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The use of Gaussian expansions for the bound-state functions in distorted-wave —Born-approximation
calculations is discussed. The use of these expansions leads to an analytic expression for the form factor which

can be used to simplify the numerical evaluation of the matrix element. In addition, the Gaussian functions

are useful when studying the structure of the form factor. In particular, the validity of the "no-recoil"
approximation is discussed and a semiclassical interpretation is presented. A computer program (GAUss) usmg
the Gaussian expansions has been developed and used to evaluate the cross sections of some previously studied
reactions. Comparisons of the results with those of other programs are given.

NUCLEAR REACTIONS Ful. l-recoil, DWBA, Gaussian expansions.

I. INTRODUCTION

The distorted-wave-Born-approximation (DWBA)
is an important tool for analyzing nuclear transfer
reactions, but the numerical evaluation of the six-
dimensional integral in the transition amplitude is
difficult and tedious. If the DWBA analysis is to
be a useful tool one must either use an efficient
method for evaluating the integral or use valid ap-
proximations which simplify the numerical integra-
tion. A good understanding of the form factor in
the integral is required before an approximation
can be used with confidence. Presently there are
several techniques for the numerical evaluation of
the integral, ' ' and there exist several forms of
the "no-recoil" and "zero-range" approximations
for simplifying the integral. e ' When these various
approximations are valid is a question which is
still being investigated '0' xx

In this paper a new technique is presented for
the numerical evaluation of the "exact finite-range"
DWBA matrix element. The technique consists of
expanding the bound-state wave functions as a
series of Gaussian functions. This expansion not
only simplifies the calculation of the form factor,
but it can also be used to gain a better under-
standing of the structure of the form factor. Hope-
fully, a better understanding of the form factor can
be used to determine when various approximations
are valid. In addition, once the bound states have
been expressed as a sum of Gaussian functions, it
is easy to transform the form factor to another
desired set of coordinates.

While several DWBA programs' """already
exist using the methods in Ref. 1, it is useful to
have an alternative method. The method presented
in this paper not only provides a useful check for
the existing programs, but it also may be more
efficient for some reactions. The question' of
which method should be used will be decided by

experience in using the various programs. There
have been many papers'' '" "discussing the
properties of the existing programs; some com-
parisons of the present program with these pub-
lished results are presented.

One advantage of the present method is that the
form factor is an analytic function of the Gaussian
expansion parameters. Thus, once an accurate ex-
pansion of the bound states has been obtained, no
numerical integrations are required to generate
the partial-wave expansion of the form factor.
Also, since the form factor is expressed in terms
of the expansion parameters, only a small amount
of computer core storage is required. Another
advantage is that the present method can be gen-
eralized in a straightforward way to handle the
transfer of more than one cluster.

Gaussian expansions can also be used to investi-
gate the failings of the no-recoil and zero-range
approximations. While it is well known that the
use of no-recoil approximations can result in un-
physical oscillations in the differential cross sec-
tion, there is another aspect of this approximation
which has not been discussed previously. This is
the failure of the no-recoil approximation to pro-
duce a forward-peaked angular distribution for
transfer reactions with nonzero values of the angu-
lar momentum transfer. This aspect of the no-
recoil approximation was discovered during at-
tempts to fit "C('Li, t)"0 angular distributions.
Data for this reaction are forward peaked, but
no-recoil DWBA predictions were not forward
peaked for any reasonable set of optical-model
parameters at the energies which were investi-
gated. However, using a finite-range DWBA pro-
gram which included recoil effects, the calculated
distribution was found to be forward peaked. This
effect is especially puzzling since the differential
cross section was found to be strongly forward
peaked in previous no-recoil calculations for the
"C('Li, d)'60 reaction, in agreement with experi-
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mental results. For both types of reactions an a
particle is transferred to the same state in '60;
the only essential difference between the ('Li, t )
and the ('Li, d) reactions is that for 'Li the o. par-
ticle and the triton are bound in a P state, while
for 'Li the n particle and the deuteron are bound in
an s state. Thus, if the n particle is transferred
to an s state in '~O, the angular momentum trans-
fer is unity for the ('Li, t) reaction and zero for the
(8Li, d) reaction. In this paper the Gaussian expan-
sions are used to present a qualitative semiclassi-
cal explanation for these forward-angle effects as
well as a quantum-mechanical discussion of the
results.

In Sec. II the Gaussian expansions are used to
give a simple expression for the form factor. In
Sec. III the form factor for a particular set of reac-
tions is studied, and in Sec. IV the results of the
present program are compared with those of sev-
eral established programs.

The total angular momentum of a is s, and the
total angular momentum of B is ~~. The coordi-
nates used to describe the reaction are shown in

Fig. 1.
For simplicity we consider the case where the

bound states of & have only one value of total and
orbital angular momentum; we assume for the

initial state

j, =1, +j„

and for the final state

j, =1,+j„.
For a spin-independent interaction the selection

rules for total, spin, and orbital transferred angu-

lar momenta are:

II. DWBA THEORY

Following Austern et a/. ' we consider A(a, &)B re-
action, where the incident beam particles a consist
of a core &, with angular momentum s„bound to
the cluster x, with angular momentum/„; and in the
final channel the particle & consists of the core A

with angular momentum ~„, bound to the cluster x.

S =Sg —Sy=jg

f=l2 —I, =12 —I, .

A. Recoil

The cross section with recoil included is given
as an incoherent sum over s j, l and ~ of the

partial amplitudes j3,',"(kb, k, ), where'

(2)r)}'r )'2'~ (k, , k, )=1dr, f dr, k( ~ (k, , )f„rq (r, , r, ) ('~(2k, , r, ) (2)

and y( ) (g( }) is the incoming (outgoing) distorted wave. Dropping the s and j subscripts, the post interac-
tion form factor is given by

x g (I, m, lm~ I,m, ) W(l j,l j„j„l)[rp~((r„„)]*[V(r~)+V(v')—Ub(rb)]y, '(r~) .
PSy b fft2

(3)

Here y, ' (rb„) is the initial bound-state wave func-
tion, y",,2(r„„)is the final bound-state wave func-
tion, and U, (&b) is the distorting potential for the
final channel. For simplicity we consider only
the V (rb„) potential. Using

Austern ef al.' showed that the six-dimensional
integral in E(l. (2) can be reduced to a sum of
lower-dimensional integrals by using the partial-
wave expansion of the distorted waves and writing
the form factor as

rg~ = 1 —~ rg ——ry (4)
f).(rb, r. ) = p &2L Lb ( b ) FL* ( b)

I I ~N

E(1. (3) can be written as an explicit function of r,
and r, . The symbols a, b, A, and & stand for the
mass of the corresponding particle.

The evaluation of the transition matrix element is
thereby reduced to the sum of the two-dimensional
integrations over &, and &» in practice, &» I,a
is usually determined by the numerical evaluation
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functions of &, and functions of &, . This sum must
be truncated when the desired convergence is. ob-
tained. While their method reduces the form factor
to a sum of products of one-dimensional integrals,
the convergence can be quite slow.

B. No-recoil and zero-range approximations

The use of Gaussian expansions aids in the study
of the applicability and physical significance of
various commonly made approximations such as
the no-recoil and zero-range approximations.
There are several variations of the no-recoil
approximation, but in the limit where the mass of
s is much smaller than the masses of A. and & they
are equivalent. The two most common forms are
those of Sawaguri and Tobocman' and of Dodd and
Greider. ' Dodd and Greider use

and

r =—r ——r =—rB B o" B

to simplify the numerical evaluation of the integral
in Eq. (2), while Sawaguri and Tobocman use

x(A+6+x)- A-r =—r-a gga
r = —r .

This is true if the range of the interaction is small,
as in the (d, j) reactions, or if the energy is low,
so that the local wave number is small. Neither
of these characteristics is present, for instance,
in the "C('Li, &)'~Q and "C(8Li, d)"0 reactions.

If the interaction V(&~) is very-short range, it
may be possible to replace it with a & function,
giving a zero-range evaluation of the transition
matrix element. Zero range, of course, includes
the no-recoil approximation. In order to illustrate
the properties of the Gaussian expansions in more
detail the form factor is now considered for two
particular reactions.

III. ' C( Li, t)'60 AND '~C(6Li, d )16p FpRM FACTpRg

We consider the case where the n particle is
bound in an s state in "Q. For this case there is
only one value of the transferred angular momen-
tum l and this is the angular momentum of the n
particle in the initial channel; thus l =1 for 'Li
and l =0 for 'Li. Since there is only one value of
the transferred angular momentum, the differences
between the no-recoil and the complete DWBA can-
not be caused by neglected values of l. We show
that the differences are caused by the no-recoil
restriction that r, is a constant times r, .

For l,=0 and j,=0 the form factor becomes

Both of these approximations reduce the evaluation
of the integral to the sum of one-dimensional in-
tegrals. In this paper we consider only the
Sawaguri and Tobocman approximation.

The approximation, as usually made, consists
in replacing r, with (A/J3) r, in the argument of the
outgoing distorted wave, but retaining r„„ in the
form factor. Integration of the form factor over
r~, or equivalently r~„, for each value of r, , pro-
duces a function of r, which is used to obtain a
finite-range evaluation of the transition matrix
element.

The validity of thp no-recoil approximation is
dependent upon the continuum wave functions. The
Sawaguri and Tobocman approximation will be valid
1f

(-)-
Xa (kairos) Xa kbi g ra

over the range of values where the form factor is
non-negligible. The size of this region depends
upon the bound-state wave functions. If RI is the
radius of this region and K is the local wave num-
ber of the outgoing distorted wave, the approxima-
tion is valid for

—+& —+&

f, „(r,, r, )=(-1) ' 'i '(2s, +1)' '

x q 1,
' (r/„)~ (&~)y,,

' (r,„). (12)

The Gaussian expansions for y, ' and Vcp, ,' are'2
obtained by a X' fit of the sums in Eqs. (7a) and
(7b) to the corresponding expressions for a Woods-
Saxon well. In order to fit the function over its
entire range, and not to overemphasize zero-
crossing values, each point is weighted by the in-
verse of the average of the wave function at this
point and at its nearest neighbors. Parameters
for Gaussian expansions and their X' values are
listed in Tables I and II. Equally spaced sets of
the exponent parameters y; and ~„are shown in
the tables. The use of equally spaced coefficients
serves to speed up the computer program but is
not essential to the use of Gaussian expansions.
The bound-state potentials are the same as those
used by Kubo and Hirata. ' Comparisons of the
bound-state functions with their Gaussian expan-
sions are given in Figs. 2-5. These figures show
that the sum of a small number of Gaussians pro-
vides a good approximation for the bound-state
functions.

The real test of the validity of the expansion is
whether or not the approximate form factor gives



1264 G. L. PAYNE AND H. R. CAHLSON

TABLE I. Parameters for the Gaussian expansions of Vy( Li) and y(~80, g.s.).

Vp for Li(0.+t)
C ~ 7$

(MeVfm-3/2) (fm ')

q for "O(u+ "C)
&n A,„

(fm 3/2) (fm )

0.240 93110
0.352 624 10
0.464 31V 10
0.576 010 10
0.687 703 09
0.799 396 09

g =1.23D —04

1.104 571 6D —04
1.3938354D —01
5.764 996 7
1.827 578 1D + 01
9.509 1211D + 01

-2.015279 2D + 02

6.866 915 5D —04 0.191712 05
4.006 582 3D —02 0.258 672 75
9.547 821 9D —01 0.325 633 45
2.161S18 2 0.392 594 15

-8.698 323 5 0.459 554 85
3.506 3399D + 01 0.526 515 55

-6.543042 SD+ 01 0.59347625
3.821 725 7D + 01 0.660 436 95

g =1.7VD —04

the correct differential cross section. Figure 6
shows a comparison of the plane-wave cross sec-
tion obtained using the exact bound-state wave
functions with the cross section obtained using the
approximate Gaussian expansions. For this case,
where the cross section can be computed from the
Fourier transforms of the bound-state functions,

the agreement is excellent. This comparison is a
good check of the method (and program) because
the two calculations are done in quite different
manners.

To study the shape of the form factor, Eqs. (7),
(9), and (12) and the addition theorem for spherical
harmonics are used to write

f, „(r~,r, ) = (-1)'&'&i'&(2s, +1)'~'gc,d„exp[ (a, '+s-„')r~ —(P,'+v„')r~'+2(n, P, + e„v„)r, r, ]

- 1/2(, )"-'(c, ,)'(2l, +1)!
(%+1)l{2l, -2m+1)!

x(f, —il m, —p Xp~l m, )YP' g(i;)( 1)~Y)-(r ). (13)

We first consider the ( Li, d) case which has f, =0. Equation (13) can be written as

Ot +6 V

+6 v= QD, „(~,) xpe-(P, '+v„') r, — ',' ", "r,
i, n f +Vn

TABLE II. Parameters for the Gaussian expansions of Vy(~Li) and y(~60, 6.06 MeV).

C]
(MeVfm 3/2)

'yf

(fm ')

Vp for 6Li(n+d) y for ~60*(n+ ~2C)

d fg A,„
(fm ) (fm )

1

3
4
5
6
7
8
9

10
ll

0.307 570 86
0.400 896 46
0.494 222 05
0.587 547 65
0.680 873 25
0.774 198 84

g 2=1.75D -04

2.429 110OD —01
1.281 290 9
7.797410 5
1.245 814 OD + 01
8.686 5614D + 01

-1.684 3124D + 02

1.091256 2D —03
6.773 239 1D —02
4.295 6197D —03
1.998 254 0
2.030 307 4

-6.270 376 2D + 01
3.490 746 7D + 02

-1.068 859 VD+ 03
1.7692678D+ 03

-1.464 596 5D + 03
4.752478 SD+ 02

X2=2.55D

0.117223 23
0.185 721 75
0.254 220 26
0.322 718 77
0.391217 28
0.459 715 79
0.528 214 31
0.596 712 82
0.665 21133
0.733 709 84
0.802 208 36

—03
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FIG. 2. Comparison of Vy for VLi (l &

——j.) with the
Gaus sian expansion. The bound-state wave function
was obtained by numerical integration of the Schrodinger
equation with both a Coulomb potential and a Woods-
Saxon nuclear potential. Only the nuclear potential is in-
cluded in V in the product Vq.

FIG. 3. Comparison of y for ground-state 0 (l ~=0)
with the Gaussian expansion. The bound-state wave
function was obtained by numerical integration of the
Schrodinger equation with both a Coulomb potential and
a Woods-Saxon nuclear potential.

Each term in the form factor depends on the di-
rections of r, and r, in the form of an exponential

exp[-&, „(r,-q, „r.)'] .

For a fixed value of r, each term in this sum is
peaked at

nsPi+cn~v
r~ =~~A'a=

p 2 2 re ~

~~ +&n

this corresponds to r, and r, being collinear and
lying on the line joining A and &. The sharpness
of this peak is determined by

2

P,.2+ v„m =
+ )

[(y,.a)2+ (XP)'].

In the limit of small transferred mass, one can
see from (11}that this peak approaches a 5 func-
tion and that

n, P;+~„v„& y, '+(ab/Aa)X„''
s ll P 2 + v 2 + y 2 + (g/a)mg 2 ~ j

which is the usual zero-range result. Also, if
y, is large, one obtains the zero-range result.
From (15) one can see that even if the transferred
mass is not small the form factor has its largest
values when r, is parallel to r„which is the justi-
fication of the finite-range no-recoil result. This
is not the case for /, 0.

We now consider the case for ('Li, t) with l, =1,

m, =0; for this case Eq. (13) canbe written as

f„(r~, r,)= —Z 2
-c;d„exp -(n, +e„)r, +—,"~ r, exp -(P, +v„} r~ — &» "r,( P+. ) .' ' . . - P+~. .-

P2+v s ~ n ~ +v a

x(n, r, —P, r, co.8s)

2
= (r~cos8 r, ) &-4P,D—,„—(r,)exp -(p, '+ v„') r, — ' ', ", "r,

|A

(19)

(20)
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FIG. 4. Comparison of Vy for Li (l &
——0) with the

Gaussian expansion. Cf. Fig. 2 caption.

6.0

The two eases are schematically illustrated in
Fig. 7. Figure 7(a) shows A and a approaching
each other in the center-of-mass system with a,
made up of b and x, in an s state. Transfer is
shown at the instant of closest approach but, in
any case, when B consists of A. and x in an s state,
transfer will take place along the line joining A
and a. Figure 7(b) shows the same situation except
that a now consists of b and x in a P state resulting
in transfer along the line shown. These classical
trajectories correspond to maxima in the quantum-
mechanical form factors discussed above.

Forward-angle cross sections are mainly deter-
mined by distant collisions or where &, is large
compared to the classical orbit of x in c. The
classical pictures drawn in Fig. V correspond to
the forward-angle cases. In the P -state to s-state
case, the failure of no-recoil approximation to
give proper forward-angle cross-section shape,
let alone magnitude, is not surprising from the
point of view of the classical analogy since it
shows transfer occurs for r~ not parallel to r, .
In fact, for large ~, no transfer occurs for r,
parallel to r, . Contour maps of the quantum-
mechanical form factor confirm these classical
pictures.

where 0 is the angle between r, and r, . Each term
in the form factor again depends on the directions
of r, and r, in the form of an exponential, but, now
there is an additional factor in front of the sum
which goes to zero in just those regions where the
exponentials peak. The result is that, for fixed
magnitudes of r, and r„Eq. (20) does not have its
maximum value when r, is parallel to r, . Con-
sequently, the no-recoil approximation may be
worse in this case. This also explains why modi-
fied zero-range interactions of the form

Vy= 5(r~ -tr, )

have not been successful for p-to-s-state transfer
reactions. " The magnitude of the form factor f„
is actually at its minimum value for r~= (A/B)r, .
This is also true for f» since it is proportional
to sin~.

Classically, the explanation for the form factors
is that when transferring a particle from one s
state to another s state the particle must be mov-
ing along a line through the cores in both states
resulting in transfer along a line through both
cores. However, for transfer from aP state to
an s state the transfer takes place along a line
tangent to the initial orbit and directed toward the
other core. This will not occur for the transferred
particIe on a line through the centers of the cores.

IO

f FOR

0 = { C+a, 6.06 MeV); 0+

V = I30.8 IVleV

RADIUS = 2.98 fm

DIFFUSIVITY = 0.7 fm

-I
IO

-2
IO

-3
IO

IO4
0 2.0 40 6.0 8.0 IO.O

r{fm)
12.0 I4.0

FIG. 5. Comparison of y for excited-state 0 (l 2
——0)

with the Gaussian expansion. Cf. Fig. 3 caption.
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one was 105 sec; for part two, 420 sec on an
IBM 360/65. The effects of the ignored potentials
in Eq. (3), V(r) and U~(&~}, were investigated for
this reaction by modifying GAUSS to include these
potentials. This was relatively easy because of
the technique of Gaussian expansion. Running
time was essentially tripled and no significant
changes were observed for the optical parameters
used, so this subject was not pursued at this time.
This result is consistent with the conclusions of
De Vries, Satchler, and Cramer. "

Figure 8 shows the calculated differential cross
sections for the "C(VLi, t)"0 reaction for the full-
recoil and no-recoil cases. Spectroscopic factors
are put equal to one here. The optical-model po-
tential in the incident channel had the form

I i I i I I

0 20 40 60 80 100 120 140 160 ISO

8 (4eg)

FIG. 6. Comparison of the plane-wave cross section
obtained using the Fourier transforms of the bound-
state wave functions with the plane-wave cross section
obtained using the Gaussian expansions.

IV. GAUSS

A computer program (GAUSS} was written mak-
ing use of the above described idea of Gaussian
expansions to evaluate the differential cross sec-
tion in the distorted-wave Born approximation.
This program grew out of a no-recoil program
which has been described elsewhere. " GAUSS was .

written to take advantage of the analytic form ob-
tained for many of the expressions used in the
evaluation, thereby reducing computer memory
requirements.

GAUSS is divided into two parts. The first pro-
videsGaussianexpansionsaf p(r~) and V(rt )q(r,„).
The number of Gaussians needed for accurate re-
sults depends on the complexity of the functions
represented. Wave functions with up to six nodes
have been fitted with no difficulty. The first part
of the program also calculates the well depth of
the Woods-Saxon well which will bind the given
pair of particles together with the specified num-
ber of nodes in their wave function. This is done
both for the incident and exit channels. Well radii
and diffusivity are input parameters. The output
of part one has already been shown in Figs. 2-5.

The second part uses the expansion parameters
to evaluate the cross section and its running time
depends linearly on the product of the number of
Qaussians used in the two expansions. For the
"C('Li, t)'80 reaction the running time for part

V(x, )= (V+iW-)f(r, R, 6)

iW 46 ' + Vc(r, ),
d+g

r, -Rf(r„R, 6) = 1+exp

(b)

s STATE TO s STATE p STATE TO s STATE

FIG. 7. Schematic diagram of the classical interpre-
tation of form factors for (a) s-state to s-state trans-
fer such as occurs in C(SLi, d)~~O and (b) p-state to
s-state transfer such as occurs in i2C(vLi, t) 0 reaction.

and V~ is the Coulomb potential for a uniformly
charged sphere of radius R~. The optical-model
potential in the outgoing channel had the same
form. The optical-model parameters which were
used are from fits to the elastic scattering data' '"
and are given in Table III. Reasonable changes in
these parameters did not change the general char-
acter of the two calculated curves. The calcula-
tion of the full-recoil curve was done including
the matrix elements of 12 partial waves; this num-
ber was found to be sufficient for this energy.
All calculations were carried out in double pre-
cision with less than 18000 words of the memory
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(MeV) (MeV)

6
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8'
(fm) (fm)

lLig12C +

t+ $60c
6Li+ $2C d

g.+ 16oe d

157.0
146.8
80.0
80.0

0.0
19.3
0.0
0.0

0.0
5.0
5.0

3.50
3.53
2.97
2.52

0.650
0.550
0.800
0.717

3.50
3.53
3.43
4.00

0.650
0.550
0.700
0.625

3.50
3.50
4.58
3.27

a From Ref. 22.' Line'near interpolation.

C From Ref. 23.
From Ref. 8.
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FIG. 10. Differential cross section for the
Ca( 80, ~ C) Ti reaction at 42 Mev calculated with

ful. l-recoil program GAUss. Spectroscopic factors have
been put equal to one.

45' but show more oscillation at forward angles.
The reason for this difference is not known since
input parameters were identical to those used in
Ref. 25. In this case, and in aQ other cases which
were considered, integration ranges and step
sizes were varied until results were stable and
consistent. Running time for such checks was not
great since checks on a few matrix elements
proved sufficient. Care was taken to ensure that
enough Gaussians were used to represent the 44Ti

wave function accurately. This wave function has
6 nodes and 17 Gaussians were used in its expan-
sion. The number of Gaussians was varied and
had no significant affect on the forward oscilla-
tions.

Results of calculations with GAU88 are shown in
Fig. 11 for the single-proton transfer reaction
"Si("0,"I)"Pat 42 MeV. Results are shown for
two different choices of numbers of Gaussians
used for y(r~) and V(r~)y(r„); six each in one
case and five each in the other. The bound states
in this reaction are simpler than those occurring
in the preceding 0. transfer reaction and, conse-
quently, a smaller number of Gaussians is ade-
quate. Differences arising from the different
number of Gaussians only appear forward of 20'.
Calculations for higher bombarding energies were
carried out with an appropriate increase in the
number of partial waves considered. The absolute
value of the cross section at 45' (1.232 mb/sr) is
in excellent agreement with that given by Blair
et al." (1.256 mb/sr). The no-recoil calculation

FIG. 11. Differential cross section for the
~ Si( 80, ~~N) ~P reaction at 42 MeV calculated with
full-recoil program GAUSS. Results with six Gaussians
for each expansion [6, 6] and five Gaussians for each
expansion [5, 5], are shown. Cross section calculated
with no-recoil program of Ref. 20 is also shown. Spec-
troscopic factors have been put equal to one.

shows excellent agreement in shape with the fuQ-
recoil calculation in this case, which is to be
expected for a bght-mass transfer.

GAQ88 and LOLA2' were both used to calculate
the differential cross section for the "B{'He,'Be)'Li
reaction which is the suggested test case for LOLA.
LOLA is a full-recoil program with a different ap-

, Be) Li

56 MeV

USS
LA

El
1.0

0.1

0 10 20 30 40 50 ,60 70 80
8, (deg)

FIG. 12. Differential cross section for the
8PHe, Be)~Li reaction at 36 MeV calculated with

full-recoil programs GAUss and LQLA. Spectroscopic
factors have been put equal to one.




