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A recently proposed degenerate-kernel scheme for solving Fredholm integral equations of
the second kind gave very good results for Lippmann-Schwinger equations. The method is
here extended to give a very simple and practical method for the three-body equations with
separable two-body interactions. Numerical calculations of the three-body amplitudes are
carried out at positive energies for two simple models. In spite of the more complicated
singularities in the kernel as well as in the solutions of the equation, satisfactory conver-

gence is achieved.

scheme used.
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I. INTRODUCTION

A recently proposed method' for Lippmann-
Schwinger equations is here extended to handle the
three-body equations with separable two-body in-
teractions. The kernels and the solutions of the
three-body equations at positive energies are rath-
er singular,®?™* and this makes the solutions of the
three-body equations at positive energies more
complicated.

The method is based on the recognition®™®~7 that
one can explicitly construct a finite rank approx-
imation to an operator, which is exact when it acts
on a set of predetermined functions u,,...,u,. We
seek a rank-N approximation to the kernel K of the
Fredholm integral equation of the second kind y
=f+Ky. We want our rank-N approximation K, to
be a good approximation to K in the context in
which K actually occurs in the integral equation,
i.e., as an operator on the solution y. And for this
to happen the functions u,,...,uy, used to con-
struct K, should be a good set for representing
the solution y. Then we solve the integral equation
with this finite rank approximation to the kernel.

The methods of Ref. 5 gave good convergence for
a wide variety of Fredholm kernels. In particular,
the errors were found to be smaller by one or
more orders of magnitude than the corresponding
errors obtained with the method of moments. The
phrase method of moments is not used in the re-
stricted sense of Vorobyev® and Harms.®

Here we discuss the modifications necessary for
dealing with the more complicated singularities®™*
in both the kernels and the solutions of the three-
body equations. The success of the method does
not depend on the structure of the kernel, so the
singularities of the kernel do not give any addition-
al problem and are avoided by deforming the con-
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tour of integration.*!° But the singularity in the
three-body amplitude is more fundamental and
can be incorporated in our method by choosing a
set of functions u,, ... ,u, that contain this singu-
larity; as the primary requirement for good con-
vergence is a good choice of the expansion func-
tions u,, ... ,uy.

There are already quite a number of meth-
ods!™%9"! ayailable for solving singular scatter-
ing equations and some of them have successfully
been applied to the three-body equations.2~% 10
But one of the main advantages of the present
method is its simplicity. Once the analytic expan-
sion functions u,, ..., uy are chosen the main nu-
merical task is to invert a matrix of relatively
small dimension N (N=6 gave very good conver-

~ gence for the problems considered).

There is another motivation behind the present
work on three-body equations. In few-body prob-
lems one is often interested in getting a finite rank
approximation for the amplitude, which can be
used directly in the kernel of a larger problem.

In Ref. 6, we showed how the method of Ref. 1 was
extended to find a good separable operator expan-
sion for the two-body ¢ matrix, which might not be
very accurate in a pointwise sense, but should
serve as a good operator in the context of few-
body problems. Similarly, the same work can be
extended to the three-body case and we can find a
good separable operator expansion for the three-
body amplitude at all energies.

Essentially the same technique can be applied to
find a separable expansion for the three-body am-
plitude at negative energy, which will be good in a
pointwise sense. This was done for the two-body
case”™ 13 and the technique yielded good separable
expansions for coupled’® and uncoupled”*? channels
of the two nucleon interactions at all energies.
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However, the method does not give a good separa-
ble expansion for three-body amplitudes at posi-
tive energies due to the presence of complicated
logarithmic singularities. Nevertheless, this
three-body separable expansion can be used for
four-body bound state calculations.

So one motivation of the present work is to find
good separable expansions for three-body ampli-
tudes.

The approach of Ref. 1 leads to an infinite family
of methods, of which three are considered in this
paper. The methods are applied to two simple sep-
arable three-body models. The method is consid-
ered in detail in Sec. II. In Sec. III we give numer-
ical results for two simple three-body models. In
Sec. IV we give a discussion of our method and
our conclusions are listed in Sec. V.

II. METHOD

The method is formally the same as that of Ref.
1, because the three-body scattering equation with
separable two-body interactions is formally simi-
lar to the Lippmann-Schwinger equation. We brief-
ly outline the method here.

In the Amado model® * of three-particle interac-
tions the scattering equation can be formally writ-
ten for separable two-body interactions as

T=A+KT. (1)

Here K =BT is the kernel, where 7 is the two-body
propagator, B is the three-body Green’s function,
T is the three-body amplitude, and A is the Born
term.

To start, we construct a rank-N approximation
Ky to the kernel K

N
KN= Z Klun>Dnm<vml H (2)
where
(D-I)MII:(U"I[“") ) (3)

and |u,) and {v,| are two sets of suitably chosen
analytic functions. The only constraint on the
choice of |u,) and (v, is that (D) is a nonsingu-
lar matrix.

With this approximation Eq. (1) can be readily
solved to yield

N
TN =A+ Z Klun>Anm< vmlA: (4)
n, m=1
where
(A-l)mn=<vm|(1_K)|un>' (5)

The interesting aspect of approximation (2) is

that
KN,un>=Klun>, n=1>-°-yN- (6)

This means that if we can choose a good set of
functions, u,,...,uy, Ky will be a good represen-
tation of K. Then T, will be a good representation
of T, because this K, is used to solve Eq. (1).
Once we fix the set of functions u,,...,u, there
is some arbitrariness in the choice of v,. In this
paper we consider three explicit choices, namely,

choice 1 (v,| =(u,|,
choice 2 (v,] =(u,|T, (7)
choice 3 (v, =(u,|TBT.

The functions «,, form a good basis for represent-
ing the solution 7. The singular factor 7 in choices
2 and 3 is taken because we want [as in Eq. (6)] u,
to be a good basis for representing 7 times B.
Choice 2 yields a simple symmetric result. Of
course many other choices of v, are possible.

III. NUMERICAL RESULTS

Three-body equations

In this section we apply the present method to
two simple three-body systems, with separable
Yamaguchi type two-body interactions. We study
the model of the neutron-deuteron system, first
studied by Aaron, Amado, and Yam.!* Next, we
study the case of weak decay of a particle to three-
identical bosons. In this model, studied by Adhi-
kari and Amado,? the final particles interact
strongly via Yamaguchi type separable potentials.
In both the cases the final equations are formally
equivalent to Eq. (1). But in the neutron-deuteron
problem A = B and in the decay problem A # B. Now
we quote the three-body equations for the two prob-
lems.

Neutron-deuteron problem

We study the S-wave quartet case of the neutron-
deuteron system. But the method can be easily
applied to the doublet case. The S-wave integral
equation after antisymmetrization and partial wave
analysis takes the form*

(plTIp'Y=(p|Blp")

-%foqudq(Mqu%r(s-%qz)<q|TIp'>,
®)
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where
oy 4m? oD +B)P(EE +D))
(p,B'p >__—-3—— p2+p12 +pp1x_s dx’
9)
and where
== [ gy (-5 L)
THe) == —27rf° qdqv(tf)(— 3 7-z)
(10)

where s(=F +i€) is the complex energy parameter
and v(q?) has the Yamaguchi form

v(g®) =(g* +B*)". (11)

Here $=1.40552 fm~! and v =3.767541. Equation
(8) is formally similar to Eq. (1) and the solution
is

N
PITIPy=(p|BIp'y + 3. (PIBT|uy)Ay m{vnlBIP'Y,

n, m=1

(12)
with A, ,, given by Eq. (5).

Decay to three bosons

Here the equation is very similar to the neutron-
deuteron problem. The only difference is the Born
term. The partial S-wave projection of the equa-
tion for the decay amplitude f(p) is* ¥

70 =40 52 [ #da(p| Bla)T(s - 267 ).
(19)

Here (j;Iqu) is twice that given by Eq. (9) and

N 7dqv(q’)
Alp)= Yooy o (P+3iP*+P)EP +47 =)

(14)

and 77%(z) is given by Eq. (10) and v(¢?) given by
Eq. (11) with 8=1 fm~' and y,=~127%. The inter-
esting feature of Eq. (13) is that the Born term is
not the usual three-body Green’s function. In this
case the solution can be written as

N
(BIf=(plA+ Y (P|BT|u)A, w(vula,  (15)
n, m=1
with A, , given by Eq. (5).
Explicit integrals and expansion functions

The various quantities in Egs. (12) and (15) can
easily be written in partial wave integral form,
for example

(p1B7 Iy == 50 [~ Pda(p|Blay(s - 2 hula),
v (16)

and

(Um|TBT|u,) =
-if” Pdqv(@)T(s =3 (q|BT|u,), (17)
2nJ,
and
(valA =—%f: *dq A(q)v,(q) . (18)
The functions u,(p) =(p|u,) were chosen to be
up(p) =[p? + (+1252%] 2,

= (poz —Pz)uzun-l(i’) ’

n=1,3,5,...,N=1

n=2,4,...,N (19)
where p,=[4s/3]2. The term (p, — p?)"/? is taken
to represent the well-known square-root singular-
ity** in the half-shell three-body amplitude. A
detailed discussion on this has already appeared.*
The parameter A can be varied to get good conver-
gence and after a small amount of experimentation
was chosen to be 0.5 fm~%,

A point of technical importance if the integrals
in Egs. (16)—=(18) are to be evaluated numerically
is that it is then necessary to use basis functions
that are approximately orthogonal in order to pre-
vent the matrix A™! from becoming too singular.
In the present calculations this approximate or-

. thogonality was achieved by constructing the basis

functions in terms of the Sturmian functions for
the S-wave Hulthén potential.

The Sturmian functions satisfy the eigenvalue
problem

M VGo(E) [U(E") = [$,(E")) , (20)
where V in this equation is the Hulthén potential,
V) =Voe /(1= e~ ). (21)

With E’ chosen to be zero, the Sturmian functions
satisfy the orthogonality relation’®

<¢an0(0)|lpm>=—6nm! (22)

and are given analytically by*®

bal(B) =D by (PP +mAD) 7, (23)
where

by m =T N2 (=10) (1) [ (1 = 1)1 2072 (24)
with
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() p=2(x +1)(x +2) e o+ (x +m = 1),

In practice the calculations were not directly
done with the basis Eq. (19), but rather with the
equivalent orthogonalized form

u,(P) =[P% +(n+ 1PN /4] Y (me 1y/27
7=1,3,5,...,N=1
=(p02 _pz)uzu"_l(p) 3

This makes the A™! matrix well conditioned and
eliminates numerical problems arising from in-
verting an ill conditioned matrix but otherwise has
no effect on the results.

n=2,4,...,N.

Numerical calculations

Evaluation of integrals (16), (17), and (18) along
the real axis is difficult due to presence of compli-
cated logarithmic singularities along that particu-
lar axis. We use the contour deformation tech-
nique originally proposed by Hetherington and
Schick,!® adapted to this problem by Aaron and
Amado,® and later refined by Cahill and Sloan.®
The caution introduced by Cahill and Sloan is im-
portant in case of Eq. (16) and for p<p,.

First we give numerical results for the neutron-
deuteron system. The calculations were carried
out for the three choices of the expansion functions
v,, of Sec. II. In Fig. 1 we show the real and imag-
inary parts of the three-body amplitude T(p,?’; E)
at E=41.47 MeV and p’ =1.341 fm~! for the three
choices of v,. Then we consider the three-body
amplitude T(p, p’; E) at E =41.47 MeV and p’
=0.4066 fm~'. The square-root singularity in the
half-shell amplitude T occurs at p, =1.1547 fm~%
Here p’ < p, and consequently the Born term B in
Eq. (12) develops a logarithmic singularity. The
quantity plotted in Fig. 2 is U, which is the ampli-
tude T minus the Born term B; so that we do not
have to show the discontinuity in 7 arising from
the logarithmic singularity in the Born term (which
is, of course, treated exactly). From Figs. 1 and
2 we see that the convergence is very good.

Next we consider the decay problem. Here we
take @¢=1fm™, v=0.98, E=1fm™2. The real and
imaginary parts of the amplitude f are plotted in
Fig. 3 for the simplest choice of v,, (choice 1 of
Sec. II). Here f(p) is not plotted against p but
against £ =[3(p,? = p*)/4]"2. The physical range of
k is EY2 to 0. This particular variable will easily
allow us to compare our results with those by a
direct solution of Eq. (13) by Adhikari and Amado.?
For this particular case the low-rank result is
very close to the converged result, which agrees
with Ref. 2.

In all the cases considered the convergence is

very good and N=6,7 result is within 1~2% of the
converged result. The three-body amplitude also
converges equally rapidly at other values of ener-
gy and momentum. But one interesting aspect of
the results was that choices 2 and 3 consistently
gave better results than choice 1. This is due to
the fact that in the case of choice 1 in the solution,
B directly acts on u,, [see Eq. (4) with A =B], and
u(p) given by Eq. (19) falls off too slowly as p—
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FIG. 1. The real and imaginary parts of the three-
body amplitude T(p,p’; E) at E=41.47 MeV and p' =1,341
fm™! for (a) choice 1, (b) choice 2, and (c) choice 3 of
v, The imaginary part has been multiplied by —2.
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FIG. 2. The real and imaginary parts of U(p,p’; E),
the three-body amplitude minus the corresponding Born
term, at E=41.47 MeV and ' =0.4066 fm™! for (a) choice
1, (b) choice 2, and (c) choice 3 of v,,, The sign of the
imaginary part has been changed.

for that purpose.

In all these cases N=1 is not good. This is ex-
pected because N=1 does not include the famous
square-root branch point in the half-shell three-
body amplitude; consequently, it will be a poor
representation of the actual three-body amplitude.
But for N=2 this square-root branch point is in-

cluded and in all the cases considered, N=2 result
is reasonable.

Choice 1 is the simplest and gives very good re-
sults in the decay problem, but unfortunately for
reasons discussed above it does not give good con-
vergence for the neutron-deuteron.problem. But
in case of neutron-deuteron problem choice 2
gives a simple symmetric result and is as good
as any. This turns out to be a very effective and
practical method for the neutron-deuteron problem.
Further results for this method and for the doublet
case are given in Ref. 4 (but with a different form
for u, and described there as the variational re-
sults).

IV. DISCUSSION

The present method is very similar to some oth-
er methods for singular scattering equations. For
the particular case of choice 2, discussed in Sec.
II, the approximation is the same as one obtained
previously from a variational principle and is
called variational results in Ref. 4.

A recently proposed method of moment by Harms
for singular scattering equations® is formally
equivalent to choice 2 in Sec. II. The only differ-
ence is in the choice of expansion functions. Harms
applied his method to the Lippmann-Schwinger
equation. He uses a set of momentum dependent
expansion functions, which are in fact the differ-
ent terms in the Born series. It is tedious to cal-
culate these expansion functions at each momen-
tum; whereas, in the present method a simple
momentum independent orthogonal set of analytic
expansion functions are chosen, yet the numerical
convergence is very satisfactory. Another techni-
cal difference, when the integrals are evaluated

0.3 Ne2 —
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FIG. 3. The real and imaginary parts of the amplitude
fat E=1 fm™? for choice 1 of v,,. The exact result is
taken from Ref, 2 and agrees with the converged result.
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numerically, is that the functions of Ref. 9 are not
orthogonalized in some sense and for large N this
might give rise to numerical trouble in inverting
the A™! matrix, which may become too singular.

Another recent method for singular scattering
equations, studied by Osborn!! for the Lippmann-
Schwinger equations, is similar to the present
method and uses a set of analytic functions. He
also solves the equation with a finite rank approx-
imate kernel K,. But his approximate kernel is
essentially a numerical quadrature operator and
not a degenerate kernel operator as in the present
work,

All these methods for the singular scattering
equations significantly simplify the numerical prob-
lem associated with inverting a very large matrix.
Once we can find good low rank separable expan-
sions for the few-body amplitudes by using our for-
malism, few-body problems beyond three can, in
principle, be solved by the present method. But
we have to know the analytic structure of the solu-

tion so that we can make a good choice of expan-
sion functions which will give rapid convergence.

V. CONCLUSION

The numerical calculations of Sec. III were car-
ried out using Egs. (12) and (15), with v, given by
Eq. (7). The final results—Figs. 1-3—show that
the approximation converges very well in all the
cases. The present method also gave very good
results for Lippmann-Schwinger equations.? Es-
sentially choice 2 [Eq. (7)] of the present method
has been successfully applied to the doublet case.*

As discussed in the Introduction the present
method also provides a foundation for finding a
good separable expansion for three-body amplitude
which will be very useful in the kernel of the four-
body problem.
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