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The scattering of nucleons by '°O is studied with the resonating-group method. The 'O wave function
used is a translationally invariant antisymmetrized product of single-particle wave functions of (15)*(1p)'?
configuration in a harmonic-oscillator well having an appropriately chosen width parameter. A generator-
coordinate technique is employed to facilitate the computation of the nonlocal interaction between the nucleon
and the '°0 nucleus. This technique is discussed in some detail in order to demonstrate its utility in a nuclear
problem involving a relatively large number of nucleons. Calculated results are compared with experimental
data over a wide range of energies, and it is found that the agreement is in general quite satisfactory. Also,
the result shows that in this particular problem the heavy-particle pickup process, which is properly taken into
consideration by the use of a totally antisymmetric wave function, has a relatively small contribution.

NUCLEAR REACTIONS $O(N, N); calculated phase shifts, o(0), and P(6).
Resonating-group method with generator-coordinate technique.

I. INTRODUCTION

During the past years, the resonating-group
method has been used with remarkable success to
study elastic-scattering and reaction processes in-
volving light nuclei.!”® This method employs a
fully antisymmetric many-nucleon wave function
and a nucleon-nucleon potential which fits rea-
sonably well the low-energy scattering data, thus
eliminating the ambiguities encountered in many
phenomenological calculations. However, the
explicit inclusion of these microscopic features
necessarily means that the resonating-group cal-
culation becomes quite complicated when the num-
ber of nucleons involved is large. In fact, it is
primarily for this reason that earlier studies have
been restricted to systems containing no more than
ten nucleons.

Recently, however, a somewhat different com-
putational procedure,? known as the generator-co-
ordinate technique,® has been developed in order to
extend the resonating-group method to heavier sys-
tems, Using this procedure, Siinkel and Wilder-
muth* have been able to study the case of a +1%0
scattering and obtain rather good agreement with
the experimentally observed rotational-band struc-
ture of 2°Ne and the « +%0 differential scattering
cross section.®

One of the successes of the investigation of
Silinkel and Wildermuth?* is that the large backward-
angle (2 90°) cross sections observed experimental-
ly are satisfactorily accounted for. This means
that exchange processes,” especially the heavy-
particle pickup process, are quite important for
a proper description of this particular scattering
problem. On the other hand, for p +*Ca scatter-
ing at 30 MeV, where a resonating-group calcula-
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tion is not yet available but a careful optical-model
analysis has been made,® it was found that even
with the heavy-particle pickup process not ex-
plicitly included the experimental data can be well
fitted up to a rather large angle of about 140°. This
seems to indicate that the heavy-particle pickup
process plays a relatively minor role in this case,®
in contrast with the finding from « +'®0 scattering.
To resolve this apparent contradiction, we study
here the case of N +°0 scattering!® with the purpose
of investigating further not only the importance of
exchange processes but also the utility of the gen-
erator-coordinate technique in a rather large sys-
tem.

A rather detailed description of the resonating-
group calculation using the generator-coordinate
technique is given in Sec. II, while in Sec. III we
present and discuss the results of this calculation.
As in the a +'%0 case, we find that the agreement
with experiment is again fairly satisfactory. Final-
ly, in Sec. IV, we summarize the findings of the
present study and mention other resonating-group
calculations which are practicable and which will
be useful for a better understanding of the im-
portance of exchange effects.

II. FORMULATION

We begin this section with a description of the
formulation of the single-channel resonating-group
calculation. In particular, we shall indicate why
this type of calculation can become rather tedious
as the mass number becomes large. The genera-
tor-coordinate technique used by Siinkel and Wilder-
muth* will then be discussed, and it will be shown
how its use can significantly reduce the computa-
tional difficulty.

If we assume for clarity of discussion that the
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nucleon-nucleon interaction is purely central,!!
then the wave function for the p +!%0 system can be
written as

V=@'[$,00(s,)T(t,)F(RX (Rem)] 1)

where @' is an operator which antisymmetrizes
the wave function with respect to the interchange
of the incident nucleon and the nucleons in the 0
cluster, and af(s,,) and 7({,,) are the spin and iso-
spin functions for the 17th nucleon, respectively.
The translationally invariant function $,, describes
the behavior of the '°0 cluster and is chosen to
have the form

m

P16 =@15< H {hi (—{.t - —éle)gi (s3,80)

xexp| -z a(T; —ﬁm)z]}), (2)

where @,, is an antisymmetrization operator and
R,, denotes the '®0 center-of-mass coordinate
given by

- 1 & .
Ryg “m Z r;, (3)
i=1
with T, being the spatial coordinate of the ith par-
ticle and m=16. The functions #,;(7n) have the form
h(M)=YY(N) (i=1-4)
=nY1(n) (i =5-8)
=nY () @=9-12)
=Y [1(n) (i=13-16), 4)
while the spin-isospin functions (s, t) are given
by
£(s,t) = a(s)n(t) (i=1,5,9,13)
=a(s)v(t) (¢=2,6,10,14)
=B(s)m(t) (=3,7,11,15)
=B(s)v(t) (i=4,8,12,16) (5)
with a(s), B(s), (%), and v(t) denoting spin-up,
spin-down, isospin-up, and isospin-down func-
tions, respectively. The relative motion between
the incident nucleon and th_g 160 cluster is de-
scribed by the function F(R) which is determined
by the projection equation
(0¥|(H-E,)| ¥)=0. (6)
In this equation, the Hamiltonian H is given by
}‘/[2 17 17

oM Z: Viz + Z VH - Tc,;n. ’ (7)

i=1 i<j=1

H=-

with T, being the total center-of-mass kinetic-
energy operator, The quantity E, in Eq. (8) is the
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total energy of the system, given by
Et = Ele +E ’ (8)

where E is the relative energy in the center-of-
mass (c.m.) frame, and E,, is the internal energy
of the %0 cluster obtained by computing the ex-
pectation value of the 16-particle Hamiltonian with
respect to the function ¢,, of Eq. (2).

We should mention that, since a translationally
invariant Hamiltonian is employed in the calcula-
tion, the results do not depend on the motion of the
center of mass of the entire system. The choice of
the c.m. function X (R.,,) in Eq. (1) is therefore
arbitrary. At this point, we demand only that
X (ﬁc,m,) is normalizable. Later, in our discus-
sion of the generator-coordinate technique, we
shall choose a particular functional form for
X(ﬁc,m, ) for computational convenience.

We now discuss briefly the meaning of the pro-
jection equation (6). If the function ¥ were not at
all restricted, then solving Eq. (6) would, of
course, be equivalent to solving exactly the Schro-
dinger equation for the 17-nucleon system. Since
we have, in fact, restricted ¥ to the form
given by Eq. (1) with all the freedom con-
tained in the linear variational function F(ﬁ) (sin-
gle-channel approximation), we are only solving
the Schrddinger equation in an approximate man-
ner. It should be pointed out, however, that sin-
gle-channel calculations have already been per-
formed in many other systems and satisfactory re-
sults have been obtained. Therefore, we expect
that the adoption of this approximation in the pres-
ent study should also be a reasonable one.

In order to find the equation which the relative-
motion function satisfies, we introduce the follow-
ing parameter representation for 0¥ and ¥:

w:fﬁF('ﬁ')a'[ br160(8,)7(E,.)
x8(R-R)x (R.,)dR , (9)

¥ =f F(ﬁll)a,[¢1ga(sl7)ﬂ(tl7)

x8(R-R")X (R..)dR” ,  (10)

where 6F(R’) represents an arbitrary variation of
the function F(-ﬁ’). It should be noted that in these
equations, @’ operates only on functions of the
particle coordinates and does not operate on
8F(R’) and F(R”) which depend on the parameter
coordinates R’ and R”. Next, we substitute Eqgs.
(9) and (10) into Eq. (6) and obtain the equation

[ (@, ROF(RGR -0 1)
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with 3C (ﬁ’, R”) given by

(R, R”) =P @(5,)7(£,)0 (R = R")X (Rom)| (H = E)| @'[ 915 0(5,)7(£,,)0 (R = R ) x (R,,.)]). (12)

Equation (11) can be solved for F(-ﬁ') from which
scattering phase shifts can be determined. We
should remark here that the single-channel ap-
proximation can be systematically improved by
introducing distortion functions and reaction chan-
nels into the calculation, as has been done, for
example, in the simpler case of d + & scattering.> 12
The computation of the kernel function ¥¢(R’, R")
involves integrations over the cluster coordinates

My=T; =Ry, (i=1-16)
R=R,,-T,,, 13)
Rem=& (16R,4+T,,)

subject to the restriction that

2 =0, (14)

Because of the presence of the operator @ in Eq.
(12) and the fact that a proper treatment of the
total c.m. motion causes the appearance of cross
terms involving ﬁ‘ '7}, in ¥, the integration over
the cluster coordinates defined above can become
very tedious when the number of nucleons is large.
The generator-coordinate technique used by Stinkel
and Wildermuth* can significantly reduce the com-
putational difficulty, especially if only two clusters
are involved. This will be discussed in detail
below.

For the application of the generator-coordinate
technique, one writes Eq. (1) in the form

1 [ F(Ryy - RI)X[(18 R}y + R1)/1T] @[04 (RYY, B) (s, )(£,)0 (Ryg - RLO(T,, - RI)]dRIARY, (15)

where two parameter coordinates R, and R/, are introduced. In the above equation, the '°0 wave function

is written as

010(R =@, (TT U (F = Rty + D851, ) o0l -, - R P1Y) (16)

M=y

It should be noted in Eq. (16) that a constant (independent of the particle coordinates ;i) vector a has been
added to the argument of the function ;. Owing to the presence of the antisymmetrization operator G,
and the fact that we have restricted the 16 nucleons in the 'O cluster to occupy the lowest single- partlcle
orbitals [see Eq. (4)] the addition of this vector a does not affect the behavior of P, in any way and 2 can
be chosen arbitrarily.!® Here we indicate the existence of thlS freedom by explicitly including a in the
argument of 9,,. Later, we shall make a definite choice of a for computational convenience.

We now introduce mtegral representations for the 6 functions appearing in Eq. (15); they are

8(Ryq - iy = (1/21) [ explid * (Rye ~ Rl )] dd, am
and
6(Ty, - RY) = (0/4m)? f expl - 3 a(r,, - 3i8")2lexp[ } a(R”, - $i§")]248" . (18)

Using these representations and the definition of ﬁm given by Eq. (3), we obtain

(52 ) feran I (iR it ey -t~ (R ) )

Xexp[ - %O{G‘” - %igﬂ)z] a(sl7)#(tl7)] \

- - D, 2 -
x F(R" - R;',)x<195u+—5m> exp(——q’-—— +ha(Ry - 438

QN2 ” plET g
e, o ))dRde dg,dS" . 19)

Under the coordinate transformations given by

- = - - - - 1 - =
R” =Rys - R[;, Rim=7r(16R{g+Ry7),  Qy=5— & — iRy, (20)
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Eq. (19) takes the form

¥ —< > f& @1e<H {h (I‘i 3-1)54(31,t Jexp[ - Za(rl -“lz) 1} exp - za(r” Z’S”)Z] a(S”)"(t”))

i=1

” m ma
Xexp[-%(ma)qzz—éas 2+2(m‘-1+1) [R” +i(q,-48")]%+ *Smal) (q, - 35" )

~imaR{,: (az ‘g é) +5(m+1)aRE2, | X (RIn)F(R"MR"AR,dS"d, , (21)

where we have further defined another constant vector 51 by the equation

a=R/,-3,. (22)
To facilitate the computation, we make use of the fact that the choice of x(ﬁc'fm‘) is arbitrary and write
X(R”,)=exp[ - $(m+1)aR",?] . (23)

With this particular choice for X, the integration over R’ in Eq. (21) yields a factor [ 27/(m )] 36('&2 +8"/
2m). After this is done, we can then integrate over ﬁz to obtain

( ) [ a’%( {h (¥ -a,)«z,(s,,t)exp[ %a(ﬁ+—2{-n—§">2]}exp[-éa(?”—%ié"ﬂa(s”n(tl,))

mao =, tm+1) = T g
xexp[z(mu)(R'* s ]F(R'WR”ds" (24)

Although Eq. (24) appears more complicated than Eq. (1), it has the distinct advantage that ¥ is now ex-
pressed as an integral over an antisymmetrized product of single-particle functions of the particle co-
ordmates r, Consequently, cross terms of the form ri . r, no longer appear and the computation of
3C(R’ R”) becomes significantly simplified.

Using the same procedure, we may write 0¥ as

< )fe'aw< {h,(r, a)é,(s‘,t‘)exp[-%aG‘+;—m§'>z]}eXP[-%a(;”-'léi-s')z]OZ(S”)TT(tn))

i(m+1) =

Xexp[z(;nfl) (§'+ o s’>2:|5F(ﬁ’)d§’d§'. (25)

With the form for ¥ given by Eq. (24) and that for 0¥ given by Eq. (25), the kernel function 5C(R’ R”) of
Eq. (11) becomes

m(ﬁl’-ﬁ")=<4—af)6fexp[2(231) (ﬁl‘ i(gzr;l) §I>2+2(:Zfl) ( ’ l(;nntl) >]
x<ﬁ {”‘(;‘ (st exp - Lo *§%§'>2}}“(s”>n<tl,>exp[ _a(f, -8

i=1
)l@ alﬂ(n 1]’1(;1 ";-1)24(54 ,t,)exp‘:—%a<r, +2—Z‘-§ )1?

i=1

x a(s,)m(t,,Jexp - %a(;” -1 i§ll)2]>>d'§ld'§ll , 26)

where the angular brackets indicate integration over the particle coordinates ?, (i =1-17) and summation
over the spin and isospin coordinates s, and ¢; (¢ =1-17). We now make the transformation

Py =T, +(i/4m)§" -§") (i =1-17) @7)
and choose
a,=(i /am)§ -8") . (28)

Then, after some algebraic manipulation, Eq. (26) can be written as
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8 mao <-. i(m+1) ..,>2 ma (-—” i(m+1) ,,>2'J L m, ma R B
n 7
% (R, R") = <4ﬂ> fexp[z(m+1) R -Gl 8 ) g R+ S5 (3 5avas o)

where

3]1(-5',-@') =<IMI {hi(-ﬁi)gl (s4, ti)exP[_—IZ_a(Ei + 417 (§' +§”))2}}01(517)77(t17)

i=1

Xexp [— %a<51, oolem+1)8 - "])2}

t)‘ '%(m 1h (p‘)éi(si,t,)exp[ 2a<p;+——(s'+s")>}}

x a(s;,)(t,,) exp [— %a(ﬁn - Z% [@m+1)§" -5’])2]>>. (30)

In evaluating the quantity (S, §”), it is useful to observe that

<h,(5)£,(S,t)exp|:—éa<5+4—in— ¥ +§”))2] h,(ﬁ)éj(S,t)exp[-%a<5 +-f’;ﬂ— & +§”)ﬂ>
(2 el

4Lﬂ<5>3/2(2i)exp<w e +s")2> (i=5-16; j=1-16). (31)

The presence of this orthogonality relation means that 9(S’,§") is rather similar to matrix elements en-
countered in oscillator-shell-model calculations, and many of the well known shell-model techniques may
be used to facilitate its evaluation.

In order to 111ustrate briefly the procedure for evaluating 3 ( R' R’ ") we consider here the normalization
term SCN(R’, R”). This term has a form similar to Eq. (29) but with 9 (S’,§”) replaced by ¥ (§’,5"), which
contains a unity operator instead of the operator (H - E,) as in Eq. (30). After summing over spin and iso-
spin coordinates, we obtain

(3,5 - [ ﬂ{h,*(pi)exp[ taffimgm (8 +'§”)>2:l}exp[—éa<'5”+zi;h—[(2m+1)§'—§”]>2]

i=1

s (8 s")2> i (B=1-4; j=1-186)

m

. 0 e )
x(1 ‘Pf.n‘Pé’.m 7= 13.17)(H 1"‘{ (pi)exP[‘%O‘(pl Im (8" +8 )> }}

i=1
1 [~ i =y =, 2
Xexp[—za<p”— e [(@m+1)§" -8 J) -J)d'r s
(32)

where P/ ; is an operator whlch interchanges the spatial coordinates p; and p, , and d7 signifies the integra-
tion over all the coordinates p, (¢ =1=17). The no-exchange term in mr (8,8 §") is given by

0 (3,5)= [ TT UGl exp(c aplenp| - alpi,+i 2t & -5 Jexo( S (& 573 ar

i=1

(@) (5)" (o ) el 2y). -

The term arising from the P/ ,, exchange is slightly more complicated; it has the form



RESONATING-GROUP STUDY OF N+!°0 SCATTERING WITH...

1437
1 Y - Z - -> 2
oy, . (8,8)= fH |, ()| %exp(- ozpﬁ)]h*(pl)exp[ %a<pl—m(s'+s”)>]
i=2
1 - i & an 2 > 1 - i & & 2
xexp |~z a\py, + 7 [@m+1)S' -8"] ) | (D,,) exp|-z0 Prr g (87+8")
; 2
X _1 <" __t "l/__"/) } (oz(m—l) &, an z>
exp[ za\py - o [@m+1)§"-81) l|exp e (S' +8"))ar
1 \15/ 7 \a5/2/ 3 \12 -  im+1) =,\? ~ ~
=(Z7r—> (‘E) (g&"> fexp{— 01(91*—"—(4,” ) S') }YS*(Pl)Yg(Pu)
-> z(m+1) -,\2
Xexp[‘ “<Pn am S’) ]
X a(m""l) w2 ane S AN g
exp —W[m(s +8"2) = 28"+ 8"] )dp,dp,,
1\16 51/2 12 . T
=<747r— <—Z—) (—;;) exp(—g—ir—gh'%—)—[m(s’2+s”z)—28"S”]> . (34)
Similarly, the PE 1, exchange term is
- =, 1\15/ 7 \#5/2/ 3 \11 R -  i(m+l) »
mg,u (s',8 )=<Z—ﬂ-') (?) <§'&'> fpsyi*(ps)exf)[" 01</)5 TS p”Y (pn)
L im+e1) )2
exp- a2 3 )|
O‘(m"’l) Q2 Q2 r- 114 4P re
X exp —ﬁi—rnz_[m(s +5"2) - 28'-8"] ) dp,dp,,
_ 1 15(7T>51/2< 3 )11<m+1 )z oYLk fan 1 o <a(m+1) &2 &2 "1,"//)
(@) ) ) T o5 6nvi a2 (m g - ).
(35)

The Ff, ,, and Pf,, ,, exchange terms are given by Eq. (35) but with ¥ 1*(§”)Y 1(S’) replaced by Y"*(S "VY %(S")

and Y 1*(5”)Y 1(9), respectively. Now, by using the spherical-harmonic addition theorem, we can com-
bine these latter three terms to give

my (&, =m (8,8 +m) (8,8 +ml, . (§,5")

C1\18/ 1 51/2< 3 )’u 3(m+1P =, =, <a(m+1) gy 98§ >
“\41/) \a 3a) “1emr S S exP g -28-%"]). 36
(477') (a > 2a 16m?2 S" exp 16m2 [m(S )=28 ] (36)

The resultant expression for &m"(ﬁ',é

") can now be used to calculate the normalization kernel 3C”(§’, R").
The no-exchange term is given by

NR By & 8 [ ma "/_i(m"'l) "/)2 mao ("” i(m+1) "”>2] Ne& QnN& 480
(R, R )_(‘m} [ e sy <R L&) s gy (B &) oy (&, §agds". @)

2m

To facilitate the evaluation of ch’(ﬁ’, ﬁ"), we define

->

u=8-%", v=3@+§").

(38)
Substituting into Eq. (37) then yields
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:sc”(ﬁﬁ)(%) <:1%(ﬁ /(

(@) @) Gy

In a similar manner, we obtain

e (A ()

< ol st (5 2ot

mz

~ 21y (R R

"o

2(m?-1)

- A - — 2
a@m+1) (u+12m (R’+R”))

16m m+1
E_L-_ —>,_->,, mao »/__’”2 > >
v (R'-R )+-——-—4(m+1) (R'"-R )]dudv
3/2
) 8(R'-R"). (39)

- 2 2_ - im2 - - 2
R”)) - a(ggmzl)<u+ :2"_‘_1(12' +R”)>

(R R+ gy (R R™)|aTa¥

() @) @) ) Go) )

m(m? +1)a
S T

(Rlz +R”2) _

2m? -
ma R"R"> , (40)

(m+1)2(m-1)

where the transformation of Eq. (38) has again been used. Finally, the p-shell exchange term is

8/ 1\18/ 7 \s5t/2/ g \u 3(m+1)?
st () () T G )
poan (R, RY) 4t/ \a 20 16m?

2/, 25
xf i(4vz—u2)exp[— a(m+1) <v+ 2m7e
+

o = \2 2 _ v 4im? - - \2
> (R'_R”)> - a(m 1) (u+4lm (RI+RII)>

8m? (m+1 32m? m? -1
_ m3a D7 D2 m?a ’ "2 12 " =
—_‘_‘Z(m+1)2 (R"=R"P- 27— 1) (R +R 2+ '2(m—1)(R +R )}dudv
( @ >6< 1 )m(ﬂ )51/2< 3>1l< 8m2n 3/2 32mey 3/2
“\4n '4_'” E ﬂ a(m..;_l)Z) (oz(mz-l)>
3m? -, = 3 m? 9
X2 ’ "2 _ ______ me 9
(i (B 5B - gty (R -y T )
m(m? +1)a 2m? o >, =
X - 72 n2 - ,' n
exp( T 1P 1) (R?+R"?) e 1fon=1) R'°R ) (41)

The procedure for evaluating the potential-energy
and kinetic-energy terms in 3¢(R’, R”) is similar to
that described above for the normalization term,
although more exchange terms are involved and
the derivation is somewhat more complicated.

The computation of 3(R’, R”) is quite tedious,
but there is a simple way to test whether or not
the resultant expression is correct. This is known
as the redundant-solution test and is described in
detail elsewhere.'® Briefly, the basis for this
test is that the antisymmetric function

Ve =&,[¢1sa(sl7)”( b FR(ﬁ )X (§Cm)] ) (42)

where

FR(ﬁ) =co—f—nl-§£{—)Po(cos 6) +c, %B—)— P, (cos¥)
(43)
with

f.R)=R? eXP(— ﬁﬁ Rz> ,

and ¢, and ¢, being arbitrary constants, is identi-
cally equal to zero. This means that \IlR 1s a

trivial solution of Eq. (6); therefore, F <(R”) must
satisfy Eq. (11) if 3(R’, R”) has been derived cor-

(44)
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rectly.

This concludes our discussion of the application
of the generator-coordinate technique to resonating-
group calculations. We should mention that, al-
though this discussion deals specifically with the
case of p +'®0 elastic scattering, the generator-
coordinate technique in conjunction with the reso-
nating-group method can also be used, with rela-
tively minor modifications to the procedure out-
lined above, to study scattering and reaction prob-
lems involving two composite nuclei.

III. RESULTS

In this section, we discuss the results of an N
+180 calculation in which the procedure discussed
in Sec. II is used. Since we intend to examine both
differential cross-section and polarization data for
N +180 scattering, the nucleon-nucleon potential
employed must contain a noncentral component.

In this calculation, we choose to use a nucleon-
nucleon potential which has the same form as that
used in a previous study of N + a scattering,'® i.e.,

Vij=[—é(1 +Pi0j)Vt +%(1 —Pfj) VSJ[%M-»%(Z— u)P:j l
1 > > - > - - - e?
-5 Vaexpl = Mr, - 1,1 @, +0,) (¥, - ;)% (p; -Pj)+m'r Q+7)A+75,) . 45)

In the above equation, V, and V; are, respectively, the s-wave triplet and singlet potentials which yield
correct values for the two-nucleon effective-range parameters; they are given by

Vi==Vy exp[ - Kt(;i - —;j)a.‘ , V==V exp[ - Ks(;i —;j )2] (46)

with

Vot =66.92 MeV, «,=0.415 fm™% |

V 4 =29.05 MeV,

Ky=0.292 fm™2 , 47)

The choice of the parameters #, V,, and A will be discussed below.
Since the potential V;; has a noncentral component, we write the wave function as

© g+

¥ =@’ <¢161r(t”) D

J=1/e 1=0-1/2

Y 1 . / 2 -
S @Y s (Ren)) 48)

where ‘1]},/12/2(13, s,7) is a normalized spin-angle function. The width parameter « in ¢, [ see Eq. (2)] is
chosen to yield the experimentally determined rms matter radius for '°0; its value is given by

a=0.32 fm™2

’

(49)

which corresponds to an rms radius of 2.6 fm. Also, we mention again that the procedure discussed in
Sec. II can be extended in a straightforward way to include the case where ¥ is written in the form given

by Eq. (48).

Using the wave function ¥ given by Eq. (48) and the nucleon-nucleon potential V;; given by Eq. (45), we
obtain the following integrodifferential equation for the function f ;,(R’):

1(l+1)

(s = M)} b o) ¥ o (R =V RO (B = [t (B RO @R (50)

where Vp(R'), V o(R’), and V o(R’) are the direct
nuclear central, the direct spin-orbit, and the
direct Coulomb potentials, respectively. These
potentials are given along with the kernel function
k;(R',R") in the Appendix. The quantity 7,, is
given by

Miv1/a, 156 Micyse, == (C+1), N5, ,=0.
(51)
In computing the Coulomb contribution, we have
for simplicity omitted the exchange term by setting
@’ as unity in Eq. (48). As for the spin-orbit con-

-

tribution, it is noted from a previous N+ « cal-
culation’ that the exchange term is not negligible
compared to the direct term. In the present study,
we have not computed the spin-orbit exchange term
explicitly, but rather we have simply taken it
crudely into account by adjusting the strength of
V.o(R’). Based on the findings of our N + « investi-
gation,'s this is not an unreasonable procedure.
Furthermore, it was also found in the N + a cal-
culation!® that the results were not sensitive to the
value of the spin-orbit range parameter A as long
as this parameter was not chosen to have a very
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small value. Therefore, we have further simpli-
fied the present calculation by letting A approach
infinity. In this limit, the spin-orbit potential
Vo is then characterized by a single quantity
V\A"5/2 [see Eq. (A4) in the Appendix].

In order to determine the value of the exchange-~
mixture parameter « in the nucleon-nucleon poten-
tial of Eq. (45), we solve Eq. (50) with bound-state
boundary conditions for f,,, ,(R’) and adjust u
until the calculation yields the experimental value
of 3.26 MeV'® for the separation energy of the
first J" =3" excited state in 70. The resultant
value of # is 0.825, which is fairly close to the
value required in the case of o+ «a scattering.!”

With the value of # determined as explained
above, we next choose the strength V,A"3/2 of
the spin-orbit potential to be equal to 48 MeV fm5.
With this value, the calculation yields reasonable
magnitudes for the p +'®0 polarization in the energy
region between 30 and 50 MeV, and also a value of
4.50 MeV for the splitting between the 3* ground
state and the first 3* excited state in 17O. This
latter value compares quite favorably with the
experimental value of about 5 MeV.®

Our calculation yields separation energies of
4.00, 3.26, and ~0.50 MeV, respectively, for the
lowest 3¥, 3%, and 3* states in 0. The fact that
the positions of the 3 and £ states relative to the
3" state agree quite well with experiment means
that the structure of the ground-state rotational
band is given correctly. Also, in Fig. 1 we show

6 20
E (MeV)

FIG. 1. Calculated phase shifts for » +'80 scattering.
The symbols:6} and 67 denote phase shifts in states
with J=7+% and J=1-%, respectively.

the calculated 7 +'%0 phase shifts as a function of
the c.m. energy. Here one sees that the £* state
appears as a narrow resonance in the 6; phase
shift. In addition, it should be noted that the cal-
culation yields fairly broad [ =3 resonances. Quite
clearly, these resonances will have a significant
effect on the behavior of the elastic scattering in
the energy region between about 10 and 30 MeV.

We have examined 7 +'%0 elastic scattering at
various energies below the «+!3C threshold at E
=2.,21 MeV.'® There are several excited states
in this energy region in 170. Except for the first
i state, all the other states in this region cannot
be adequately described by a neutron plus an O
(ground state) cluster configuration. Therefore,
only energies at which no sharp levels exist have
been chosen for this examination. For example,
such an energy is £ =1.647 MeV, and a comparison
of the calculated and experimental'® differential
cross sections is shown in Fig. 2. It is seen from
this figure that the agreement is indeed quite sat-
isfactory. Also, we have computed total cross
sections at several other such energies in this
region, and we find again that the agreement with
experiment!® is good.

For energies above reaction thresholds we ac-
count for reaction effects in an approximate man-
ner by the addition of a phenomenological imaginary
potential W(R') into our resonating-group formula-
lation. In other words, we replace V(R') in Eq.
(50) by Vp(R")+iW(R'). At energies of 28.33,
37.4, and 46.57 MeV, the imaginary potentials
used are simply those determined by van Oers and
Cameron® from an optical-model analysis of p
+180 scattering, and no further adjustment is
made. In Figs. 3 and 4 the calculated differential
cross sections and polarizations at these energies

280 T T T T T T T

2408 n +'% .
\x\{ 1647 Mev
200\~ _
160k T ﬂ
X T L
120}~ i x { j‘?""{'ﬁ/"{ { _

80— -

o(8) (mb/Sr)

40+ .

0. L I ! 1 L 1 | L Il
o 20 40 80 80 100 120 140 160 180

6 (deq)

FIG. 2, Comparison of calculated and experimental
differential cross sections for n+%%0 scattering at an
energy of 1.647 MeV,



are shown by solid curves, while the experimen-
tal data®'"?® are represented by solid circles.
From these figures one can see that the agreement
at 28.33 MeV is noticeably worse than that at the
two higher energies. A probable reason for this

is that at 28.33 MeV the excitation of the compound
system is still low enough such that the influence
of individual compound-nucleus resonances re-
mains important at particular energies.?* On the
other hand, at 37.4 and 46.57 MeV, it is seen that
the agreement is fairly good for angles up to about
130°. Beyond 130°, the calculation does correctly
predict a rise in the cross section, but a detailed
agreement is not obtained.

To understand the cause of this discrepancy at
large angles, we have made a careful examination
of the behavior of the kernel function k,(R’,R") in
Eq. (50). The results of this examination indicate
that the contribution to the scattering amplitude at
backward angles from the heavy-particle pickup
process’ is not only relatively small, but also
similar to that from direct processes. Therefore,

1000~ T T T T T
100 -
| 4
1000 ?
\ 46.57 MeV ]
100 -
= ]
w -
S
D —
15 L
1000
S
b
100
10
|
L _
ol | I | 1 ! I ! |
"o 20 40 60 80 100 120 140 160 180

6 (deg)

FIG. 3. Comparison of calculated and experimental
differential cross sections for p +!%0 scattering at en-
ergies of 28,33, 37.4, and 46.57 MeV.
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because of the interference between direct and ex-
change processes, even minor deficiencies in the

calculation can cause the observed discrepancy in
the backward angular region.

In an optical-model study of p +%°Ca scattering,?
it was found that the incorporation of an odd-even
orbital angular-momentum dependence into the
imaginary potential can significantly improve the
agreement with experiment at backward angles.

To see if a similar feature might also be required
here, we have made a calculation in which W(R’)
is multiplied by a factor [1+C,;(-1)’]. The results
obtained with C, equal to 0.2, 0.03, and 0.01 at
28.33, 37.4, and 46.57 MeV, respectively, are
shown by the dashed curves in Figs. 3 and 4, As
expected, the inclusion of this odd-even dependence
has little effect on the forward-angle cross sec-
tions, but does have significant influence at back-
ward angles. This indicates that the behavior in
the large-angle region is determined by a coherent
admixture of small amplitudes and a proper de-:
scription of the scattering in this angular region . is

0.8 / -
.uto.. A “. .
0.4 . n‘\ -
o W .
§ 0 S, \'J. \V/ “| = -
a Hibw \
-0.4[~ \
37.4 MeV \
-0.8|- \
0.8+
04 toe .
1y S
-04| ..
28.33 MeV
-08} -
| | ] | [ 1 ]
O 20 40 60 80 100 120 140 160 180
8 (deq)

FIG. 4, Comparison of calculated and experimental
polarizations for p +1%0 scattering at energies of 28.33,
37.4, and 46.57 MeV,
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rather difficult.

We have also examined % + %0 scattering at E
=14.04 MeV. As mentioned above, it is expected
that compound-nucleus effects can be important at
this energy. However, one can see from Fig. 9 of
Ref. 19 that the # +!%0 total cross section does
vary smoothly with energy in the energy region
around 14 MeV. Thus, the use of an imaginary
potential to account for open reaction channels
should yield reasonable results. At 14.04 MeV,
we have adopted the pure-surface form factor for
W (R’) used by van Oers and Cameron®® at 28.33
MeV and adjusted the strength (no odd-even de-
pendence) to obtain a best agreement with experi-
mental data.'® The result of our calculation using
a strength of 1.8 MeV is shown in Fig. 5, where
one sees that the agreement is indeed quite good.
No polarization data exist at this energy, but we
have shown the calculated polarization result for
interest.
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FIG. 5. Comparison of calculated and experimental
differential cross sections for # +1%0 scattering at an
energy of 14,04 MeV. Experimental data for polariza-
tions are not yet available at this energy; therefore,
only the calculated curve is shown.

In a previous communication,'® we have briefly
examined the importance of the antisymmetriza-
tion operator @'. There we have stated that the
heavy-particle pickup process becomes less im-
portant in nucleon-nucleus scattering as the target
mass increases. To make this statement more
clear, we examine here the neutron-nucleus scat-
tering cross sections for two different-mass target
nuclei at large angles where the heavy-particle
pickup process has its largest amplitude.” In Fig.
6, the differential cross sections for 7 +'%0 and »
+ a scattering, calculated at the same value of
1.65 fm™! for the wave number and with the spin-
orbit potential set as zero, are depicted. From
this figure, it is indeed seen that the backward-to
foward ratio 0(180°)/0(0°) for » + a scattering is
more than 100 times larger than that for » +16Q
scattering.

The above finding shows that the heavy-particle
pickup amplitude is sensitively dependent upon the
ratio of the mass of the cluster being picked up to
the mass of the cluster which does the pickup.
This explains therefore the observation, as men-
tioned in the Introduction, that the heavy-particle
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FIG. 6. Comparison of z+a and »+160 differential
cross sections, calculated at the same value of 1.65
fm™! for the wave number.
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pickup process seems to be important in the «
+180 problem, but much less so in the p +%°Ca
problem. To make even more certain, we are

at present also examining the case of # +*°Ca scat-
tering using the resonating-group method in order
to understand even better the dependence of the
heavy-particle pickup amplitude on the mass of
the target nucleus.

IV. CONCLUSION

We have shown in this investigation that the res-
onating-group method, which has been quite suc-
cessful in previous studies of light nuclear sys-
tems, can be extended in a straightforward way
to study heavier systems. This extension is ac-
complished through the use of a generator-co-
ordinate technique which simplifies considerably
the computation for systems involving a rather
large number of nucleons. In this work, we have
outlined the use of this technique in a relatively
simple resonating-group calculation of the N +1%0
system. However, as the discussion of this tech-
nique shows, it can also be applied to more compli-

J

cated scattering and reaction problems involving
larger composite particles.

The results of our N +'%0 calculation have been
compared with experimental data over a wide range
of energies. From this comparison it is found that
these results are, in general, quite satisfactory.

Since a fully antisymmetric wave function is
employed in the calculation, the importance of
various exchange processes can be examined. For
example, we have found evidence from this study
that the heavy-particle pickup process in nucleon-
nucleus scattering becomes less important as the
mass of the target nucleus increases. As reso-
nating-group calculations can now be performed in
even rather heavy systems, one can proceed to
examine in a systematic manner the importance
of antisymmetrization in many nuclear scattering
and reaction problems, such as the scattering of
a particles by Ca isotopes, the reaction *0O(t, a)-
15N, and so on. In this way, it is hoped that reli-
able approximation methods can eventually be
devised for systems where a direct application of
the resonating-group method may still be im-
practicable.

APPENDIX: EXPRESSIONS FOR THE DIRECT POTENTIALS AND THE KERNEL FUNCTION

The explicit expressions for the direct potentials Vp, V,, and V, and the kernel function k; are given in
this Appendix. We give these rather lengthy expressions here, because they will be very useful if one
wishes to study the effects of the Pauli principle in a scattering problem, as has been done previously in

the simpler case of N + « scattering.”
The direct nuclear central potential has the form

dma+ (m-4)k;

2m? ak? m oK,

-, 2 ma 3/2 12 ’2
V(R )=-Z Voiy"<ma+(m—1)x,-) <ma+(m-1)xi +[ma+(m—1)K‘T2R )exp(— ma+(m—1)niR )’

=1

where
Vo =Vot , V
and

=V

02 os

Y, =5(Qu—86), 7,=5w+2),

(A1)

(A2)

(A3)

with m=16 and « being the exchange-mixture parameter in the nucleon-nucleon potential of Eq. (45). The

direct spin-orbit potential is given by

ma 3/2(21014012 2

By _L -5/2
VSO(R)" SV)\A <m__1 (m-1)3

while the direct Coulomb potential is given by

- 1 ma \1/2 ] 1( m )a/z(
n_ r2) L R (T ©
V(R') =2z e}R, @[(m_1> 51

where

P(x) =

;ﬂ_ /: exp(—(2)dt

g o)

) el )

(A8)
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and z and z’ are the atomic numbers of the '®0 nucleus and the incident nucleon, respectively.
For the partial-wave kernel function k,(R’, R”) we write it in terms of the function K(R’, R") as

1 - >
k,(R',R”):ZnR’R"»f K(R', R")P,(cosb)(cosb) , (AT)
V-1
where
PR 7 (A8)
cost=mrpw .

- -

The function K(R’, R"”) is in turn written as

2
2HM‘r Z Vil + E (A9)

i=1

K(R',R"
which contains the quantities 7', U;, and N, representing the kinetic-energy, potential-energy, and nor-
malization kernels, respectively. In Eq. (A9), M is the nucleon mass and

E,=E+E, . (A10)

The '®0 internal energy E,, is given by

7? 69« 2 a 3/2 3a? +Bak, +5K;2 3ak; +11«,2 o+ K, 7|
et 05 () e A, S0t 2

= a+2k; (a+2k;) (a+2k; ) Yo 42k,
83e? 1/2 (a11)
SR
2 s
with
6,=0,=%, L =3(9u-3), €=3@+5),  w =i(-9u+12), W =i(-u+4). (A12)
The normalization kernel N is given by
2 m2 - - o -
9N = CN<m 4 _2_(_3_:%)_5 (RI +R”)2 2AC: (Rr _ R”)2>exp(- alRlz_blRllz_ ¢ R - R”) , (A13)
where
a \3 16miy )
=(— Al4
Cw (411) (aAz(m—l) (A14)
m(m? +1)a
al=b1=————2A2(m_1) , (A15)
2m? g
e e 1
C1 Az(m—l) ’ (A 6)

with A =m+1, The kinetic-energy kernel 7 is given by

-, =, - - m? ol - m4(m_1)a3 - -
T:CN(dk+hk(R,+Rl)2 +f (R =R") +W(RI+RII)4_ —r— (R'=-R")
mi ol BIN(D P ’ n B« P
m(R’+R P(R'-R )2>exp(—a1R 2-b6,R"™~¢, R'*R"), (A17)
with
df"Wyg__'i? (5m* - 12m® = 21m? + 20m— 58) ,
2,42

hﬁ'#ﬁ (5m® +2m? + 9m+24) (A18)

2
fk=-——-A”;(°‘ j (572 +6m? = 15m-+24) .
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Finally, the potential-energy kernel U; has the form

Vi=) Vi, (A19)
it1
with
a 3/2< 302 +6aK; +5K,2 9ak, +38k,2 oK,
R _— 5. . i i . i i X i
n C"<a+2/<i) 30 +2¢; CES A R CTS T 9 a+2x,>

xexp(_ alng _ banz -c, ﬁl . 'ﬁ//) ,

o 3/2< 302 +6ak; +5k,2 33k, +116k;2 a+K )
- — 5. . i i . i i 3
Via C”<a+2x,. ) B¢ e T T 3(aazk, e T )

2o ' "’/l mia = Y 3 ' " B e D
x(z( )2(R V- —R)2—m_1>exp(—a1R2—olR'2—clR R"),

V;3=Cyw,exp(~a,R?2-b,R"?~¢c,R'*R") ,

2 P - -
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In the above equations, we have used the following definitions:

Pl(ﬁly ﬁ”) = (mﬁ, +§”)2y

Pz(ﬁ’,ﬁ”)=m(a+2xi)R'2 +[ma+(m=1)k; ] R"2 +[ (m? +1)a+(m? -m+2)K, R - R”,

cv=< (n-1)a )3/2,

(m=1)a+(m=2)k,

b M
%= T3 A m_1)

2 m?

[m? + 1) s 2mn= 1)), ¢, = ariss

mal (m? +1)a + (m? - m+2)k, |

[a— (m-l)Ki] ’

2am?(a + 2K;)

_maf(m? +1)a+ (3m? + m+ 2)K; | b=
b= Toam-1)a+(m-2)k,] 37

2A% (m=1)a+ (m-2)k;] ’

Az[(m— Da+(m=-2)k] *
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