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In this paper it is shown how the fundamental quantum mechanical constraints of unitarity
and analyticity in three-body final states can be realized when finite-range effects, like
centrifugal barriers, are important. The resulting equations are remarkably similar to the

usual separable-potential scattering equations.

NUCLEAR REACTIONS Three-body scattering theory, implementation of
unitarity and analyticity constraints with finite-range effects.

Unitarity forces rapid variation and interrelation-
ship on the quasi-two-body amplitudes that appear
in the sequential theory or isobar model of three-
body final states.!'”® We have seen that adding sub-
energy analyticity to unitarity, that is using the
discontinuities provided by unitarity in a disper-
sion relation, gives a simple form (the zero-range
form) of the usual separable interaction scattering
equations.!'® In this note we reexamine the ques-
tion of implementing analyticity with particular at-
tention to problems associated with threshold be-
havior and total-energy analyticity. We show that,
at least in a given form of the analytic continua-
tion, the full separable interaction equation is ob-
tained, and that all other continuations that we
have been able to study that deal with the threshold
question lead to equations with serious flaws.

The isobar or sequential-decay formalism begins
by decomposing the amplitude leading to a three-
body final state into a sum of three terms each
“ending” with the interaction of a particular pair.
These pair interactions are typically assumed to
proceed via a resonance so that each of the three
terms may be further decomposed into a product
of a quasi-two-body amplitude for forming the
resonance (treated as a particle) and the third
particle times a factor giving the subsequent pro-
pagation and decay of that resonance. It is the
dependence of that quasi-two-body amplitude on

the center-of-mass energy of the resonating pair
(or on the energy of the third particle which is
the same thing because of total-energy conserva-
tion) that we wish to study. The factor carrying
the subsequent propagation and decay of the reso-
nating pair is neither the pair’s two-body ¢{ matrix
nor the propagator or D function, but rather some-
thing halfway in between because of threshold ef-
fects. The two-body ¢ matrix for an interacting
pair of relative momentum g and center-of-mass
energy € in the Ith partial wave may be written

(qlt,€)la) =N,(€,q)/D ) , 1)
for small ¢q
(glt,€)la) ~q* . @)

A term representing the propagation and decay of
an [-wave pair goes only like ¢’ for small ¢, Hence
the factor giving the propagation and subsequent
decay of the resonant pair in a three-body formal-
ism should be

Whely ¢ Wi, )2
7 T 5,E b, - ®

Following Ref. 1, we therefore write the ampli-
tude for going from an initial state labeled by k
to a final state of three spinless bosons (for sim-
plicity) of momentum p,, B,, and p, in the over-all
center-of-mass system with total energy E as
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e = PN | - - |l -
(k| T| Py, Pos [ =(2m)%6(p, +p, +p3)'2' ‘;k (kI F(E) Pi, l>3“(‘2’§'7)' Y45, 4)

where [ is the partial wave of the dominant pair-
wise interaction or resonance, q;, =3(B; - B), 4
is a unit vector and 7 =2m=1. It is the p depen-
dence of F we wish to study.

The existence of the ¢* in (3) or the ¢?’ factor
in (2) is a finite range effect. It is really qR,
where R is some range parameter, that we are
using as expansion parameter. Of course, if the
resonance under consideration is narrow and far
from threshold, the threshold factors are irrele-
vant, but so then are the three-body effects we are
studying. In cases where the resonance bands are
broad and/or threshold effects are important, we
need the two-body propagation and decay factors
far from threshold as well as near threshold. If
one tries to include analyticity and obtain disper-
sion relations, one needs this factor outside the
physical scattering region as well., Hence we can-
not simply use a form like ¢* but must use (or
guess at) the analytic function to which ¢’ is the
small-g approximation. The finite-range origins
of the ¢*, or alternatively its connection to N in
(3), make it clear that the function should have

Disc(k|F(E)| B, I) = - 270, (E - $p?)

><zf(2 )3<k|F(E)|p Iy

where P =(5+3p")/|5+59'| and P'= (' +35)/
|p+2D|. To further simplify the argument, let
us take 7 =0 and assume the factor v (we drop the
subscript !) is then associated with some dynami-
cal barrier like the Coulomb barrier, or a non-
monotonic potential, or is simply a manifestation
of left-hand cuts.

If we use the technique discussed in Ref, 1 to
implement analyticity starting with (6) as the dis-

J

ap(k|FE) D) v(E-3p")

—

left-hand cuts only. One can think of this factor
as a penetrability factor familiar in nuclear phys-
ics. Hence we replace the ¢’ in (4) by

7' =[N, (e,)]/2=v,(q?), ()

with the conditions

v,(¢®)~¢q' for small g ,

v1@*)< M for ¢~

and v,(¢?) has only left-hand cuts in g2, We are
making the simplifying assumption that the € de-
pendence of N in (3) may be dropped. The alert
reader may suspect that we are sneaking sepa-
rable interactions into the formalism under a new'
guise, In a sense we are, but only because we

see no other way of dealing with the threshold fac-
tor or left-hand cut problem. I we make the re-
placement (5) and follow the discussion of Refs. 1
and 2, we obtain for the discontinuity of F across
the pair subenergy cut

E - 2 . . .
B‘I(LE_ﬂz_pl_zg‘ Y, n®)Y, o PW(E-202-2p"2-25"D"),

6)

continuity across the subenergy cut of {k|F(E)|p)
going from E — $p%2=0to E - $p2 =, we run into
problems with total-energy analyticity. Forgetting
for a moment about the effect of the v (E — $p?) in
front of the integral in (6), which only adds to the
complications, and using (6) as the subenergy dis-
continuity in a dispersion relation in the subenergy
leads to an integral equation for (k| F(E)|p) of the
form

- - -> - 1
(le(E)|p>=(k|R(E)|p>+(27,)4 D(E-2p7)(E - 2p°

where R is the inhomogeneous part of the equation
or the part of F without subenergy cuts. Because
v has only left-hand cuts, its presence under the
integral will introduce singularities in F as a func-

_21)!2_25,5/) ’ (7)

-
tion of E even when E is negative. Strictly speak-
ing, these could be absorbed by compensatory
terms in R, but that is awkward since R has to be
given, (7) does not determine it, and we know very
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little about the structure of these singularities.
This was just the problem we encountered in Ref.
1 when discussing the zero-range form of the inte-
gral equation obtained for F [Eq. (40) of Ref, 1].
If we try to use a finite-range form for the ¢
matrix, the left-hand cuts of ¢ give extra E sin-
gularities we do not want, Of course the pair sub-
energy singularities of (7) are correct, that is
(k| F(E)|p) obtained from (7) clearly satisfies (6).
It is the “extra” or “new” condition of total-energy
analyticity that we are now imposing that gives us
difficulty. Let us examine the origin of this diffi-
culty in more detail. We are studying (k| F(E)| p),
or in its partial-wave form (& F,(E)|p). (Here !
is the three-body angular momentum.) We know
it has a cut in the pair subenergy E - $p2? in the
interval 0< E —$p2< o, If there are finite-range
effects (like two-body threshold behavior), it also
has left-hand cuts in p2 starting at p?=- p?, where
1 is a momentum-space range parameter., Final-
ly, it has cuts in E beginning at the lowest scat-
tering threshold and running to «., Clearly, E,
P2, and E - 3p? are not all independent variables.
1f we study F for fixed E as a function of E — $p2
we eventually find that the subenergy cut going
from p% =% E to p?=—w and the finite-range sin-
gularities get intertwined. This is the problem
we are encountering. The way out is to take (6)
to be giving us information about the discontinuity
across the E - 3p? cut for fixed p, in other words
we can disperse in E. Because the essential fea-
ture of the discontinuity expression (6) is the &
function, it is now very easy to disperse in E.
The fact discovered in Ref. 1 that when we dis-
perse we simply put the argument of the 0 func-
tion into the denominator will now not appear as a
technical miracle, but will be trivial, There re-
mains, however, questions of analytic continua-
tion. To see this consider a simple example.
Suppose we know that the discontinuity of some
function g(x) across one of its singularities is
given by

Disc & ®)=mp)0(x —a)=mp(a)d(x —a) , ®)
where p is some known function. We can realize
this analytic structure in two ways. We can write

& ®)=7,(x)+p(a)/ & - a) (92)
or
& &) =7(x)+p(x)/(x - a), (9b)

substitution in F. This gives us finally

where 7 is that part of g that has no pole at x =a,
Both g, and g, have the same discontinuity (resi-
due) at the pole at ¥ =a, and, in fact, g can be
made to equal g, by choice of 7, and 7,, but one
form of g, or equivalently of 7, may be more
“natural” than the other.

In our approach to (6) these same considera-
tions enter. Equation (6) may be written

Disc({k| F(E)| p)
= [ ap'h(B, B, E(E -2~ 2" - 25 B") .

|
- (10)
This yields

(k| F,(BE) p) =(kIR,(E) p)

- ap'h(p, D', 20* +2p" +2p * B')
E-2p2-2p'2-2p*p’

(11a)

corresponding to (9a) or
(KF, @)D = (Kl B,®) D)

a%p'm(p, B, E)
E~2p%-2p"-2p-p’

corresponding to (9b), or in fact many things in
between, depending on in which factor of 2 we put
E=2p2+2p2+2p° f)’, and in which we leave it
as E, All of these will satisfy (10) or (6) since
they all have the same subenergy discontinuity.
We need to use our information about the other
properties of F, total-energy analyticity for
example, to choose among them. In fact, except
for the E in F, E enters in (6) always in the com-
binations E=$p2 or E=3p’2, For E=2p2+2p'?
+2p*p’ we have
E-$p"=2(p+:p')
and (12)
E-$p?*=2(p' +3p) .

(11b)

Clearly we want to make this substitution in the

v’s in (6) in order to make sure their left-hand .
cuts do not get involved in the p’ integration in the
equation corresponding to (7) when E is kept fixed.
This is the problem we had before. On the other
hand, the E dependence of D is esential to the total-
E analyticity and hence we do not make this sub-
stitution in D, Furthermore, we do not know the

E dependence of F, and hence we do not make the

(k| F(B) p) = (k| R(E)| p) +

d%p’ v(2(B+3p" 1) v 2 (B’ + 3B IEIF (E) B 13)
@2n) D(E-3p?)E-2p2-2p"2-2p°p") ~’
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which is essentially the separable -potential form
[the difference is that we have not used total-ener-
gy analyticity to require that the v’s also are used
to get D, although some of that is implicit in (5).]
It should be stressed that in choosing how we make
the substitutions (12) for E in £ we are choosing
among alternatives all of which give the correct
subenergy discontinuity. That is, all satisfy (6).
We are using other information (E analyticity) and
our desire to keep R simple. It may be that just
to get the subenergy dependence we do not need

to be so particular, and even forms that include
extra E singularities that we do not compensate
for by choice of R will give that dependence cor-
rectly. As we have seen, the skape of the p de-

pendence of F but not its magnitude does seem not
to depend on the details of the inner dynamics,*
but much work remains to understand this. Mean-
while (13) gives a way of avoiding unwanted sin-
gularities which include finite-range and barrier
effects. It is clear that this method is easily ex-
tended beyond identical particles and beyond s-
wave pair interactions. The techniques for doing
this are implicit in Ref. 1, There is also no ap-
parent obstacle to extending this method to the
relativistic case where it will give an equation
essentially identical to the Blankenbecler-Sugar
three-body equation,® but with only the positive-
energy part of the exchange propagator.
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