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Exchange symmetry is used to eliminate reference to physically indistinguishable channels in the coupled-

equations nuclear-reaction formalism. The resulting equations are similar in structure to the original ones

except that they are far fewer in number and the interactions contain exchange operators.

P

NUCLEAR REACTIONS Coupled-equations nuclear-reaction formalism of Kouri,
Levin, - Hahn, and Tobocm~n is explicitly antisymmetrized.

I. INTRODUCTION

It has always been difficult to make the conse-
quences of exchange symmetry explicit in scatter-
ing formalisms. This is because the specification
of the asymptotic behavior of a scattering-state
wave function is in general not symmetric in the
coordinates of identical particles. Usually, the
best procedure is to solve the problem neglecting
exchange symmetry, antisymmetrize the resulting
wave function, and then sum the fluxes to physical-
ly indistinguishable channels.

In the last few years a new nuclear reaction for-
malism, which will be referred to as the coupled-
eguations formalism (CEF) has been developed. '
This multipartition scattering formalism is an al-
ternative to the Faddeev formalism which has the
advantage that the structure of the equations is in-
dependent of the number of particles in the system.
We will show that the CEF allows one to use ex-
change symmetry to eliminate reference to physi-
cally indistinguishable channels in the dynamical
equations. This has the salutary effect of reducing
considerably the number of equations to be solved,
or equivalently, the number of transition ampli-
tudes to be calculated. The price paid for this
simplification is that the interaction potentials ap-
pearing in the dynamical equations now include ex-
change terms.

The approach we use to introduce the effects of
exchange symmetry into the CEF is the same as
the one used by Kouri and Levin' to analyze ex-
change effects for a particular case. We analyze
the problem in a general way so that the results
apply to all cases. A similar analysis was per-
formed by Lovelace' for the Faddeev equations and

by Bencze and Redish' for their N-particle con-
nected-kernel formalism.

We will first review the integral form of the
CEF in Sec. II. Then in Sec. III we will review the
consequences of exchange symmetry for scatter-
ing. In Sec. IV we see how exchange symmetry can
be incorporated into the dynamical equations of

the integral form of the CEF. Section V is devoted
to the derivation of an antisymmetrized version
of the differential form of the CEF. A K matrix
version of the antisymmetrized integral CEF is
described in Sec. VI. Our results are summarized
in Sec. VII.

Tg~ = V~+ VgB V

where

S =(Z+fe- a)-'

is the system Green's function operator. The par-
tition y Green's function operator is defined to be

G„=(z+fe —a„)-'=(S-'+V„)-'. (4)

It follows that the relationship between the two
kinds of Green's function operators may be written
as

(5)

or

9 =G~+ QVyG„.

Substitution of Eq. (5) into Eg. (2) leads to the
relationship

T q= V + V,G„(V8- V„+T„q)

= V G,(Gq'+ T„q),

II. COUPLED-INTEGRAL-EQUATIONS SCATTERING

FORMALISM

We start by considering a system of N distin-
guishable fermions. For each partition o., p, . . .
of the fermions into two sets or clusters there is
a decomposition of the Hamiltonian into two parts:

H=H +V =H +V = ~ ~ ~ .
Of e 8

H contains the kinetic energy and the intracluster
interactions, while V is the sum of the inter-
cluster interactions for partition n.

The transition operator for scattering from a
partition- o, configuration to a partition-P configura, -
tion is
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while substitution of Eq. (6) into Eq. (2) gives

(8)

QW s=+W s=1. (9)

Multiplying both sides of Eq. (7) by W, and sum-
ming on y gives

For the choice y = p these become the Lippmann-
Schwinger equations for the transition operators.
The CEF results from a different choice. A set
of values for n and p in Eq. (7), or for p and y in

Eq. (8}, are chosen so that the result is a set of
coupled integral equations for all the elements in
one column or one row of the transition operator
matrix.

The coupled integral equations for the elements
of the transition operator matrix can be formulated
compactly in terms of an array of numbers W z
such that

means that the channels in our scattering formalism
now can be arranged into groups that represent
physically indistinguishable configurations. In
particular, consider the partition a with n parti-
cles in one cluster and N —n particles in the
other. There are

N)
n t(N n-)I (15)

Ng

i'(-,.=&~'"Ns '"Q (-1}""'&@&(.) I7's(. (&)I@a(()&

partitions in the family of partitions related to e
merely by the interchange of pairs of identical
fermions. Let us label the partitions in this family
by the indices n(1), n(2), . . . , &).(N ). The associ-
ated channels must be similarly distinguished. So
we have the channel indices a(1), a(2), . . . , &&(N }.

Now it can be shown' that the consequence of ex-
change symmetry is the replacement of Eq. (14)
by

T s=+V W „G„(G() +T„s), (10)
n=l

(16)

while multiplying both sides of Eq. (8}by W „and
summing on y gives

or by

T s V + Q T yG~Wy&)V()
'Y

Equation (11) is the Baer-Kouri' version of the
CEF, while Eq. (10) is the Kouri-Levin' version.
It is possible to choose the partition coupling ar-
ray 8'

z in a manner thai causes the iterated ker-
nel of the set of integral equations to be connected. '

n=l

(17)

where o„(n) is the parity of the permutation P (m)

that transforms partition a(1) into o. (n). We will
rewrite Eqs. (16) and (17) to read

III. CONSEQUENCES OF EXCHANGE SYMMETRY FOR
SCATTERING

and

ba & b(1) I &) (x)n(1) I@a(&)& (18)

The channels associated with partition a are
identified with the various possible unit incident
current eigenstates 4, —= 4, of H having eigenval-
ue E:

~yg & b(z) I s&1)n(1) I a(1)& s

where

(19)

(12}

The cross section for scattering from channel a
to channel b is then

N~

T() &» &»=N, ' 'Ns g(—1}'s'"'Ps(n) Ts&„&«»

(20)

where

(14)

N~

Ts(, &~(, )=Ms' 'N ' 'Q(-1)'~'"'Ts(, )~(„&P (n) .

Now let us suppose that the N fermions compris-
ing our system are in fact indistinguishable. That (21}
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IV. ANTISYMMETRIZED COUPLED INTEGRAL EQUATIONS

The task will now be to find a set of dynamical equations for the antisymmetrized transition operators
Ta &»,&» and Ta&»,-&, &. Start by combining Eq. (8) with Eq. (21):

N

Ta(, )-(, )
=Na' 'N„' 'Q[Va(, )+Ta(, )r(q)Gr(q)V („)](-1)' '"'P (n)

1/2I=N, [Va&»Pn+Ta&»r&, 3G &, )PnV«»]

where we have defined
N~

P.=N.-'"P(-I)' '"'P.(n) .
n=1

(22)

(23)

Let us next consider the partition-y(j) Green's function operator appearing in Eq. (22). It is related to
the partition-y(1) Green's function operator by

G„(,) =P„(j )Gy(&)Pr(i )'. (24)

The operator P„(j) will be operating to the right on the state P V &»~4, &»). By virtue of the definition of
I' and the fact that C,&» is to be chosen antisymmetric with respect to intracluster permutations, the
state P, V &,

.
& ~

C,&,
.&) is completely antisymmetric with respect to fermion exchange. Thus, P„(j ) acting on

this state will have the same effect as its inverse P„(j}, namely, it simply produces a factor of (-1)'r(~)
It follows that Eq. (22) may be replaced by

Ta&i)n(& )
=Na' "[Va(x)pn+ Ta(x &3 (~3(- )'""'Pr(»Gr(i)Pn Vn(&)] . (25)

Equation (25) is valid for any choice of y&J&. Let us then average the right-hand side with respect to the

Ny possible values of j:
Ny

Ta(»=(»= a'"
~ 'Q[ a&» " a&.&.()(- }""'r(»G. &» ~ .(»]

j-1

1/2 1/2Ng Vg(1)I Of
+ T~(1)y- (1)Gy~1)Ny I

Of Va((1) ~ (26}

Here we have a set of integral equations for the elements of the antisymmetrized transition operator ma-
trix. The same procedure applied to Eqs. (7) and (20) leads to the alternative equations,

Ta&, «&» —Va&»PaNn '+ Va«&PaNr
' 'Gr(1)[(PrVn&»Nn Vr &x)n&(&)+ Tr—(»nn&]

-1 /2 f t -1 1/2
a&&) a r r&&&L r n&() n " r &&& nb&] ~

where

(27)

;&i&n(i&= .'" r '"Q(- }'"'"'P,(n)'V, (.) ~

n=l
(28)

In Eqs. (26) and (27) we have dynamical equations for the antisymmetrized transition operators which
are similar in structure to Eqs. (7) and (8) for the nonantisymmetrized transition operators. The new
equations refer only to partitions n(1), P(1), . . . , thus eliminating the physically equivalent channels
n(j &I), p( j&l), . . . . The price paid for this simplification is the appearance of the permutation operators
P multiplying the residual interactions V. The critical element in our dynamical equations, Eqs. (7) snd

(8), that made it possible to perform the antisymmetrization is the freedom of choice of the subscript 3.
As before, we can use the partition coupling array to impose a particular coupling scheme on our set

of coupled integral equations.

Tg(1 ) (1 ) N~ Vg(1 )P~ +~ Tg(1 ) y (1 )Ny Cy(1 ) Wy(1 )~(1)P~ V~ (1)
r(x) (29)

1/2 r T 1 1/2
T(& (» n(() = ~ Va(, )PaWa&&)r(x) Nr Gr&x &[PrGn&» Nn + Tr- (» n(»].,(, )
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V. ANTISYMMETRIZED COUPLED DIFFERENTIAL

EQUATIONS

Hahn, Kouri, and Levin' have shown how the
coupled integral equations for the transition opera-
tor may be transformed into a set of coupled differ-
ential equations. We will here apply that proce-
dure to our equations for the antisymmetrized
transition operators and thus arrive at a coupled-
differential- equations formalism for scattering that
includes the effects of exchange symmetry.

Let us first rewrite Eqs. (29) and (30) with dele-
tion of the arguments of the subscripts:

and using the fact that

G '$, =0

leads to the relationship

g 1~ ~-1 /2grPy~

In component form this equation reads

Gg 'Xt. = QNa '"Ws/. Vr4.

Now by Eqs. (40) and (41)

4'g, =N '
Ug X,=Kg P y, ,

(42)

(43}

(44)

(45)

(31)

(32)

It is now understood that only those partitions
which cannot be transformed into each other by
permutations of identical particles are to be in-
cluded. We next define a vector 0 in partition
space by

so that by Eq. (33)

Tq C, = VgN-q'~'QP„y„. (46)
y

Equation (44) is our set of coupled differential
equations and Eq. (46} shows how the solutions are
related to the antisymmetrized transition opera-
tors.

Next let us derive a set of coupled differential
equations from the antisymmetrized Kouri-Levin
equations, Eq. (32). We write Eqs. (32) and (34}
in matrix form:

T~C, = V~4g,—,

and another such vector by

Tg C, = V~4'~, .

(33) T=VP WN G(PtUG N +T)

TQ, = Vg, .

Combining Eqs. (47) and (48) gives

(47)

(48)

We first consider the antisymmetrized Baer-
Kouri equations Eq. (31). Let us write Eqs. (Sl)
and (33) as matrix equations in channel space:

= PtWN-& &2GPtUPP &2G-& y +PtWN-& ~2G Vy

Introduce

(49}

V" =X'"VUP+ rX-'"am PV,

TP, = Vg, ,

where

U ~=1,

(G) g=G 6 q,

(Q,) =4@,=6 qC, .
The formal solution of Eq. (35) is

T= VN ~ UP(1 N ~~2GWPV) ~.

Combining this with Eq. (36) gives

(35)

(36)

(37)

(37a)

(38)

(39)

e =GP'mP "G 'y +GVP'WN-

so that

( =PtWN '~'8 .a a'

Then, by virtue of Eq. (42),

a-'6) = VP'WX-' '8
a a'

In component form this equation reads

Finally, combining Eqs. (48) and (51) we find

(50)

(51)

(52)

(53)

t/) =N 'UP(1 —N ' 'GWPV) 'P, .
Define

)f, =(1—GN '~'WPV) 'P
= Q, +GN ~~~WPVg, ,

(40)

(41)

Then operating on both sides of Eq. (41) with G '

(54)

Equation (53) is our alternative set of coupled dif-
ferential equations, and Eq. (54) shows how the
solutions are related to the antisymmetrized tran-
sition operators.
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VI. ANTISYMMETRIZED COUPLED INTEGRAL

EQUATIONS FOR THE K MATRIX

T = 7-Gp~UG-&pp/2 T = T-
gn gn

~=VP'WN '~'(I+G~}.
(55)

(56)

I =6+2m'& (57)

be the standing-wave Green's function operator.
Then if we define the K-matrix operator to be the
solution of

In the nonantisymmetrized coupled- integral-
equations formalism the transition operator can be
assumed to fulfill any sort of homogeneous asymp-
totic boundary conditions. It all depends on the
asymptotic behavior chosen for the Green's func-
tion operators. In Eqs. (3) and (4) we specified
outgoing-wave boundary conditions for G and G~.
As a result, T is the T-matrix transition opera-
tor. This choice is necessary because, as shown
in Eqs. (13), (14), (16), and (17), the consequences
of exchange symmetry are expressed most natural-
ly in terms of the T matrix. Thus our antisymme-
trized coupled-integral-equations formalism is a
T- matrix theory.

On the other hand, a K-matrix version of the
formalism is preferable because it lends itself to
approximations that preserve unitarity and only re-
quires the evaluation of real quantities. The
translation of Eqs. (13), (14), (16), and (17) into
statements about the K- matrix operator appears
to be a very difficult task. It would appear to be
preferable to find a K-matrix operator that could
be related to the antisymmetrized T-matrix opera-
tor by a Heitler equation.

Suppose we write the antisymmetrized Kouri-
Levin equations, Eq. (47}, in the form

can be given the form

T =N ~ VPU{N ~ WPV)

-yl /2' UV-1pfgr-1 pl /2
7

r=(1+KG)N i WPV.

Now K is defined by

~ =(1+~r)N '~'wpv.

Tpn Tgn (61)

(62)

(63)

Again K and v are related by the Heitler equation,
Eq. (60). This form of the theory is rather ques-
tionable since the operator V ' does not always
exist.

VII. SUMMARY

To summarize our results we can state that the
CEF integral equations (in matrix form)

T = VWG(UG '+T) (64)

can be antisymmetrized, and the result is

T = VPt WN-~ ~ 2G(Pt UG-&PP & 2 + T)

(65)

(66)

T =jy~/ yPP+ T~" / Ggl'P'y (67) .

G ')(, =Wvy„TQ, = VUy, (68)

where Uis defined by Eq. (37), and N and P are
diagonal matrices whose elements are defined by
Eqs. (15) and (23), respectively. Equations (57)
and (58) differ from Eqs. (55) and (56) not only by
the presence of the factors N' ' and P but also by
the reduction of the dimension of the partition
space due to the elimination of physically indis-
tinguishable partitions. The CEF differential equa-
tions

~= vp'WN-'~'(I+ r~),
the operators K and v will be related by

(58) or

G~H, = VW8, , TQ, = VWH, (69)

VP'WN' '=r(I+Gr) '

=~(1+1"~)'

=(1+~r) '~. (59)

can be antisymmetrized, with the result

G ')( =N ' 'WPVy, Ty =VN' 'Up/

or

(70)

This leads to a Heitler equation

T = K —21TK47 ~ (60)

Thus we can regard Eq. (58) as the antisymme-
tized coupled integral equations for the K matrix.
By means of Eqs. (60} and (55} the resulting K
matrix can be used to calculate the antisymme-
trized T matrix.

A similar analysis can be applied to the antisym-
metrized Baer-Kouri equations, Eq. (35). They

G g = VPtWN ~~2j T&j) = VP~WN-& ~ e (71)

As with the integral equations the dimensionality
of the partition-space matrices in the antisymme-
trized differential equations is considerably re-
duced.

A K-matrix version of the antisymmetrized CEF
integral equations is provided by the coupled equa-
tion

~ = VPtWN '~'(1+ ra) .
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A reduced T-matrix operator v is calculated from
the K-matrix operator w by the Heitler equation

7 =V —iPV4V.

Then the antisymmetrized T-matrix operator is
given by

T = 7-GPt UG-'N'~'
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