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Multiple-diffraction expansion for intermediate-energy reactions
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A multiple-diffraction expansion for heavy-ion reactions is constructed in which the leading term is Glauber s
phenomenological multiple-diffraction amplitude. This is achieved with the help of a pseudopotential between
elementary particles in ions which in the Glauber approximation gives the empirical elementary scattering
amplitude. The leading corrections to Glauber s phenomenological amplitude include (i) a wave-spreading
term of Wallace, (ii) an internal-excitation term of Hahn, (iii) a pseudopotential term which contains effects of
wave spreading and zero-point motion of bound particles in ions, and (iv) a Pauli term for antisymmetrizing
two clusters of identical fermions. Explicit expressions for these corrections are given in the impact-parameter
representation. The nature of these corrections is briefly discussed.

NUCLEAR REACTIONS Multiple-diffraction expansion formalism for
intermediate-energy reactions.

I. INTRODUCTION

Hahn' has studied a multiple-diffraction (MD)
expansion for intermediate-energy reactions in
w'hich the leading term is Qlauber's MD ampli-
tude. ' It is not clear in the development how
Glauber's empirical scattering amplitude for two
isolated scatterers or elementary particles first
appears in the theoretical expansion. This paper
studies a solution of the problem by using a pseudo-
potential which reproduces this empirical elemen-
tary amplitude in Glauber's high-energy approxi-
mation.

The paper is organized as follows. We begin by
giving a review' of the basic ideas in multiple dif-
fraction expansions for heavy-ion reactions in Sec.
II. The pseudopotential is introduced in Sec. III,
where how Glauber's phenomenology is treated in
the theoretical expansion is also shown. Correc-
tion terms to Glauber's phenomenological MD am-
plitude are discussed in Secs. IV-VIII. Section IX
contains brief concluding remarks.

II. MULTIPLE-DIFFRACTION EXPANSION

We first establish notations by briefly reviewing
the MD expansion. In Glauber's high-energy meth-
od, ' the elastic amplitude between two bodies A and
B has the general form

for a momentum transfer q =k&-k, . Here & =~k, ~

= ~kz~ is the relative momentum, and b is the im-
pact vector on a plane perpendicular to k =2(k,
+4&), the average of the initial and final relative
momenta. The profile function I'»(b) contains

dynamical information of physical interest.
In applying the method to two clusters or ions

of N, and Nt, elementary particles of types a and
& respectively, Glauber' starts with an experimen-
tally determined elementary scattering amplitude
f (q) between a and & for a relative momentum k„
corresponding to the same relative speed ~u~.
Equation (1) is then inverted to obtain an elemen-
tary profile function

I'.,(6) = (2w(A„)fd'qe ,'"'f(q)

=1 —e aa&x {b)

This can be related to a phase-shift function g „(b),
as indicated in Eq. (2).

For clusters of elementary particles, Glauber'
points out that under conditions relevant to high-
energy scattering, the phase-shift function is ap-
proximately given by the sum of elementary phase-
shift functions. That is,

Ng

I - I'„(b)=(&B(
™

[ I - I'„(b+s, - s, )I~A.B)
i =1 4=1

(3)

In this expression
~
AB) is a simple product

~A) ~ B) of properly constructed (symmetrized
or anitsymmetrized) internal states ~C) of ions
C =A. , &. The additional symmetrizer or anti-
symmetrizer between ions needed when the ele-
mentary particles are identical has been neglected,
because the effect is expected to be unimportant at
intermediate energies. The vectors s, (referred
to collectively as s) are the perpendicular compo-
nents of the internal coordinates x;, which may be
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defined in terms of single-particle (s.p. ) coordi-
nates r;:

propagator is approximated by Qlauber's linearized
propagator G~.'' ' We write

x; =r] —R~ Rc= Q r;/N„ G = (Ei'~ —Ho)
' =G~+G,4HG,

where

(6)

C=A B c=a b. (4)
Since the phase functions depend on these perpen-
dicular components only, the integrations in Eq.
(3) involving z components of internal coordinates
can be done readily.

It is usual to replace the complicated internal
state (AB) by a shell-model state (AB'. ~. The
spurious motion of cluster centers of mass is
removed by using & functions in operator matrix
elements.

G, =[u (Sk,„-P)+iq] '.
Here

u =Skk„/y, , p, =M„M~/M»,

E =E"' —E~"' —Es' =52@2/2P, , E~ ~ =E+iq .
(10)

The correction term &H =&H'"' +&H" contains,
besides nH'"', a wave-spreading (w) operator

&»I ~ I») =,&»I ~ ~ ~ 6(R„-M,R/M„, )

x6(Rg+ M~R/M»)IAB), , (5)

6H" =XG~ '+N», ~-1 —cos2

of Walla. ce.' ' It contains

N„, =(P-@k, ) ~ (P-kk,.)/2p, (12)

H = H~ +H~ +K~~

contains the internal ion Hamiltonians and the
relative kinetic energy operator between ions.
Let E'c' be the corresponding ground-state en-
ergy of ion C. Then Eq. (6) may be written as

(6)

Ho = E~m'+ E'~'+K~~ + 4H'"'

gH int ~H int +gH int
A +

&He'=Hc' -&'c' .
The assumption (i} is to ignore the internal ex-
c itation operators &H~'. The particles will then
not move relative to each other in each ion during
the scattering process. The situation may be de-
scribed as a frozen-ion (more familiarly as a
frozen-nucleus) approximation. The many-body
scattering problem then reduces to that for a sum
of potentials. The correction due to &H~ ' has
been studied by Hahn. ' (A similar effect has been
discussed earlier by Remler. "}

Under the second assumption, the nonrelativistic

where j/l~ =N, ~„j/I» =4~&+M~. The vector R
=b+zz is the relative coordinate betmeen ions.

We thus see that the MD amplitude depends
simply on the elementa, ry amplitude, i.e., on the
on-shell properties of the elementary interaction.

It is known' '4 that a many-body scattering am-
plitude (1) having the MD form (3) can be derived
under the following assumptions: (i} the ions are
not excited internally'; (ii} Glauber's linearized
propagator is used''4' '; and (iii) the elementary
interaction is a local and spin-independent poten-
tial. 4 For further discussion, let the Hamiltonian
be H, + V, where V =Q,~ v, , contains the elementary
interactions of particle s in one ion and particle &

in the other ion, and

the wave-spreading operator for the linearized
propagator of Abarbanel and Itzykson. ' Perturba-
tive corrections due to ~H" have been studied by
Wallace ' '

The third assumption, that elementary poten-
tials are local and spin-independent, simplifies
formulas. It is needed if the elementary profile
functions I'&„are to have the perfect localization
implied in Eq. (3). This feature is also responsible
for the simple additivity of phase shifts in Glau-
ber's MD amplitude. ' Spin-dependent and spin-
flipping effects will not be considered in the fol-
lowing discuss ion.

With the correction terms thus enumerated, it
is possible to evaluate them perturbatively. This
program has been partly carried out by Wallace"
and by Hahn. ' Related studies have been made by
other authors, e.g. , Frahn and Schurmann. ' "

III. PSEUDOPOTENTIAL AND GLAUBER'S
MD AMPLITUDE

If the actual elementary interactions v&, are
used in the MD expansion described in Sec. II,
the resulting elementary profile functions will
differ from the empirical functions used in Glau-
ber's MD method. This is because an approxi-
mate (i.e., the linearized} propagator is used in
obtaining the MD amplitude. By using empirical
profile functions, one removes some of the errors
introduced by the approximate propagator. This
important feature of the MD method can be incor-
porated into our theoretical expansion with the help
of a pseudopotential v' between the elementary
particles a and ~. It is so defined as to give the
same & matrix with Glauber's linearized propa-
gator g~ (for an isolated ab pair) as the original
potential v with the full propagator g. This re-
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quires that

v' =v+v(g-g~)v', (13}

where the propagators are to be defined.
Now the initial relative velocity for an isolated

ab pair should be the same as for a pair embedded
in ions. But there are two distinct groups of mo-
mentum operators. The operators p =p, = —p& for
an elementary pair ab in its c.m. frame, and the
operators P = P„=-P~ for heavy ions in their
c.m. frame. The former are differential operators
of s.p. coordinates, while the latter are differen-
tial operators in ion c.m. coordinates. The rela-
tive momentum eigenvalue of p is also different:
Kk, ~, =p,~u =0k,- (p,„/p), where p, ,~=m, m, /m„,
m„=m, +m„ is the reduced mass for the pair
ab. Hence, in the c.m. frame of the ab pair,

p. p, g Sk]+u =u~g —uey =
M~ m~ p.

(18)

The s.p. momenta p, =-p~=p transform into the
heavy-ion c.m. frame according to the Galilean
transformation

p, =9,p, S, ' =p, +m, &u,

where

S,=exp(-i mau r,/I) .

(1S)

enological MD amplitude with additivity of phases
is obtained. This choice of ~ means that u, ~ =u,

asav="av &a~/» "s~y ="y&aJp ~ 0 =
~ and c~ =

in the c.m. frame of ab.
To discuss further, we note that the two c.m.

frames move with relative velocity

where

(e(+) i )-t (14)
As a result,

g =S.s,gs.-'S-, '=(e&'& —&,)-',
where

(20)

e(+) @(+)~ /p @ p2/2~

Similarly, g~ in this c.m. frame can be written
formally as

gg = ~ usa ' ( ka~av p}+

where k,~~= ~(k,N +k,») and u„=N'k, l, &,»„/p„,
with u., = Ik.ogl =

I k.ng I Therefore

g =a, +g, »g,
1

~ bgg +nAI ~ y=1 —cospp,

n„, = (p gk.„-)~ (p lk„;)-/2P. s .
Thus the relationship between & and &' depends on
the energy e and on the choice of k,~~ or k,&. The
energy e is already determined by choosing [u,b[

=
~ u~; we must choose k,~~ such that the resulting

elementary phase-shift function is exactly identical
to that appearing in Glauber's phenomenological
MD amplitude for heavy-ion reactions.

To be more precise, we should define this MD
amplitude as the matrix element of the MD opera-
tor

T =V'+ V'G~ TMD
——V'QMD (17)

calculated with the ion-ion pseudopotential V'(R,x}
=Q,~v,'~(R+x, -x~) in the c.m. frame of heavy
ions. That is, a Galilean transformation is in

general required in order to relate to the scat-
tering between an isolated pair of elementary
particles.

Such a Galilean transformation does not change
the dynamics of the two-body collision, only its
kinematics. Hence we could choose the same z
direction for the elementary scattering as for the
heavy-ion scattering, so that Qlauber's phenom-

(21)

Similarly, we can calculate g~, &k, and n». It
turns out that these expressions are not needed
because we shall do this part of the calculation
in the c.m. frame of ab.

IV. CORRECTION TERMS

Having defined the pseudopotential &', we return
to the heavy-ion problem. If we use the actual
ion-ion potential V =Q,„v,~ with the Glauber propa-
gator G~, we should get

Tg —-V +VGgT~ =VQ~ =TMD +T~p, (22)

which differs from T„n of Eq. (1V) by a pseudo-
Potential correction

T&p =Q„n(V —V')0 (23)

T =Tg+T(G —Gg)Tg =T„D +T&~ +T +Jto, (24)

We expect TMD to be closer to the true T =V +VGT
than T~, because T„D is exact when each ion con-
tains only one elementary particle. That is, the
term —T~P gives the improvement which the
phenomenological MD amplitude represents over
a simple Glauber result for the actual potential
under the same frozen-ion approximation. In addi-
tion, the phenomenological method is easier to
apply because, like the impulse approximation,
the actual potential does not have to be constructed.

But, of course, T„D is not exact. The true T
matrix is
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where

T~ =TMD(G —Gg)Tg,

R =(T —T„D)(G—G~)T~.

(2s)

antisymmetrization of identical fermions between
ions.

V. WAVE-SPREADING CORRECTION

It is convenient to decompose & into'

T =T"+T'"' T' = (OMD-1}AH'(&~-1),

i =w, int, (26)

by using Eqs. (8), (17), and (22). The superscript
w denotes wave-spreading (or FresneP) correc-
tion due to the full propagator, while "int" denotes
internal excitation of ions, including recoil and
binding effects of particles in ions.

To calculate correction terms to the phenom-
enological MD operator (17) it is necessary to
know either the actual potential v or the pseudo-
potential v'. Of the two, v' is more easily ob-
tainable because of its simple relationship' to
the elementary profile function I',~:

~'(r}= . —— 1 n[1-r„( b)]( 'b-r')-'~' bdb
r

(27)

if v' is spherically symmetric. In addition, v' is
local but v is not. We therefore eliminate & in
favor of v', and Q~ in favor of Q„o, in &' (i =pp,
w, int). The result will be denoted T". The result-
ing contributions to the ion-ion scattering ampli-
tude can all be written in the impact-parameter
representation:

E' = — d'b e'~'b (AB~ e'" ' ' f'(b x)~AB)2'
(28)

where x denotes all the internal coordinates x& .
Explicit forms for f' will be derived in Secs.
V-VIII.

The result (28) is strictly valid only for elastic
scattering. It is possible that a similar expres-
sion can be found for inelastic scattering. A pos-
sible choice of the relative speed is u =[(E, +E& )/
p]' ', where „E=S'k 2„2/p, n=i or f. But since
k 2 (k, +kz) is no longer perpendicular to q
=4& -k&, it is not clear if it is better to choose
the z axis to be perpendicular to q or parallel
to k~. In the absence of a detailed investigation,
Ce prefer the choice z L q, so that the impact-
parameter form (28} is preserved. This is an
interesting technical problem which is outside
the scope of the present paper.

In addition to the scattering corrections dis-
cussed above, there are corrections and effects
coming from the internal wave functions. We shall
discuss, in Sec. VIII, only one such effect: the

X )y (R+x) —xy) q (31)

where the limits of integration are z, =-~, z,
=z for g and z, =z, z2 =~ for g . Also,

(R;x)+X (R;x) =X(b;x) (32)

is the phase function of Eq. (3). Unlike X (R;x),
it does not depend on the z component of the rela-
tive coordinate R.

Using Eqs. (30) and (12) in Eq. (29), we find that
&" contributes a scattering amplitude &" given
by Eg. (28) with

w'f" =- 2„(&RX ) (&RX'}dz.

An integration by parts' of the resulting Eq. (28)
gives

oo yg2 )

+z ~bV' V (X —X ) dz'
NQ

(33}

This result is, of course, Eg. (A2) in Appendix A
of Wallace. ' It is reproduced here both for the

The wave-spreading (or Fresnel} term &" of
Eq. (26}has been studied by Wallacee for poten-
tial scattering. A similar result holds of course
for scattering from a "frozen" many-body sys-
tem. ' ' ' ' Wallace ' ' points out the useful result
that, of the terms generated by the perturbation
&H", the ~ dependent terms tend to cancel each
other when ordered in powers of k. (Wallace shows
this explicitly in the lowest orders, and conjectures
that it may be valid more generally. ) Therefore,
we just keep

~" =(f1Mo 1)N~—(flMD —1} (29)

The Glauber MD wave functions" appearing in
this expression are

& R~ a, ~ k, ) =e'"'"' "'e'"~' "
, (30)

( k~~ &~MD~ R ) = e '"& 'e'" ' "' "'

where R =R„-H~ =b+zz. The Glauber MD phase-
shift functions are calculated from the pseudopo-
tential V' as indicated in Eq. (17):

gk

X (R;x) = — V' (b+z'z. x)dz'
SQ

gg
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sake of completeness and to show how a similar
term in the pseudopotential correction (23) may
be written down explicitly. The latter turns out
to have a sign opposite to that of Eq. (33). This
is because the wave-spreading corrections due
to isolated pseudopotentials are already taken care
of in the definition of these pseudopotentials.
These corrections should therefore be subtracted
from Eq. (33), leaving only the many-body part
of the correction.

VI. PSEUDOPOTENTIAL CORRECTION

as shown in Eq. (36).
In the coordinate representation, part of Eq.

(36) appears in Eq. (28) as

( r(b =b(b+zz(B, ' ' '
I (ggv wl l)(& exp(ik; ~ R')~AB) .

Here R' is the cluster relative coordinate

R' =R~ —R~

=Q rj'N ( —Q rrNb(

The pseudopotential correction has a structure
similar to the wave-spreading correction (33):

where

l=rid I ah~I +Rremt (37}

MD Q ( gg AIgg }(b MD (34) W) W A )
r)q =b)q+zz]~, R,.» = (m, r, + m, r, )/m, b,

in the c.m. frame of heavy ions. The resulting
scattering amplitude (28} contains the bound-state
matr ix element

&ABI e'"i"'I AB&

R„=R((((N, ' —Nb ')

Q r, N ' —g r, .g, ') .
j l &k

(38)

=-(AB~ e'" g (v'ggnAIg, v')„e'" ~AB) .

(35)

We are interested in the factor

(" ggnAI ggv }(bw(b
(-) ) ) (+)

= —(w v gg nAI gg v 'w )(b, (36)

where wIb =exp(iy('b), of the ik term This .is a
local operator in all coordinates except the z com-
ponent z,~ of r„=r, —r„=b,.~+zz,„. It is also in-
variant under the Galilean transformation 9& 9„,

Because of nonlocality, R' differs from the cor-
responding coordinate R on the left, but only in

zIb. The bound state [AB) has the wave function
CAB(x»xB) of the internal coordinates. Since we
are here only interested in the dependence on

z;„, we shall use the shorthand notation 4„'~
[ (r;„, ' )] for this wave function.

We expect the dependence on z,'„ to be weak since
it is related to the zero-point motion of nucleons
in clusters. This result can be seen as follows.
If we approximate 4'AB[(5;„+zz('„)] by
4'»[ (5;b+zz(b, )], the operator (ggv')(» in our
matrix element is effectively local, because

«ta
e' gb( g '(b '(b v('b(r Ib}w, b(r,', )e' gb( g'(bdz(, =[wIb (r(b)-1]exp[i(k, b(}gz(b], (39)

where k„,=k(ggb/lb Hence, .we find

( r,„, ~
~

(ggv'wl+~ ),.„exp(ik, R')~AB)

=exp(ik( R)( r(b, '
( (w((b l —1)~AB)

+exp(ik, R) —
@ v(, (r(,)w(„'(r(, )(@AB[(r(„)]—@AB[(r(b, )]j dz('b

(40)

In the following development, we shall concentrate
on the first, or local, term in Eq. (40), since it

I
leads to a simple expression for f~" . The re-
maining nonlocal parts can be obtained by direct-
ly substituting Eqs. (40) and (34) into Eq. (28). It
is not clear at this stage if the nonlocal parts are
small in comparison with the local part.

For the local part of Eq. (40), the calculation
leading to Eq. (33) can now be repeated, but for
the ik pair only. We shall use the notation

y„(r(b) = exp(ikM, „r(„), kg=i, f;
(41)

@AB(xA& xB} 4A(xA)4B(xB)
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To handle the operator n» of Eq. (16) in Eq. (34),
we note that

X kg C'~c'a (42a)

where V;~ is the differential operator in r,.~, and

Ki(X~) = —f4' Vgk 4~ 2

~k(xe) —-&le V.»Cs .
(43)

Similarly,

~*4'"6*(;'. ' —1)(p -@k u ../~)

=@~s~~6*{("';k'—1)[ &;(x~) + ~k (x, ) l *I

(V( kX2 k)) (42b)

Here g. is a function of ri„—-r,. —r~ =bi~+zizz.
Since r,~=R+xi -x~, we also have b;~=b+si —s~.

There are thus several terms contributing to a
matrix element of P~~ . Among these we recognize
one involving II'(2l«„) '(VX VX'),». The sum of
such terms from different elementary pairs gives

(p -kk, p, „/p, )(w, k
—. 1)g,(r;k)C „(x„)Cs(xs)

=k{[Tc;(x„)+ «k (xz )] (pv I,' —1)+ (p„X'.,)ggI+ l}

a wave-spreading function

(«)2
(v2«)' s v2«x g + z(«sf st, (X)» Xik) dz(» 2

Q ik iAiA

(44)

to be used in Eq. (28). Equation (44) differs from
Eq. (33) by an over-all negative sign, as expected.
Indeed, for N, =N, =1 we find p. ,„=u, 4u=0, and
therefore fPP~

"l +f" =0. This is, of course, ex-
pected since the total wave-spreading correction
must vanish by virtue of the definition of the pseu-
dopotential. More generally, we expect f
to be of order —i«(p„X,N«) '=-m, «/~» of f" .
Therefore, the heavier the ions, the poorer the
cancellation in f ' "~ +f" .

The remaining terms from Eq. (34) describe the
effects of zero-point motion of bound particles in
ions. They appear through the momentum depen-
dence of the actual potential v as defined by Eq.
(13). We expect these effects to be small at inter-
mediate energies, but it is nevertheless useful to
obtain a closed expression amenable to calcula-
tion. For these we find from Eqs. (40), (42a),
(42b), and (43) a contribution

2f"'*' '= dz Q [(1 —e '"~k)~ Tc;+T(k~'(I —e '" «)+(I, —e 'xik)(T&, +TI,)2' ~ (V,,X.

+
)

—(V,,X,,) (T&, +7&«)(1 —e . ' "'k)] (45)

in Eq. (28).
There are, besides Eq. (45), other contributions

due to the zero-point motion of elementary parti-
cles in ions. They originate from the second term
of Eq. (40), as discussed earlier.

VII. INTERNAL-EXCiTATION CORRECTIONS

We now turn to the internal excitation term in
Eq. (26). This is an important term, especially
at high energies, because it contains recoil ef-

fectss.

We begin by separating the contribution of each
ion:

z""t
C 7

~H',"'(n„, —1)i c&=[K',"'+v',"',n„,]i c&,

C =A or B, (47)

Hahn' has shown how the kinetic energy part of
Eq. (47) can be handled. If the internal kinetic
energy

N c

Kc =g K~ —Kc

Nc 2

IC =(2N, m, )
' P 2',.)'

i=l

(48)

is expressed in terms of s.p. operators K,- and the
ion C c.m. operator Kc ', then the term [K'c', Q„n]
contributes a part

C=A,B

Tc' = (QMPn —1)~c'(QMn —1) .

Operating on internal states

(46) (49)(fs.p. zz' f c.m. Kz')
C

C=A,B

in the scattering amplitude (28). Of these, Hahn'
gives the s.p. part fop' . It can be calculated
easily from Eq. (47):
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C 2m

Nc - g

dz(1 —e 'x }g ~ OQi=1
V, g v', dz'+2( V,. g v', dz'I. V,

g

V~]kdZ' (50)

Here V',. refers to a s.p. coordinate r, in ion C and m, is the mass of an elementary particle in ion C. The
index 0 refers to an elementary particle in the other ion. The pseudopotential e', k is
v', R[b+s, -s~+ (z+z, —z,}z], where x, =s, +z,z is an internal coordinate.

The c.m. correction fc rz has a similar structure
OO

f c.m. Kz' ~ -lf P.2Ez' +~ -1 dz(l e i x )

xg 2 f V,. P v',. dz' i'V;

0 gv'„dz' ' V, g d vIz.
k j

(51)

Here the subscripts i,j refer to particles in ion C;
while k, I, refer to particles in the other ion. Com-
pared with f'c~ , th'is c.m. correction should be
of order N, ' unless the second, or p, p» term in
Eq. (51) is abnormally large. We believe that the
correction (51) is important only for lighter ions.

Finally, the potential-energy is described by

f = f dz(1 —e '" )(e '" Vv'e'" —V'"')

(52)

As noted by Remler" and by Hahn, ' this term van-
ishes if V~"'is local.

VIII. PAULI CORRECTION

Finally, we consider the Pauli correction for
heavy ions of identical fermions. Since V' is sym-

metric in particle coordinates of each ion, we may
antisymmetrize just the quantity (AB~ with the
help of an antisymmetrizer 8. Thus

T =(8 —1)V'Q„D .

The operator 8-1 is nonlocal, with coordinate
matrix element —Q(R, R', x), when expressed in
terms of the relative coordinates R, R' between
clusters. Explicit formulas for Q for several
light nuclei are available in the literature. "

Since Q depends on the z components of R and
R', it is no longer possible to integrate z analyt-
ically. It is still possible to express the resulting
contribution to the scattering amplitude formally
in the impact-parameter representation (28). We
then find the following expression to be used in
Eq. (28):

(AB~ e'"f~ ~AB)=- dz(dRI f d R'()(R R'x)V'(R'x)e'" ~"""~+'""' ' "Vldd) . (54)

Expressions of the type (54) are familiar (and
have been calculated in the Born approximation)
in resonating-group and generator-coordinate theo-
ries of heavy-ion reactions. " Here at intermediate
energies we expect the Pauli correction to de-
crease rapidly in importance as the momentum
transfer increases. This expectation should be
checked numerically with the help of Eq. (54),
especially in exchange reactions.

IX. DISCUSSIONS

The main results of this paper are (i) the intro-
duction of a pseudopotential, v', (ii) the pseudo-
potential corrections (44} and (45); (iii) the
c.m. correction (51) and the internal potential
term (52) describing effects due to the internal
excitation of ions, and (iv) the Pauli correc
tion (54). With these refinements, a MD expan-
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sion can be made in which the leading term is
Giauber's multiple-diffraction (MD) amplitude
constructed from the empirical. elementary scat-
tering amplitude. It would be interesting to see
how important these corrections are, numerically.
Calculations of these terms are now in progress.

Still neglected in the expansion are relativistic
and spin-dependent corrections. The first appears
to be relatively straightforward. ""'"Spin-depen-
dent effects have been studied in the past within
the context of the Glauber theory. " If these ef-
fects are weak, one can treat them perturbatively.
If they are strong, their effects in the distorted
waves may have to be included. Further work is
needed to determine how they can be handled con-
veniently.

The MD expansion studied here is expected to be
particularly useful for P-u scattering. According
to Ul. lo and Feshbach, "one may associate the sec-
ond maximum in the P-a differential cross section
with double-scattering and two-nucleon correla-
tions, while triple-scattering and three-nucleon
correlational. effects are dominant in the third
maximum. The quantitative importance of the
leading wave-spreading correction, Eq. (33), in
the region of the second maximum has been noted
by Wal. lace' in potential scattering and by Schur-
mann" in P-nucleus scattering. The results of
Wallace' also suggests that higher-order wave-
spreading corrections can probably be neglected
in this second maximum region.

Thus with the addition of many-body corrections
discussed by Hahn' and in this paper, and of rela-
tivistic and spin-dependent corrections, the theo-
retical description of the second maximum in
elastic P-n scattering appears to be quite simple.
Therefore, the possibility of extracting informa-

tion on two-nucleon correlations appears quite
favorable if the elementary interaction is suffi-
ciently well determined. (According to a recent
calculation of Rule and Hahn, ' the uncertainties
in the elementary interaction are large enough to
mask the effects of dynamical correlations and
off-shell propagations. )

The situation with respect to larger angles is
less promising. According to Wallace, ' the con-
vergence of the perturbation expansion for wave-
spreading corrections tends to be sl.ow, although
we may expect the convergence to improve as en-
ergy increases. However, as energy increases,
the recoil. correction of Hahn' begins to dominate.
The effect is particularly important at large an-
gles where momentum transfers are large. It is
then possible that the perturbation expansion does
not converge. If this should occur, the divergent
series must be summed by special techniques
such as that of Pade approximants. " The simplic-
ity of the MD expansion and the possibility of gen-
erating high-order wave-spreading' and recoil
corrections suggest that the expansion might still
be competitive with, or supplementary to, the
multiple-scattering approach, "or the optical-po-
tential approach, ' or the hybrid approach of Hahn,

over a rather extended angular range.
We point out in conclusion that the MD expansion

considered here explicitly isolates many-body fea-
tures which must be treated before we can reliably
extract certain detailed nuclear information in in-
termediate-energy reactions.

We are indebted to Professor S. J. Wallace for
several useful critical comments. We would like
to thank Professor V. Franco for a critical reading
of the manuscript.
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