${}^{10}B({}^{7}Li, p){}^{16}N$ and J^{π} of ${}^{16}N(3.520)^{\ddagger}$

H. T. Fortune and L. R. Medsker^{*}

Physics Department, University of Pennsylvania, Philadelphia, Pennsylvania 19174 (Received 12 March 1975)

Results of the ¹⁰B(⁷Li, p)¹⁶N reaction suggest J = 2 if the 3.520-MeV "level" is a single state and J = 0 and 1 if it is an unresolved doublet.

NUCLEAR REACTIONS ¹⁰B(⁷Li, p), E = 16 MeV; measured $\sigma(E_p, \theta)$; deduced J (3.520).

The present experimental evidence on the spin and parity of the 3.52-MeV state of ¹⁶N is ambiguous. In ${}^{15}N(n, n){}^{15}N$ total cross section measurements¹ (with a resolution of 1.5 keV), the state is seen as a resonance with $\Gamma \sim 3$ keV. If it is a single state, the magnitude of the total cross section requires $J \ge 1$. An analysis^{2,3} of the ¹⁵N(d, p)¹⁶N cross section populating this state yields the result that l=2, with $J^{\pi}=1^{-}$, $(2,3)^{-}$ (if it is a single state populated by a single l value) or l = 1 + 3, with $J^{\pi} = 2^+$ (if it is a single state populated by an admixture of two l values). A study of the ¹⁴C- $({}^{3}\text{He}, p){}^{16}\text{N}$ reaction⁴ favors $J^{\pi} = 2^{+}$, but the fit of an L=2 distorted-wave (DW) curve to the data is poor, especially at forward angles. A DW analy sis^5 of the ¹⁴N(t, p)¹⁶N reaction shows that this state is populated with L=1 or 2, or both. This information is summarized in Table I.

Finally, in the ${}^{17}O(d, {}^{3}\text{He})$ reaction⁶ to this state, the angular distribution is reported to have l=2, requiring $J^{\pi} = (0-5)^{+}$. Our inspection of the data, however, shows that both l=1 and 2 are present. Thus, in the absence of contamination from an impurity, we believe these data suggest that the 3.52-MeV "level" actually consists of two states of opposite parity. We have attempted to test this idea and to place further restrictions on the J value by means of the ${}^{10}\text{B}({}^{7}\text{Li}, p){}^{16}\text{N}$ reaction. Earlier studies⁷⁻⁹ of (⁷Li, p) reactions have shown that the reaction mechanism is virtually pure compound nuclear, with total cross sections proportional to 2J+1, where J is the final-state spin. This reaction should then allow us to eliminate some of the possible J^{π} values.

In an earlier study⁸ of the ¹⁰B(⁷Li, p)¹⁶N and ¹¹B-(⁷Li, d)¹⁶N reactions, a (2J + 1) analysis of the data suggested J(3.36) + J(3.52) = 6. With the knowledge¹⁰ that $J^{\pi}(3.36) = 1^+$, that analysis would have required J(3.52) = 5. That work also suggested J(3.96) = 4 and J(4.32) + J(4.38) = 5, all in contradiction with present assignments. However, those authors point out the unreliability of extrapolating from $E_x = 0$ to $E_x = 3.5$ MeV. Now, no such extrapolation is necessary since the other states in this region have unique J^{π} assignments.

The present ${}^{10}\text{B}({}^7\text{Li}, p){}^{16}\text{N}$ reaction was initiated with a 16-MeV beam of Li ions from the University of Pennsylvania EN tandem. The target was a gold-backed foil of about 50 μ g/cm² thickness of B enriched to 96.5% in ${}^{10}\text{B}$. Outgoing protons were momentum analyzed in a multiangle spectrograph and detected in K5 nuclear emulsion plates. Mylar foils prevented all particles except protons from reaching the emulsion. Angular distributions were extracted for five states¹⁰ in the region E_x = 3.0-4.5 MeV and were then integrated to get

Reaction	Ref.	Result	J^{π} Restriction	Remarks
$^{15}N(n,n)$	1	$\Gamma = 3 \text{ keV}$	≥1	If a single state
$^{15}N(d, p)$	2,3	l=2	1 ⁻ , (2, 3) ⁻	If a single state formed by a single <i>l</i> value
		l = 1 + 3	2^{+}	If a single state formed by mixture of two <i>l</i> values
¹⁴ C(³ He, <i>p</i>)	4	L=2	2^+	Poor fit at forward angles
$^{14}N(t,p)$	5	L=1 or 2 or both	(0-2) ⁻ and/or (1-3) ⁺	Evidence for two L values is not compelling

TABLE I. Results of various experiments for the J^{π} of ¹⁶N(3.520).

12 1364

FIG. 1. Plot of $\sigma_{tot}/2J + 1$ vs E_x for the ${}^{10}B({}^{7}Li, p){}^{16}N$ reaction leading to four states of known (Refs. 5 and 10) J in the region $E_x = 3.0-4.5$ MeV.

total cross sections. These are plotted in Fig. 1 as a function of excitation energy, after dividing by 2J+1. We see that the quantity $\sigma_{tot}/2J+1$ is very nearly a constant for the four levels of known^{5,10} J. The results are listed in Table II. The average value of $\sigma_{tot}/(2J+1)$ for the four levels is 5.49 ± 0.23 . If we divide the value of σ_{tot} for the 3.520-MeV level by this average we get TABLE II. Results of the reaction ${}^{10}B(^{7}\text{Li}, p){}^{16}N$ at $E(^{7}\text{Li}) = 16.0$ MeV.

E_{x}	J^{π}	σ _{tot} (μb)	$\frac{\sigma_{\text{tot}}}{2J+1}$ (µb)
3.36	1‡	16.4 ± 0.7	5.46 ± 0.22
3.52	?	25.5 ± 0.9	• • •
3.96	3+	41.0 ± 1.2	5.86 ± 0.16
4.32	1^+	15.0 ± 0.8	5.00 ± 0.26
4.39	1	16.9 ± 0.8	5.64 ± 0.26
Average			5.49 ± 0.23

$$\frac{\sigma_{\text{tot}}(3.520)}{(\sigma_{\text{tot}}/(2J+1))_{\text{ave}}} = \frac{25.5 \pm 0.9}{5.49 \pm 0.23} = 4.6 \pm 0.3$$

A strict interpretation of these results requires 2J+1=5 or 4. Other values are more than four standard deviations away. A value of 5 implies a single state with J=2. The ${}^{15}N(d, p){}^{16}N$ results 2,3 then favor positive parity. A value of 2J+1=4 implies a doublet with spins 1 and 0. The ${}^{15}N(d, p)-{}^{16}N$ results 2,3 would rule out a positive-parity doublet with spins 0 and 1, so that at least one state has negative parity.

We thus suggest $J^{\pi} = 2^+$ if the 3.520-MeV level is a single state and $J^{\pi} = (1^{\pm} \text{ and } 0^{\pm})$ (with at least one state having negative parity) if it is a doublet. Perhaps further experiments can uniquely settle the question.

- [†]Work supported by the National Science Foundation. ^{*}Present address: Department of Physics, Florida
- State University, Tallahassee, Florida 32306. ¹B. Zeitnitz, H. Dubenkropp, R. Putzki, G. J. Kirouac, S. Cierjacks, J. Nebe, and C. B. Dover, Nucl. Phys. <u>A166</u>, 443 (1971).
- ²H. T. Fortune, L. R. Medsker, J. N. Bishop, and S. C. Headley, Phys. Rev. C 11, 304 (1975).
- ³H. Fuchs et al., Nucl. Phys. A196, 286 (1972).
- ⁴H. Freiesleben and R. Weibezahn, Nucl. Phys. <u>A184</u>, 273 (1972).
- ⁵D. J. Crozier and H. T. Fortune, Phys. Rev. C <u>11</u>, 308 (1975).
- ⁶G. Mairle, Jahresbericht Max-Planck-Institut für

Kernphysik, Heidelberg, 1971 (unpublished), p. 176. ⁷R. R. Carlson and R. L. McGrath, Phys. Rev. Lett. <u>15</u>, 173 (1965).

- ⁸R. L. McGrath, Phys. Rev. <u>145</u>, 802 (1966).
- ⁹J. L. Wiza, H. G. Bingham, and H. T. Fortune, Phys. Rev. C 7, 2175 (1973); H. T. Fortune and H. G. Bingham, *ibid.* <u>10</u>, 2174 (1974); F. Ajzenberg-Selove, H. G. Bingham, and J. D. Garrett, Nucl. Phys. <u>A202</u>, 152 (1973); J. D. Garrett, F. Ajzenberg-Selove, and H. G. Bingham, Phys. Rev. C <u>10</u>, 1730 (1974); J. N. Bishop and H. T. Fortune, Bull. Am. Phys. Soc. <u>18</u>, 678 (1973); Phys. Rev. Lett. <u>34</u>, 1350 (1975).
- ¹⁰F. Ajzenberg-Selove, Nucl. Phys. <u>A190</u>, 1 (1972).