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Nuclear magnetic dipole moment of 'sITa ~
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(Received 5 June 1975)

The hyperfine structure of the 6s'S&&2-6p P, &, line of Ta Vat 1708 A has been resolved using a 150 A sliding

spark discharge. The 6p-8s multiplet was identified and the ionization energy was redetermined. With these

new data a value for the nuclear dipole moment of "'Ta of (2.36~0.02)p,„is derived. New wavelengths are

given for all previously classified lines.

~

NUCLEAR MOMENTS Spectrum, tantalum, ionization energy.

Optical determinations of the nuclear dipole mo-
ment p,~ of "'Ta have been made utilizing the hy-
perfine structure (hfs) of the 5d'6s'F, level' of
TaII and the 5d'6s 'D, &, and 'D, &, levels' of Ta I.
In both cases the effects of intermediate coupling
and configuration interaction were not included in
the calculations. These complications are avoided
by determining p, l from the hfs of a single electron
outside of closed shells. This configuration is
found in four-times-ionized tantalum (Ta V) and
is utilized in the present measurement of IL(,I.

An interpretation of the spectrum of Ta V has
been given by Meijer and Klinkenberg' who re-
ported the 5d, 5f, 6s, 6P, 6d, and 7s terms. We
have recently observed this spectrum in connection
with our study4 of Ta VI and were able to identify
the 6P-8s multiplet. Furthermore, we were able
to resolve the 6s'Si/2 6p Pi/2 line into its hyper-
fine components, which give directly the hfs of
these levels. Thus the more accurate determina-
tion of the ionization energy from the three-mem-
ber ns series and the measured splitting of the
6s Sy/2 level provided the opportunity to make an
improved optical determination of p, ~.

OBSERVATIONS

The natural relative abundance of "'Ta is 99.99%.
Isotopic structure is therefore absent in the pres-
ent measurements. We obtained the 6s 'Si/2-
6P'P, /, line at 1708 A with the sliding spark
light source" operating at a peak current of 150A.
Observations were made with the National
Bureau of Standards 10.7- m normal incidence
vacuum spectrograph in second order at a plate
factor'of 0.39 A/mm. An interfering line of a
lower ionization stage occurs in the middle of the
hyperfine pattern at this current. It was identified
as such by observing the line at 100, 150, and
200 A, the traces of which are shown in Fig. 1.
The interfering line appears in trace A with no

evidence of the Ta V line, while in trace B both
lines appear. Three of the four components of
the hfs of the Ta V line are distinguishable in this
exposure. In the diagram of the hyperfine transi-
tions appearing below the tracings it can be seen
that the splitting of both the upper and lower level
may be measured from these three components.
Trace C shows the 1708-A line at 200 A with no
evidence of the interfering line. At this current
the linewidths have increased, causing the blending
of the close components of the hfs. Theoretical
intensities of the hyperfine components are given
with trace C, with measured spacings as shown
in the lower part of the figure. These spacings
were obtained by measuring the interval from com-
ponent a to c and c to d on the exposure from which
trace B wa, s made.

Our measurements of the wavelengths of a num-
ber of the lines of Ta V differ significantly from
those given in Ref. 3, in some cases by as much

0
as 0.04 A, whereas our wavelength uncertainty is
+0.005 A. For this reason we give all our mea-
surements in Table I, including the newly observed
6p-8s multiplet and the partially resolved hfs of
the 6s-6P multiplet. These data were obtained at
200-A peak current, and therefore only the two
components of the 6s'Si/2 6p Pi/2 line shown in
trace C of Fig. 1 are given. The energy levels of
Ta V derived from these new data are contained
in Table II. The 5d, 6s, and 6P level values have
uncertainties of +0.5 cm ' while the remaining level
values have uncertainties of less than 2 cm '. The
hfs intervals given for 6s'S, /, and 6p'P, /, were
obtained from the exposure of the 150-A spark.

IONIZATION ENERGY

A value for the ionization energy was derived
from the three-member ns series by assuming a
linear variation of the quantum defect with term
value. A correction to this approximation was ob-
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TABLE IL Energy levels of Ta V for configurations 4f 5~ 5P6( So)+l.

n~
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Level
(cm ~)
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6s 2S
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5f F

8g ~S

1
2

3
2

3
2

2

5
2

7
2

2

3 4 105 563.0

118862.2

199315

201 274

206 544

209 077

209423

274 616

13299.2

1959
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From Lu III we find do/dT =1.11(bv/d, T) where
ho is the difference in quantum defects between
the 6s and 7s terms and 4T is the difference in
term energies. ' Then using this factor for Ta we
obtain

(dn*/dn)/n*' = 0.047 50.

From formulas given by Wybourne" we find

(1 —6) = 0.9243

and

(1 —q) = 0.9682

assuming (x/x, ),„=—', for the nucleus. Thus, with
I=,'-, we obtain for the nuclear magnetic dipole
moment of "'Ta

p, i = (2.36 + 0.02) p,„.
The uncertainty equals the rms error arising from
the uncertainty of 0.02 cm ' in the measurement of
the hyperfine splitting and the uncertainty in the
(1 —&) correction according to whether ~ or 1 is
chosen'o for (x/ro), Each of. these contributes an
uncertainty of 0.015p.„to p.i. The uncertainty of

- +100 cm ' in the ionization energy has too small
an effect on n* to count among the others.

A comparison of this result with other determin-
ations is given in Table III. Direct measurements
of the nuclear gyromagnetic ratio p~/I have been
made by nuclear magnetic resonance of Ta in po-
tassium tantalate" and in a solution" of HF and in

HNO, . The optical method is somewhat less ac-
curate than these experiments but it provides an
independent determination of p.l that is relatively
insensitive to the nuclear spin. This is shown by
the following:

AE„(hfs) pz
I+—' I2

or

TABLE rrr. Values of p, for Ta derived by various
methods.

Method Source

2.36 + 0.02
2.1
2.4 6 0.2
2.35 + 0.01
2.361+ 0.01

Optical
Optical
Optical

NMR
NMR

This paper
Ref. 1
Ref. 2
Ref. 11
Ref. 12

The nuclear magnetic resonance (NMR) method
determines pi/I, for which the spin must be known
in order to evaluate p.i. The agreement of these
results with the NMR data also provides verifica-
tion of the Goudsmit- Fermi-Segre formula, ' used
in the optical method, for a very heavy atom
where the relativistic correction is large and for
an ionization stage greater than has heretofore
been utilized.
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