for the indicated l_{p} values.

FIG. 3. Angular distributions of the deuterons leading to states in 85 Y. The lines are the DWBA calculations for $l_b = 1$ transfers.

FIG. 4. Angular distributions for states with $E_x \ge 793$ keV reached by $l_p = 2$ and $l_p = 4$ transfers. The lines are the DWBA calculations.

FIG. 5. Angular distributions for states with $E_x \ge 1366$ keV reached by $l_p = 0$ and $l_p = 2$ transfers. The lines are the DWBA calculations.

	⁸⁴ ₃₈ Sr ₄₆		368Sr48		$^{88}_{38}{ m Sr}_{50}$	
l_p	E_x	G_{lj}	$E_{\mathbf{x}}$	G_{lj}	E_{x}	G_{lj}
$12p_{1/2}$	(0)	(1.48)	0	1.15	0	1.80
$1 2p_{3/2}$	(0.59)	(1.33)	(1.21)	(0.70)	(1.77)	(0.51)
3	0.27	1.80	1.15	1.45	1.74	0.55
4	0.29	7.10	0.63	8.51	0.90	8.80
2	2.33	2.21	2.67	1.39	4.49	3.15
0	2.69	0.55	3.20	0.04		•••
Sum	0.0-3.38	14.47	0.0-3.5	13.24	0.0-5.3	14.81

TABLE II. Sums of spectroscopic strengths and centroid energies (MeV) for various l_p transfers in the (³He, d) reactions on ⁸⁴Sr (present work), ⁸⁶Sr (Ref. 1), and ⁸⁸Sr (Ref. 2).

lation. An analysis of the 420-keV peak shape suggests the presence of a doublet, with a separation between the two members of 19 ± 3 keV. The angular distribution is fitted in Fig. 2 with a combination of $l_p = 1$ and $l_p = 2$. The strong transfers to the first four states are consistent with assigning them to the major components of the $2p_{1/2}$, $1g_{9/2}$, $1f_{5/2}$, and $2p_{3/2}$ strengths, analogous to previous studies^{1,2} of (³He, d) on ⁸⁶Sr and ⁸⁸Sr.

Above 436 keV excitation energy, 32 states were observed in the present (³He, *d*) experiment. Only one other $l_p = 4$ transfer was observed, to a state at 1776 keV. The remaining states were reached by $l_p = 0$, 1, or 2 transfers. No further $l_p = 3$ transitions were seen. The energies, J^{π} restrictions, and spectroscopic strengths are shown in Table I.

The summed spectroscopic strengths and energy centers of gravity for the various l_p transfers in ⁸⁴Sr(³He, d) are shown in Table II in comparison with the results^{1,2} for (³He, d) on ⁸⁶Sr and ⁸⁸Sr. The total spectroscopic strength measured for $l_p = 1$, 3, and 4 transfers to states in ⁸⁵Y is 11.7. The value expected from the sum rule is

$$\sum G_{1j}(T_{<}) = [\text{Number of proton holes in } N = 50] - \sum G_{1j}(T_{>}) = 12 - \frac{4}{9} = 11.56.$$

The summary in Table II shows that the $1f_{5/2}$ and $2p_{3/2}$ orbitals become more empty as one moves away from the N=50 closed shell. The summed $l_p=4$ strength is weaker, indicating either that the $1g_{9/2}$ orbital is more full in ⁸⁴Sr or that some $1g_{9/2}$ strength was missed. The centroids of the observed strength for all the orbitals decreased in energy as the neutrons are removed.

IV. DISCUSSION

In the compilation¹⁰ for A = 85, the 4.8-h $(\frac{9}{2})$ state was tentatively assigned to the g.s. and the 2.68-h

FIG. 6. Level diagrams for states below 1 MeV excitation in ⁸⁵Y. Column 1 is the information from the present (³He, d) work, and columns 2 and 3 are proposed schemes incorporating the γ rays assigned to ⁸⁵Y in Ref. 6.

 $(\frac{1}{2}^{-})$ state to a low-lying excited state on the basis of measured energies of the β^+ decays of ⁸⁵Y and ⁸⁵Y^m. The order of the two states was considered¹⁰ uncertain, though, because of the uncertainty in the deduced decay energies $Q^+(4.8 \text{ h}) = 3.26 \pm 0.01$ MeV and $Q^+(2.68 \text{ h}) = 3.30 \pm 0.02$ MeV.

Subsequent to the compilation, three γ rays were assigned⁶ as transitions in 85 Y following the 6-min decay of 85 Zr. Their energies (intensities) were 265.8 (7 ± 2) , 415.9 (63 ± 5) , and 454.0 (100) keV; however, no decay scheme was deduced. It is interesting to try to place these γ rays with the aid of the present 84 Sr(3 He, d) 85 Y results. In the latter, the separation between the g.s. and the first $(\frac{5}{2})^{-}$ excited state is 268 ± 4 keV. The 265.8-keV γ ray could therefore be due to a transition from this state to the lower member of the g.s. doublet (see Fig. 6). The strong 415.9-keV γ ray is likely due to an M1 transition from the 417-keV state observed in (³He, d) by $l_p = 1$ transfer. Then, from the measured separation $(19 \pm 3 \text{ keV})$ between the members of this doublet, the l = 2 state would be at 435 ± 3 keV.

Alternatively, the 415.9-keV γ ray could arise from the decay of the higher member of the doublet to the 20 keV $\frac{9^+}{2}$ excited state. In that case, the $l_p = 2$ state has an energy of 436 ± 3 keV, and the $l_p = 1$ member 419 ± 4 keV. The $l_p = 2$ state is then very likely $\frac{5^+}{2}$.

The 454.0-keV γ ray cannot be due to a transition to the g.s. or to the first $\frac{9^{+}}{2}$ state unless a state exists at 454 or ~474 keV which was not populated with the (³He, *d*) reaction. Of the levels observed here, the energies are consistent with a 454-keV transition from a state at 889±3 keV to the state at $E_x = 435$ keV with $J^{\pi} = \frac{5^{+}}{2}$.

Several possible J^{π} assignments can be inferred from the proposed decay scheme. For example, the strong population of the 889-keV state in the decay of ⁸⁵Zr, together with $l_p = 2$ in (³He, d), suggests $J^{\pi} = \frac{5^+}{2}$.

FIG. 7. Binding energies of the $\frac{1}{2}^{-}$ ground states and $\frac{9}{2}^{+}$ excited states in Y nuclei for different values of neutron number N.

Thus, all the known odd-A Y nuclei have $\frac{1}{2}^{-}$ ground states and $\frac{9^{+}}{2}^{+}$ first excited states. In Fig. 7 is shown the binding energies of the $\frac{1}{2}^{-}$ and $\frac{9^{+}}{2}^{+}$ states in the N = 46, 48, and 50 nuclei. For simple single-particle nuclei the values would be approximately linear with respect to N. On the basis of the splitting in ⁸⁷Y and ⁸⁹Y, the $\frac{1}{2}^{-}$ and $\frac{9^{+}}{2}^{+}$ states should lie very close in ⁸⁵Y, as observed. These same systematics would suggest that the $\frac{9^{+}}{2}^{+}$ should become the g.s. for lighter Y nuclei. It will be interesting to see if this behavior does occur as more neutrons are removed and if calculations will be able to explain these systematics.

ACKNOWLEDGMENTS

The authors thank Laszlo Csihas for preparation of the target. We also thank V. Adams for careful scanning of the nuclear emulsion plates.

- [†]Work supported by the National Science Foundation. ¹J. V. Maher, J. R. Comfort, and G. C. Morrison, Phys.
- Rev. C <u>3</u>, 1162 (1971).
- ²J. Picard and G. Bassani, Nucl. Phys. A <u>A131</u>, 636 (1969).
- ³W. Scholz and F. B. Malik, Phys. Rev. <u>176</u>, 1355 (1968).
- ⁴T. Paradellis and S. Hontzeas, Can. J. Phys. <u>49</u>, 1750 (1971).
- ⁵V. Paar, Nucl. Phys. A <u>A211</u>, 29 (1973).

- ⁶T. A. Doron and M. Blann, Nucl. Phys. A <u>A161</u>, 12 (1971).
- ⁷J. R. Comfort, Argonne National Laboratory Physics Division Informal Report No. PHY-1970B (unpublished).
- ⁸The distorted-wave code courtesy of P. D. Kunz, University of Colorado.
- ⁹L. R. Medsker, J. N. Bishop, S. C. Headley, and H. T. Fortune, Phys. Rev. C <u>10</u>, 2117 (1974).
- ¹⁰D. J. Horen, Nucl. Data <u>B5</u>, 131 (1971).