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As an alternative to the dispersion theoretic approach to the two-nucleon interaction, we outline an improved
version of an older method which derives both an interaction and the wave equation of which it is a part on
an equal footing. This is done by reducing the Bethe-Salpeter equation to an equal time equation. The main

improvement is that the interaction is given in nonperturbative form rather than as a sum of Feynman
diagrams. As an illustration of the formalism, we test the validity of a simple version of the isobar model for
the nucleon-nucleon problem and find it quantitatively inadequate. We discuss parenthetically how the
existence of classes of reduction schemes is reflected as an ambiguity in the definition of the interaction.

NUCLEAR REACTIONS Theory of nucleon-nucI. eon interaction. Non-perturba-
tive field theoretical method.

I. INTRODUCTION

Because it is so fundamental to nuclear physics,
the problem of deriving the two-nucleon interac-
tion from a field theory of strong interactions con-
tinues to be a worthy intellectual challenge. For
the specifically two-nucleon problem, present
consensus is that the most powerful approach' '
consists of the following steps: (i) Compute the
nucleon-nucleon (N-N) S matrix as a sum of one-
boson exchange and two-pion exchange contribu-
tions. The latter is calculated using dispersion-
theoretic machinery with experimental input of S
and I' wave m-m phase shifts and m-E scattering
amplitudes. This includes the effect of the p meson
so that the one-boson exchange is restricted main-
ly, though not necessarily exclusively, to w and ~
exchange. (ii) To permit calculation of all partial
waves of the /-N interaction a unitarization pro-
cedure is carried out. For application to nuclear
physics, this is done by introduction of a potential,
in general nonlocal and energy dependent, within
the framework of a covariant Lippmann-Schwinger
equation (LSE), chosen so that the computed S
matrix is the solution of the latter to the appro-
priate order of approximation.

It has been noted repeatedly' that there are an
infinite number of ways of carrying out this unitar-
ization procedure, corresponding to the lack of
uniqueness in defining off-shell behavior of the
scattering. This is made evident by studying pro-
cedures for obtaining the LSE from the Bethe-
Salpeter equation (BSE}by "reduction" from an
individual time to a single-time description.
Based on some recent test calculations, ' it is

now believed' that the theoretical ambiguity al-
luded to here is without serious numerical con-
sequence, as long as the potential properly in-
cludes two pion exchange effects.

The test calculations were made with a scalar
model, however. It is an historic cause celeb~8
that, at least in the static approximation, the situ-
ation is quite otherwise for pseudoscalar mesons. '
%'hether this ancient difficulty is an artifact of the
static appr oximation or an intrinsic property of the
theory is an unsettled matter. In our view, it
represents a major, if not the major, uncertainty
in recent work and requires renewed attention.
(This is not, however, the aim of the present
work. )

Becent work' ' has uniformly followed the pro-
cedures described by Partovi and Lomon. " For
reasons (or prejudices) that have remained con-
stant for hvo decades, ' we shall follow the distinct
procedure of Levy, Klein, and Macke (LKM) re-
viewed recently. ' Transformation of the two re-
sults into each other can be done, however. ' An
illustration of the quantitative differences in-
volved will be included in our results.

But we must not turn to the main stimulus for
the present work. The ambiguity just discussed
has nothing to do with the S-matrix part of the
calculation. However, the latter calculation itself
may involve too many difficulties for direct study
of the many-body problem (or even the three- and

four-body problem) from "first principles. " To
make progress here, it appears adviseable to
make some compromises which we shall first
test out on the two-body problem.

One such compromise that has received con-
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siderable attention recently is the isobar mod-
el.x~-~s Out interest jn this model has been kin-
dled by the conviction —which remains to be sub-
stantiated-that the compromises here have been
more severe than necessary. For example, the
treatment of the b, (1236), the 3-3 resonance, as
a discrete isobar, may in many instances be an
unnecessary as well as an unwarranted approxi-
mation. In this paper, we develop a formulation
of the two-nucleon problem which contains the
usual isobar model as a limiting case and should
therefore allow a study of its validity.

Since our first aim is to study the effect on nu-
clear processes of excited states of the nucleon,
we shall assume, for the time being, that the ma-
jor effects of the n-m interaction can be accounted
for by the exchange of the well-known boson reso-
nances, treated as fundamental particles. This is
the major theoretical weakness of the approach
described in Sec. II, since it is subject to the
same criticism we have leveled above against pre-
vious treatments of the nucleon resonances. The
finite lifetime effects can be put in, but problems
of possible double counting (or omissions) remain
to be resolved within this framework.

With the admitted limitation, however, it is then
possible to give a systematic and nonperturbative
form for the kernel of the BSE." In Sec. III this
is then reduced to a relativistic Schrodinger or
LSE equation, using the method of LKM. An ad-
vantage of this method, which pertains even to the
nonperturbative form derived in this paper is that
diagrams can be associated with contributions and
systematic rules for construction given. This is
the major nexu result for this paper.

In the remaining sections we undertake a pre-
liminary calculation of the 27t exchange potential,
deriving formulas for the potential in coordinate
space for each eigenchannel. As a preliminary
result, repeating much previous work, we include
only nucleon and zero width 4 intermediate states
in calculation of the potential, but include all two-
pion exchange diagrams, some of which have been
omitted in recent applications. " " " A numeri-

B I 8

FEG. 2. Diagrammatic decomposition of the two-boson
exchange part of the two-nucleon scattering amplitude,
taking boson-boson interaction into account. The defini-
tions of 8 and I are given in the text.

cal comparison is carried out in Sec. V, together
with some discussions and plans for future work.

II. NONPERTURBATIVE KERNEL FOR THE
BETHE-SALPETER EQUATION IN THE LINEAR MESON

APPROXIMATION

Let us assume, to start with, that the strongly
interacting bosons and, in particular, pions do
not interact with each other. Then, as illustrated
in Fig. 1, the amplitude for nucleon-nucleon (N N)-
scattering is decomposable uniquely into a sum of
diagrams (terms) involving the exchange of one,
two, . .. , mesons; furthermore, by a single cut
in the mom entum tr ansf er channel each diagram
is divided into pieces related in a simple way to
single-nucleon processes. These processes are
in turn the pion emission form factor, virtual
pion-nucleon scattering, etc.

As soon as meson-meson interactions are taken
into account this simple analysis fails. If the wavy
line represents the exact boson propagator, T„"'„
is still as we have described it. On the other hand,
T~ N is replaced by the sum of diagrams shown in
Fig. 2. This figure together with Fig. 3 illustrates
the difficulty associated with straightforward off-
shell diagram analysis. In these figures, the bub-
ble I represents the irreducible (with respect to
two-pion cuts) pion-pion interaction. The bubble
8 is not, by itself, the continuation off shell of
any physical process.

It follows that the sum illustrated in Fig. 2 can-
not be written off shell as a convolution of m-

nucleon scattering processes associated with each
nucleon because the counting of diagrams is wrong.

FIG. 1. Expansion of the nucleon-nucleon scattering
amplitude in terms of the number of exchanged mesons
(neglecting meson-meson interaction) .

FIG, 3. Diagram analysis of the 7t-nucleon scattering
amplitude, exhibiting its two-pion momentum transfer
channel. singul. arities.
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It is precisely this difficulty which is solved by
analyzing the sum in Fig. 2, in terms of its t chan-
nel (momentum transfer) singularities and writing
a dispersion relation in this variable for the on-
shell scattering. ' ' This beautiful solution en-
counters problems only later, if one wishes to
embed it into a complete off-shell formalism.

Because the latter is also our aim, we have
decided to admit uncertainties at an earlier stage.
In effect, we shall assume that the B bubble still
represents a good approximation to off-shell m-N

scattering through the simplest accessible nucleon
and isobar intermediate states, namely, that non-
linear interactions do not play a decisive role in
the formation of these states. The effect of these
pion-pion interactions is to be taken into account
in a generalized version of the one-boson ex-
change model, in a form which can be derived
from an effective field theory.

In such a field theory, one might, for example,
include on an equal footing the coupling of the m,

p, v, and 0 mesons with the nucleon, as well as
the couplings of these various mesons with each
other in order to account for their widths. The
full resulting model for the nucleon-nucleon inter-
action will be reserved for a future publication.
In the present one we shall be concerned mainly
with the theoretical formulation of nucleon isobar
excitation by pion emission and absorption.

In Ref. 16 two nonperturbative forms were given
for the S matrix for nucleon-nucleon scattering
from an initial state P,s„P,s, to a final state
P,'s,', P,'s,', under the assumption that nucleons
interact only with pions and that the pion-pion
interaction can be neglected. We refer the reader
to this previous publication for the derivation.
Ignoring antisymmetrization, the general structure
of either result is

(p,'s,', p,'s,'Islp, s„p,s, ) =5(s,s,')5(s,s,')5'(p,' p )5 (p' p )+'g (p'sl p's'IT""' Ip s p s },
tt= $

(2.1)

where T""' is the contribution from the exchange of n mesons. (We shall deal here explicitly only with
pions, but all results and remarks are extended readily to include other bosons. )

Of the two forms of T""', one is related directly to its structure in terms of Feynman diagrams. For
this form we write

(p,'s,', p2sm I

T""'
I p, sl, pas, ) = -~(p,')&(p.')~(p, )c(p.) («1)(dx2)(«1)(«2) expl. -i p,'x,'- i p.'x.'+i p,x, +ip.x.l

x u(p,'s,')u(p,'s,')I""' (x,'x,'; x,x, )u(p, s, )u(p, s, ),
where u (ps) is a positive-energy Dirac spinor normalized so that uu is invariant, px =p x —p,xo, and

~(p) =l~/(»)'&(p))'", E(p) =(p'+ ')'".

(2.2)

(2.2)

Though a more formal definition can be given, for our purposes we may view I""' simply as the sum of all
Feynman diagrams involving the exchange of n mesons. From this quantity, we select its two-particle ir-
reducible part as kernel of the BSE.

The second form of T""' and the one we shall utilize in this work is (suppressing spin indices)

(plp2 I
T""' Ipip2) =(i "/n! ) t (d1)(d2) ~ ~ ~ (dn)(d1') ~ («')(pi IT(js(1) ' ' ' js(n)) lp&}(p2 I T(js(1') ' ' ' js(n')) I p2)

x L(11') ~ b, (nn') . (2.4)

Here 6(11'}is the complete meson propagator and
the currents j~ which appear in the Wick products
are defined by the e|luation (omitting renormaliza-
tion constants)

(2.5}

where jr is the meson field operator. f Because the
full inverse propagator appears in (2.5), the matrix
elements of j~ differ from those of the source

operator appearing in the fundamental field equa-
tion for the operator cp by the removal of certain
vacuum polarization effects. In so far as the
latter may be assumed not be dominate our con-
siderations, this distinction will later become
blurred, especially for other than single-meson-
exchange effects. ]

We wish to extract from (2.2), a contribution to
a nonperturbative kernel for a BSE in momentum
space. Since in (2.2) we are on the mass shell,
and considering the center-of-mass system, the
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momenta there satisfy

(a) P&+P2 =P& +P& =0,

(b) Pro+i'2o=plo+&2o=~

(c) p„=(p,'+m')', etc.

in the BSE (a) and (b) remain, but (c) is replaced
by

(c') P„=o Ii'+Po, P2o = 2
W' —Po

and similarly for the primed coordinates. This
defines the analytic continuation off the mass shell
of the energy variables that occur in the BSE. In
addition we strip away the spinors u, u, fore and
aft, since in the BSE we consider both positive-
and negative-energy components on an equal foot-
ing.

For the low energy two-nucleon problem all our
experience indicates that this latter feature is of
no particular merit. In fact, we use the BSE only
as an intermediate step on the way to a covariant
Schrodinger or Lippmann-Schwinger formalism
containing only positive-energy components in the
wave function. As described in Ref. 17, for this
process we require only the positive-energy part
of the full I""'. This observation is useful in
connection with (2.4) because it means that for
our purposes we do not have to consider an ex-
tension of definition of the latter to include nega-
tive-energy components, i.e., antiparticles.

We still have to consider for (2.4) the continua-
tion described by the requirements (a), (b), and
(c)' above. It is convenient to first rewrite (2.4)
in terms of time-ordered currents, namely,

(P,'P,' (T""']P,P, ) =i" Jt (dl) (dn)(d1') ~ ~ ~ (dn')8(1 —2)8(2 —3) ~ ~ 9((n —1) —n) 9(1' —2') 9((n —1)' —n')

"(Pl]& (» "j~(n)t&)(Pl(j(1') "j(n')IP. ) a(1i,') ~ ~ a(ni„' ), (2.6)

where the 8 are step functions in time and the P are the permutations of (1' ~ ~ ~ n').
We now identify 1 with x,', 1' with x,', n with x„and n' with x„where the x's are the variables of (2.2).

For the integrand of (2.6) we write the following trivial identity

(t,'tin(x,')i~(2)" is(x, ) IP,)(P.'lie(xl) js(2') "is(x,) IP.)

= exp[-i p,'x,' —i p'x,' +i p,x, + i p, x ] (p,' ~
exp(i p'x,')j (x,') ~ ~ j (x, ) exp( ip, x, ( -p, )

x (p,'~exp(ip, 'x,')j (x,') ~ ~ j(x, ) exp( ip, x,-) ~p, ). (2 7)

The first factor is the one which is continued according to the recipe given above. Comparison of (2.6) and
(2.7) with (2.2) now allows us to make the plausible identification

u(P,')u(P,')I ""'
(&,'g,'; (,g, )u(P, )u(P, )

i "[C(P-,')C(P,')C(P, )C(P, )] '
JI (d2) ~ ~ ~ (d(n —1))(d2') ~ ~ ~ (d(n-1)')8($,'o t, )8(t, -t-) ~ ~ ~ 8(t —$ )

x 9(g, -t, )9(t,'-t,') 8(t„', —~„)

x (p,'( exp(ip, 'g,') j„(2)~ ~ j„(n—1)j„($,) exp( ip, (,) ~p-, )

x (P.'I exp(iPl@) JR(g)is(2') "Jn((n- I)')is(4) exp(-iP. 4) IP.)

xga((,' —i,')a( 2i;) ~ ~ a(t, —i„'). (2.8)

The factors C(P) will now be dropped as we revert to a corresponding noncovariant normalization of uu.
In conjunction with the method of Ref. 17, (2.8) suffices to provide us with a new basis for the study of the
two nucleon problem.

III. REDUCTION OF THE BETHE-SALPETER EQUATION TO A NEW SINGLE-TIME EQUATION

The essential result of Ref. 17 is a compact form for the (homogeneous) iterated single-time equation
associated by the method of LKM with the BSE. In coordinate space in the nth order of approximation this
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equation takes the form

p(x„x,)= f tte"'(xx„x,' xe) p(x, x)px,'ptx
where~8

(3 l)

n (2" )(x,x„x,'x,') = iT '[E(P,)+E(P,) —W] ' d g,odg»dt, 'dt,'d), df2 exp[i(&„+ (, —t,' —t,')—,
' ~]

&& 6&,(x, $,—)6&,(x. —h. ) I "")((,h. ; ~,'~,')

8 t~-t2 A"' q, "'ex -i t,' —t2 E q, —25'

e p(t, -t, )A"''(tt', )tt,e' ex ( p(tt--t, ')(,'( p)e- ] tp] ] ) . (p.p)

In this expression p» p» q» and q, are differential operators acting on coordinates 1 and 2, respectively,
p, and p, acting on the 6 functions as indicated, and q, and q, acting on qr(xI, x,'}. T is an infinite time
which will cancel out after all time integrations have been performed.

The evaluation of (3.2), with I""' given by (2.8) yields a result for 0(2") which can be described system-
atically. The derivation will be given in barest outline. The basic technique is to consider (3.2) as a sum
of all possible time-ordered contributions. This allows the time integrals to be carried out explicitly if
we decompose a typical operator product (suppressing the subscript R on jR}

(pl li(&i) I(&.}I pi) =

I)' ' 'I~
exp[ i[E(P,')t, -E(I,)(t, —t, ) — —E(I„,)(t„,—t„) —E(P,)t] j

&( p, I j(x,) I I,)(I, I j(x,}I I,) ~ ~ (I„,I J(x„) I p, ), (3.3)

and represent the (free} meson propagator in the form

b, (x, —x,)=, ' exp[i k, ~ (x, —x,) —i &u, 1 t, —t, 1].
i & dk,
7] J (t))

It is most convenient to express the results of these integrations in momentum space. With

(e(p„p, )=
p ), f exp(-ip, x, —tp, x,)p(x„x,);

we ~~rite

[ & -E(P,) -E(P,)1 q (P„P.) =
2 ). I fl"")(P P2' PiP2) 4 (O' P2}

and give the rules for constructing 0""'. These are summarized in the formula

(3.4)

(3.6)

(3.6)

(p, I j(k, ) I I,) ~ ~ ~ (I„,1 j(k.), P,')

I I ~ ~ ~ II n~&

(p, li(-k, )1I,') ~ (I„',
1 j (-k.„)I p, ), (3.7)

where

j(%)= „,f exp(tk ~ x)j(x)(px). (3.8)

Here k, ~ ~ k„„is a permutation P(o() of k, %„,

and we sum (as in (2.6)) over all such permuta-
tions. Each different permutation determines a
different order of "absorption" by nucleon 2 of the
mesons which have been "emitted" by nucleon i.

The second sum is over time orderings 0(P)
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D, = W —E(p, ) —E(I,') —(u, ,

D, = W —E(p, ) —E(p,') —&u, —&u, ,

Ds =W —E(I,) —E(p~) —u)~.

(3.9)

pyÃ,

P, K2

(a')

which must be specified before the product of en-
ergy denominators D; can be computed. Each
ordering is defined by associating with each of the

j operators its original time variable from the sets
t, ~ ~ ~ t„and t,' ~ ~ ~ t„' for nucleons 1 and 2, respec-
tively, as in (2.6). The sum then includes inde-
pendently each possible over-all time ordering of
these 2n variables which maintains the constraints

n ~ t~ & t~ & ' ' ' & tn ~ For each such time
ordering, there is a contribution which can be
associated with a diagram, which only in its label-
ing differs from standard time-ordered diagrams
without any nucleon pairs. For example for n =2,
we have the diagrams of Fig. 4 plus another six
crossed diagrams obtained by switching the meson
line terminal points on the second nucleon. The
energy denominators are now given by the stan-
dard rule: Draw a horizontal line cutting the dia-
gram between each pair of interactions. The as-
sociated energy denominator is W —QE —Qw,
where the sum is over intersected nucleon and
meson lines. Here nucleon is to be understood in

a generalized sense, to include any intermediate
state I, representing an eigenstate of energy E(I ).
Thus for diagram (4c), we find

As we have remarked above, Q""' is the kernel
of an iterated equation and therefore contains re-
ducible parts. In the conventional three-dimen-
sional definition a diagram is reducible if it con-
tains at least one intermediate state with pre-
cisely two nucleons (i.e., no mesons). For in-
stance, from Fig. 4, diagrams (a), (a'), (b), (b'),
are reducible if J, and I,' are single-nucleon in-
termediate states. Let Q„""' be the residual part
of 0""' after all terms which are reducible have
been removed. Our final (conventional) two-nu-
cleon equation is obtained in the form of Eq. (3.6)
with 0""' replaced by V""', where

V(~ ) ~ g (~& ) (3.10)

IV. TYCHO-PION EXCHANGE N-N POTENTIAL

In this section, we present a calculation of the
2m exchange potential to illustrate the application
of our formalism. For simplicity, only the N and
N (1236) will be included as intermediate states

~
I) of (3.7). Furthermore the N*(1236) will be

treated as an elementary particle. The accuracy

P' -P'
](

]a

Further reductions can be carried out, leading
for instance to the isobar model" if additional in-
termediate states are approximated by energy
eigenstates. These ar e r epr esented by introducing
amplitudes in addition to the two-nucleon ampli-
tude p(p„p, ) and coupled equations are written
such that elimination by iteration of the new ampli-
tudes leads us back to (3.6). This matter will be
pursued in more detail on a future occasion, but
here we shall confine our further attention to the
study of (3.10).

(b')

2
iL

-p

(b) (c)

Dp

FIG. 4. Uncrossed general time-ordered two-pion ex-
change diagrams representing contributions to (3.7).

FIG. 5. Direct two-pion exchange time-ordered dia-
grams involving (N*-N) intermediate baryon states.
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2'

(e)

(c)

The local limit corresponds to setting q =0.
To calculate V'4'(r, 0) = V'4'(r), we utilize the

rules for constructing 0"' given in Sec. III.
Among these diagrams, we illustrate in Fig. 5
the uncrossed diagrams in which one nucleon goes
through the N* intermediate state and the other
through the intermediate state N. Figure 6 shows
the corr esponding crossed diagrams.

For computational purposes, each diagram con-
sists of two kinds of elements, the vertex func-
tion for each vertex, N- N'+ w (where N' =N or
N*), and the energy denominator for each inde-
pendent intermediate state. A vertex N- N'+n
corresponds to a matrix element (p'~j(k) ~p) where
p and p' are, respectively, the incoming and out-
going fermion momenta and R is the momentum of
the meson emitted from the vertex. We write, in
a noncovariant notation

FIG. 6. The crossed analogs of Fig. 5. (p'
~j (k) ( p) = 5(p'+ k —p)F(p', k, Z, T, I), (4.4)

V""'(r', r) =—, dp'dpexp(-ip' 2" +ip ~ r)
(2W)2 d

x V""'(p', p), (4.1)

where p = —', (p, —p, ) and r = r, —r, are the relative
momentum and coordinate, respectively, and

of this zero-width approximation will hopefully be
examined in a future publication.

In the center-of-mass system, the coordinate
space N Npotent-ial V""'(r', r) is related to V""'
of (3.10) by

where I' is a scalar function constructed from the
momenta k, p, a fermion spin operator Z, a fer-
mion isospin operator T, and the pion isospin I.
If N and N' are both nucleons (s = t = —,'), then Z and
T are just the ordinary Pauli operators. If N*

occurs as an intermediate state, the operators
Z and T are transition operators and are defined
by their reduced matrix elements (9, ~( Z

~~
S2q') and

(t, (~
T ~[t2) in the baryonic spin and isospin space.

In the static limit to which we confine our pres-
ent attention, we shall write"' "

V""'(r, q)=, j dkexp((k r)V""'(k, q).
(4.3)

(pl) P2p Pl) P2) 5(pl P2 Pl P2) (P t P) '

(4.2)

The relevant kinematic variables for n=2 are
shown in Fig. 5(a).

For the low-energy 8-N interaction, the kernel
V""' (p', p) (dropping the bar) can be expanded in

powers of (p/M) and the above nonlocal form of
the potential can be transformed in a well-known

way into a local but momentum-dependent form:
By introducing the variables K =p' -p, (I =-,'(p'+p),
we can write, with V('"'(p', p)- V(2" & (K, (I),
V""'(r', r) = V""'[—,'(r+r'), i V„j 5(r -r'),

= k' [(2l + 1)/4 n'j ' ' F" ' (K) . (4.6)

We note that all direct or ladder-type diagrams
with a given set of intermediate states yield the
same product of vertex functions, namely,

E(p', k, Z, T, I)=f (k)[(ig, /2m )(Z ~ K~' )(T I)],
(4.5)

where l denotes the internal ~-N relative orbital
angular momentum for the N* a,nd g, andm '~ are
the coupling constant and the intermediate fermion
mass, respectively. The cutoff function f(k) is
discussed below. The angular function E~' is the
spherical tensor defined by

Vl)(~,k, ) =f(k, )f*(k,)f(k, )f*(k2)(ig, /2m~'l~)2(ig, /2222~'2 )'(Z, Ki'l~ )(Z ~ K, 'l~)

&&[Z2 (-K,) '2 ][Z2~ (-K,) '2 ](T, I,)(T, I,)(T, i ~ 1,)(T2i I,). (4.7)

The corresponding vertex function for the crossed diagrams, V, , is obtained from (4.7) by the interchanges
Z2-Z2t, T, -T,~.

In this paper, the cutoff function has been chosen simply as
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f (k) =A'/(A'+k'). (4.8)

Since our results are sensitive to the choice of A, it would be well if some theoretical basis were avail-
able for the choice of both the form of the cutoff and the parameters in it. Recent suggestions' directed
toward the solution of this problem may prove of great value, but take us beyond the scope of the present
work.

The rule for evaluation of the energy denominators has been given in Sec. III. Static limits are to be
taken as previously described. This yields the quantity V"'(K, q =0) [(4.3)], where

V'4'(K, q=o) = ' I5(K-k, -k, )[VD(k„k,)IID+ Vc(k„k, ) Iic]2~, 22 (4.9)

where VD and Vc have been defined above, as in (4.7), and IID, Iic are the appropriate sums of products
of energy denominators. Substituting (4.9) into (4.3), the integrations cannot be done analytically in their
entirety, and therefore the potential for each eigenchannel has been calculated numerically. The potential
VI'!r (r) in each eigenchannel

I (Ls) jT) is defined by

ll', s, jm, TmT

where'g'„T are the usual spin-angle isospin functions,

(4.10)

'!L~„"r r = g (jm ILsm, m, ) p "'(r")g"'X' '

msml

and X are spin or isospin functions. From Eqs. (4.9) and (4.10), we have

V,", (r)=, ' ' ('g', ",™(rr)l e" ~' 2' '[ i'„'(k„k,)II~+Vc(k„k,)IIc]I'g!!,r"r(r)).dk dk,
l 2

(4.11)

(4.12)

Expanding plane waves in spherical harmonics, one can carry out the angular integrations over k„k„
and r by standard use of Racah algebra. After a straightforward but lengthy derivation, we get for either
the direct or crossed terms and a definite choice of intermec!!'ate states (L,t,Ã„L,t,s, ),

2 2
)sT !-s 1

2m''ii 2m&r I 4v' (2T'+1)(27;+1)

LL LlL2J

/, L,
.
)

(~,~ ) (2I, +1)(2L, + l)(2L '+1)(2L+1)(2S+1)
24+1

J
Lgl/I g Lm (I, I, ~l (I'I d ~gg LS LS,„rtt )

&0 o ojI0 o o &0 ooi iooo

X k, 'dk,
, tt2'dk2k', "k"+'

PL kP PL k2J' ' k, k2 II (4.13)

9 S J
~~~. (I S'„L S', ) =C~~[(2$+1)(2J+1)(2L+1)(2L +I)]'!'(-I) '

~ —,
' L W(—,

'
L, ~ I„'SL)W(—,

'
T,,' l„l I ')—

— — I1 1 I
2 2

x&-,' lip,"i& lip, & (S, il
g!»II-,'& &-,'ll z,'211~,& &S, ll z,'2 II-,'&

is the spin matrix element,

(4.14)

8 (t, t2) = S(2T+ 1) (-1-) Q(-I) C,(2I+1) W(~~2~; IT)W(~1~1;t~I)W(~1~1, t I)
I



0.6

FORM A. L ISM ~ ~ ~REE DIMM E NS IONAT H

t Rnd

NON ER TUQBA

s trix elemen,
0

is again th
~ ators. »-

jngu

the»p p
r den mlna opprppriate pro

s a,re also dls
C ~

d crpssed diag
to sC Rnd

rect an
'ce of phase Rcby R deferent choice 0

0.8 I0 t.2

V(MeV)

- I800MeV

(4.16)

We have

(direct) i
= -1)Cp
=

1y (crossed) .c, =(-=(-1) '

o~er dlrecust, sum othe final po " '
„all R].lowed "yprams Rn

pf couPllng
constants,

re carried pu n
000 Mevis found that «r

t re sufficient to do
~ rid points R . r~ 2fm

50 gaussian g
the region

- t.
1 lntegratlons l

the stRtlc 1™numeric~ '

tg t (4 13) is forWe emphasize
'1 b a systema ijuciusiouo'""'

«gg~) cm be "
~e c»

n j ppwers
es.ulatlpnal techn q

se the re-
the same calcu

tic limit and uses tp the sta lc
e o

fine ourselves o
the basis for the ootentlals as t e

'n the nextions made ln
ou led-channel theory s

'tted by the former
has been taken asd f'ned by (4.8) sparameter d 'neA de ine

MeV.

DISCUSSIONV. RESULTS AND

1' ation of thee formal-t' ate future app zc

ented in this paism pres
fl gbrie y

extent to which e

0.6 0.8 I.O l.2 I.4 I6 (F) 0.6 0.8 I,Q I.2 I.4 I 6 (F)
I

V(MeV) 00 MeV

V(MeV) MeV

-500— -500—

i . 7 with A = 1400 MeV.FIG. 8.. 8 Same as Fig. 7 wit i . Vwiti . h A =1000 MeV.9 Same as Fig.FIG. 9.



Ts UNG-sHUNPNDPHASM

0.6 0.8 I.O 1.2 f.4 I6 (F)
I

V(MeV)

———A = IOOO MeV

——A = I400 Mev

"" - -g = I800 MeV

-500—

b
"VrMp+

the uncertainty ln. 10. gure j. lustr ates t ln
static potent' ial whsethe fourt-h-order s

alisms.different three-dimen '

—Vb represen
da she cu

ts the speci '

n the formal. isms asence between t e o

a roximat1on to the 2nn adequate apprroach is an
N-E potential.

led-channelo k of thWithin the framewor e

bar states can povo
' ' ediate 1so

'
e Rccoun e

volving interm
enera e

an e mode s 1none-boson exchang
hscalar-m g ~

led-channe celaborate coup e-
e terms in the

inane a
-meson exchangely

g
g

thee e. Within the LK
1 involved in th s

me
N-N potent1a2m' exchange

dered cliagrams wor e1
sons, 1.te without mesta e

the re-t th 1 of
in or
it is important o

'S 2 h
g

we cornIn Figs. 7-9, w om

te for several cho'oices ofN-N pot ent1al,s calculate or
the coupled--channelcutoff parameter

the re ' ' rrectionscheme
i 1d(jjN*(1236) are '

to e ' intermediateh R
' to describe the 1n ethe cah Rlculations to e

ible interme 1as. There are th i ' e 1astates.
two-

N' t d'eof N- i
me-ust be exclude .

been used800 1400, and 1

9, respectively.
'

n terms are of th

choices of cutofo ll
e otential ca c

ount for all o
change p c

malism. R

t d to cure the ins
oupled -chanthe co

uant1 a,
't tive resu slinger.

u kind ofe
'

e finally to 1llu
e endent.

ustrate the kin o
diff erentences t aQuRn 1 Rt tative d1ffer

on rocedure from the BS
i10

' es of reduction p
omon-P Rrtov1

cho1ces o
Fo1 examp, monle t em omon

t tl A

1 d

th

' ntot e

culated analy 1-
lustra. ted 1n 'g. e

Th aitoff. T ecally without cu . T
* andfigure rep

lsobRr IQO e
q

' te states, the so-due to Ã-
an '

betwee th
d I th' th o

terms. n

thus indicate .ets of c rves s
r then the main corr

1n P1g 10
otent1al

py
it in thetrate d the ambigu1ty

'

d in the in rodiscussed p

les
overloo e

In conclus1on, we s
o p rturbative orm

a be utilize
out a com-for us to carry oupotentia .

reticar 1 investiga 1ohensive theor o
efore

p1e e
R roach. etion ab sed on our pp
n be of signsuch ap

tthat we plan to urthis matter R

at tention.



12 NONP EB7 UH BAT IV E 7 HR E E - DIM E NS IONAL FORM AL ISM. . .

Work supported in part by Energy Research and Devel-
opment Agency.

M. Chemtob, J. W. Durso, and D. O. Riska, Nucl. .
Phys. B38, 141 (1972).

~W. N. Cottingham, M. Lacombe, B. Loiseau, J. M.
Richard, and R. Vinh Mau, Phys. Rev. D 8, 800
(1973); R. Vinh Mau, J. M. Richard, B. Loiseau,
M. Lacombe, and W. N. Cottingham, Phys. Lett. 44B,
1 (1973); M. Lacombe, B. Loiseau, J. M. Richard,
R. Vinh Mau, P. Pires, and R. de Tourreil, Division
of Theoretical Physics, Institute for Nuclear Physics,
Paris Report (unpublished).

3G. Epstein and B. McKell. ar, Univ. of Melbourne Report
(unpublished) .

4G. E. Bohannon and P. Signell, Phys. Rev. D 10, 815
(1974): Phys. Lett. 53B, 11 (1974).

~A. D. Jackson, D. O. Riska, and B.Verwest, State
University of New York at Stony Brook Report (unpub-
lished) .

The l.iterature may be traced from Refs. 1-5. The
program was proposed by D. Amati, E. Leader, and
B. Vital. e, Nuovo Cimento 17, 68 (1960).

~The most recent review is by A. Klein and T.-S. H.
Lee, Phys. Rev. D 10, 4308 (1974), where references
to previous literature may be found.

R. M. Woloshyn and A. D. Jackson, Nucl. . Phys. B64,
269 (1973); M. Fortes and A. D. Jackson, Phys. Lett.
38B, 2VV (19V2).

9This controversy known as TMO (Taketani-Machida-
Onuma) vs BW (Brueckner-Watson} was explained in
detail most recently in the Literature by A. Klein,
Progr. Theor. Phys. 20, 257 (1958), It is al.so dis-

cussed briefly in the review article by M. Moravcsik
and H. P. Noyes, Annu. Rev. Nucl. Sci. 11, 95 (1961).
In the context of recent work, the procedures of Lomon
and Partovi (Ref. 10) which have been so influential in
recent undertakings Lead in the static limit to the TMO
form of the potential for the perturbative part of two-
pion exchange potential with positive-energy intermed-
iate nucl. eon states, whereas the procedure of LKM,
described in Ref. 7 l.eads to the BW potential. in the
same limit. The two potentials are significantLy dif-
ferent, as shown in Sec. V.
M. H. Partovi and E. L. Lomon, Phys. Rev. D 2, 1999
(1970).

'H. Sugawara and F. Von Hippel, Phys. Rev. 172, 1764
(1968); 185, 2046(E) (1969).
A. K. Kerman and L. S. Kisslinger, Phys. Rev. 180,
1483 (1969); L. S. Kisslinger, Phys. Lett. 48B, 410
(1974); A. M. Green and T. H. Schucan, Nucl. . Phys.
A188, 289 {1972); H. J. Weber, Phys. Rev. C 9, 1771
(19V4).
H. Arenhovel and H. J. Weber, Springer Tracts in
Mod. Phys. 65, 58 (1972).

~4S. Jena and L. S. Kisslinger, Ann. Phys. (¹Y.) 85,
251 (19V4).

~5P. Haapakowski, Phys. Lett. 48B, 307 (1974).
A. Klein and B. H. McCormick, Phys. Rev. 104, 1747
(1956).
A. Kl.ein, Phys. Rev. 94, 1052 (1954).
The corresponding expression, (11) of Ref. 17, con-
tains a misprint which is herewith corrected.
D. O. Riska and G. E. Brown, Nucl. Phys. A153, 8
(1970}.


