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By increasing the cutoff g, from 1.7 fm~' to a value 2.8 fm~' in momentum-space Faddeev calculations,
we eliminate several discrepancies previously existing between momentum- and coordinate-space Faddeev

calculations of trinucleon properties.

NUCLEAR STRUCTURE °He; calculated binding energy and charge form factor.
Momentum space Faddeev calculation with several different momentum cutoffs.

Several discrepancies involving the trinucleon
binding energy and charge form factor (for @?
=10 fm-?) currently exist among Faddeev and vari-
ational calculations based on essentially the same
nuclear interaction.! In this note, we give evidence
that these discrepancies may be substantially re-
duced if the cutoff ¢_,, for the magnitude of

q=[%(£z+is)—ﬁ1]/\/—3— s 1)

in momentum- space Faddeev calculations is in-
creased appropriately.

Our discussion is based on the comparison of the
results of three different calculations for the tri-
nucleon bound state: the momentum- space Fad-
deev calculation of Harper, Kim, and Tubis,
(HKT)? extended to higher values of ¢q,,,, the co-
ordinate-space Faddeev calculation of Laverne
and Gignoux (LG)® and the recent variational calcu-
lation of Strayer and Sauer (SS).* The Faddeev
calculations®3 give complete solutions for the case
of two-nucleon interactions (given by the Reid
soft-core potential® in the 'S, and coupled °S,-°D,
states). The SS calculation is probably the most
elaborate variational trinucleon calculation to date
(with over 4000 linear variational parameters) for
the Reid potential. It includes two-nucleon interac-
tions in the D, and °D, states, in addition to inter-
actions in the 1S, and %S,-3D, states. However, the
effects of the D, and °D, interactions should not be
large enough to prevent a meaningful comparison
of results.

The HKT calculation? was done using the value
Gmax=1.7T fm™. We have repeated the calculation
using ¢.,,=2.4, 2.8 and 3.1 fm. In Table I, we
list the bound- state energy and in Table II the
probabilities of the components of the bound-state
wave function for different values of ¢ ,,. As in
Ref. 2, we use the cutoff p_, =13 fm™. In Table
II, we also give the results of Laverne and Gig-
noux.®* The components are classified according
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TABLE I. The trinucleon binding energy for different
values of ¢,,x, with p... =13 fm~!, LG denotes the
Laverne-Gignoux (see Ref. 3) result.

Gax (fm™1) Binding energy (MeV)
1.7 6.7
2.4 6.9
2.8 6.96
3.1 6.98
LG 7.0

to the £-8 basis |pq(L1)EWLI,), where §=%(k, - k)
and q is given by Eq. (1). W{ is a spin-isospin
state with total spin 8=4% or § and total isospin T
|7,|=%. »=A, S, ¢, and — denote, respectively,
complete antisymmetry, complete symmetry,
mixed over-all symmetry with symmetry under 23
exchange, and mixed over-all symmetry with anti-
symmetry under 23 exchange.

We see that the binding energy and wave-function
probabilities are stable for ¢, S 2.8 fm™, and are
in very good agreement with the LG results. The
total S, S, and D probabilities [P(S), P(S’), P(D)]
=(90.2%, 1.7%, 8.1%) are also in satisfactory
agreement with the SS values (89.8%, 1.4%, 8.8%)
especially in view of the fact that the SS variation-
al results are estimated to be accurate only to
about 10%. The SS lower bound on the binding en-
ergy is 6.6 MeV (with an estimated extrapolated
value of 7.2+ 0.2 MeV). This is also in fair accord
with our result.

In Table III, we give values for @,,.%, the posi-
tion of the minimum of |F E¢(@?)| and R, the sec-
ondary maximum ratio

_ |FEe@*=20 tm=)|

| F3He(Q? =20 fm=)|
for different values of ¢,,,. We also list the LG
and SS values. Calculated form factors are plotted
in Fig. 1. The agreemeéent between our results,

cale
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TABLE II. Probabilities for £-§ wave-function components, for different values of qmax

(fm™Y), with P, =13 fm™L. Values of ¢y, (fm™), with Py, =13 fm™%,

Laverne-Gignoux results (see Ref. 3).

LG denotes the

t~
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TABLE III. Parameters which characterize
|FHe(Q? 210 fm™) | for different values of ¢p,y, with
Pmax =13 fm™!, LG denotes the Laverne-Gignoux results
(see Ref. 3) and SS the Strayer-Sauer result (see Ref. 4).
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FIG. 1. Plots of |FB(Q?)|, calculated using  max =13

fm~1 and dmax=1.7, 2.4, 2.8, and 3.1 fm~!. The results
for 2.8 and 3.1 fm~! are essentially identical. The solid-
circle data points are taken from Ref. 6 and the open-
circle points from Ref. 7.

and those of LG is excellent. The Faddeev calcula-
tions give higher values of @,,.* and R than the
variational calculations. The differences in the
values of @,,,% and R are, however, compatible
with estimated calculational uncertainties of the
results.

In summary, we have shown that three different
techniques for calculating three-nucleon bound-
state observables give fairly consistent results.
The excellent agreement between the two different
Faddeev calculations and the convergence difficul-
ties of the variational method give some support
to the Faddeev formalism as the standard technique
for calculating three-nucleon observables for real-
istic nuclear interactions.

We wish to thank Peter Sauer for helpful discus-
sions.
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