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Numerical investigation of minimal three-body equations
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We compare numerical solution of the "minimal" three-body equations obtained from uni-
tarity and analyticity with the full Schrodinger solution in a simple three-boson model. We
find that for short-range forces the minimal. equations give the correct shape, but not mag-
nitude, for the three-body amplitudes. This is true even for a singular form with no mathe-
matical credentials.

NUCLEAR REACTIONS Numerical investigation of unitarity and analyticity
constraints in a three-boson model.

In a recent letter' and paper' we showed that the
general principles of quantum mechanics (rather
than questions of detailed dynamics) determine the
major features of three-body final states. In par-
ticular we demonstrated that implementing the con-
straints of unitarity and analyticity in a "minimal"
way in the sequential decay or isobar language
leads to a set of equations for three-body systems
that are remarkably similar to the usual three-
body scattering integral equations with separable
potentials. ' In order to explore the similarity and
develop some experience in the question of how
much is determined by general principles and how
much left to detailed dynamics, we have under-
taken a program of solving the equations for vari-
ous simple numerical cases. In this note we re-
port results for a simple three-boson s-wave mod-
el with Yamaguchi interactions. The more compli-
cated, but potentially more interesting case of
resonant final state interactions is still under

study.
In our study of the consequences of unitarity and

analyticity for three-body amplitudes we found that
the simplest manifestation of these constraints
leads, in the three-boson case, to a one-variable
scattering integral equation of a particularly simple
form' but that the equation is strictly only valid in
the zero-range approximation and even then is not
a Fredholm equation. ' A somewhat more sophisti-
cated treatment of the constraints leads to a one-
variable scattering integral equation that does take
the finite range of interactions into account and is
a Fredholm equation, ' but as one expects in such
an approach, involves only on-shell information.
In this note we compare numerical solutions of
each of these equations with the "exact" Schrod-
inger solution; that is with numerical solution of
the full off-shell scattering integral equation with
separable potentials. The numerical techniques

involved in solving the off-shell separable poten-
tial equation and the finite-range unitarity equa-
tion are the same and are by now well known. For
the zero-range equation, which is not Fredholm,
we have simply ignored the mathematical difficulty
and solved the equation as if it were Fredholm.
Since we never actually carry momentum integrals
to infinity, all numerical operations are well de-
fined. Qf course, there is no guarantee that such
a scheme converges to the true solution of the
equation, or even that the equation has a solution;
hence, we call the method "illegal. " As we shall
see, it nevertheless gives surprisingly useful re-
sults. 4 In general, we find that the nearer we are
to zero range, the better the Schrodinger and finite-
range unitarity equations agree, at least in shape,
while the illegal answers are never close to either.
However, if we study not the full solution of the
integral equation, but normalized solutions, all
three methods agree remarkably well for short
range and even at finite range there is moderate
agreement. Our philosophy in studying the nor-
malized solutions is that most phenomenology of
three-body final states studies the shape of mo-
mentum distributions and the like, but not the
over-all magnitude of the cross section. For such
a study only the normalized form is relevant.
Hence, we find that the shape of the three-body
amplitudes is almost entirely determined by the
general constraints of quantum mechanics, so
long as the momenta in question are small com-
pared with the momenta associated with the range
of the force. This is so even if the general con-
straints are expressed in an illegal form. How-
ever the full force of the dynamics is required for
determining the magnitude of the amplitude.

The numerical model we chose to study is the
weak decay of a spinless particle into three identi-
cal bosons (k=m= 1). The final particles interact
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via the s-wave separable Yamaguchi potential

(q I I'I q') = ~~(~')~(e") = ~P'/(e'+ 0')(e" + 0'),
O

where II is the Yamaguchi propagator

A.
~11 '(~) -=D(~) =1-

(2 ))')~ 2

d 'k v'(k')
e —k' (4)

where l). is the interaction strength, P the momen-
tum space range, and q and q' are two-body rela-
tive momenta. For the primary decay vertex from
an initial state at rest to three final particles of
momenta p, ——,'p+ q, and ——,'p-q, we take the
simple symmetric form

r(p, -2p+q, --'p-q)=r. (o'+ 'P'+ e-') '. (2)

n is the momentum space range of the weak decay
and y, is its strength. The full decay amplitude M
to first order in the weak decay strength y, but
to all orders in the final state interaction strength
~ can be written

M(P„P„P,) = I'(p„p„p, )

3

+ g f(p, )ii(Z ——,'P, ')v(q, '),

(b)

FIG. 1. Schern. atic representation of (a) Eq, (3) and
(b) Eq. (5).

and q, = —,'(p, —p, ), i &j &0; f (p) is defined by Eq.
(3), which is represented diagrammatically in

Fig. 1(a), but in fact it is the amplitude for decay
into a particle and correlated pair or isobar. The
factor II v represents the subsequent propagation
and disassociation of that pair. E ——', p' is just the

energy of that pair in the two-body center of mass
when the third particle has momentum P and we
are in the over-all rest system. f satisfies the
well-known integral equation'

d 'q v (q') 1 d 'p'A U((p' +—,'p)') v((p +—,'p')') f(p')
(2)) )' (n'+ ', P'+ e') (& —-'0' —(I') (2-&)' D(E —.P")(& P,

' P"—-P-' P')- (5)

r(e) = N(e)/D(e) (6)

with D(e) as in Eq. (4), we find using the unitarity
convention of Ref. 2 that

N(E') = 27)'A. V (E') .

The zero-range convention corresponds to assum-
ing N(e) is independent of e, which corresponds to
taking v'(e) =1. As is shown in Ref. 2 Eq. (40) this
leads to the equation

which is represented diagrammatically in Fig. 1(b).
In fact only the s-wave projection of f(p) matters
in Eq. (5). It is the quasi-two-body amplitude f
that we study by solving the s-wave projection of
Eq. (5) numerically and comparing it with the solu-
tion of the unitarity equations.

The simplest of the unitarity equations for f as-
sumes that the two-body t matrix has zero range.
If we rewrite the two-body t matrix in the form

d 3p'A,
f(p) (P)

(27) )3D(E 3
p )(E) 2p2 p 2, ))

(Note we are now using m = 1 not 2m =1 to corre-
spond to Ref. 5.) In Eq. (8) we take the same in-
homogeneous term as in Eq. (5). This is just Eq.
(5) and the v's in the numerator of the integral
kernel put equal to one. We do not also put them
to one in the form for D [Eq. (4)] since then the
integrals defining D will not converge. Hence,
Eq. (8) is a mixed equation with very dubious
mathematical credentials. Dropping the v's in the
numerator, we lose convergence of the trace of
the kernel at the upper limits, or of iterations of
the kernel. It is for that reason that the Fredholm
method is not guaranteed for this case and hence,
we call its solution by Fredholm methods illegal.
It is possible to include the left-hand singularities
of v., that is the e dependence of N, in the unitarity
and analyticity formalism. This leads to Eq. (48)
of Ref. 2:

(9)



R. D. AMADO AND TOHRU TAKAHASHI 12

where p is the discontinuity of N

dy p(y)
1T y —E

(10)

A. = -16rv. (12)

The minus is introduced to make positive v cor-
respond to attractive interactions (the only case
we study) and the normalization is such that v =1
corresponds to a zero energy bound state of the
two-body system. We study v=0.98, v=0.5, and
E=1, 0.1, and 0.01. v=0.98 would be a case of
very strong low energy pairwise final state inter-
action because we nearly have a bound state and

For the Yamaguchi case we write this as

8 dy 5(y+I8')
Bp y —E

Again in Eq. (9) we take the same inhomogeneous
term 8 as in Eq. (5).

We now solve Eqs. (5), (8), and (9) and compare
their solutions. To simplify the parametrization
we make a number of variable choices. Firstly
P', the range of the forces, simply sets the energy
scale and hence we take P' =1. Now short range
(large P') translates into small E. We are inter-
ested in effects on the P dependence of f generated
by the strong final state interaction, not by the
form of the weak vertex; hence, we want to take
that vertex to be point-like. We take u in Eq. (2)
to be 10. f is linear in y„ the strength of the weak
decay and hence, y, is irrelevant to the form of f
We set y, =1. We also redefine the interaction
strength according to

the scattering length is large. v =0.5 corresponds
to more moderate final state interactions. E =1 is
a very large energy (recall P' =1) or equivalently
is a very long-range force. E =0.1 is intermediate,
while E=0.01 corresponds to a very low energy or
a very short-range interaction. For orientation
the deuteron binding energy, expressed in units of
the range of the nuclear force, is about 0.03.

In Figs. 2(a), 2(b), and 2(c) we show the f's for
the three cases: Schrodinger, illegal, and Eq. (9)
[which we call 48 because it comes from Eq. (48)
of Ref. 2] for E =1, 0.1, and 0.01 and for v = 0.98.
We see that they do not agree, even at the lowest
energy, although the shapes are much more alike
for E =0.01 than for E =1. For v =0.5 the same is
true. Why is that? To answer that question we
need only look at the Fredholm denominators for
the various cases. To solve the equation we con-
vert the integrals to sums (we use the standard
contour rotation technique) and then the denomina-
tor is just the determinant of the resulting alge-
braic equation. It helps to set the scale of the
over-all solution. The determinant D is shown in
Table I for the various values of E for v =0.98 and
v =0.5 and for the three cases, Schrodinger, ille-
gal, and 48. We see that the different forms give
different values of D and that in particular the il-
legal case, as we would have expected, gives
drastically different values. Recall that in this
case we are simply using the fact that in replacing
integrals by sums we introduce a momentum cut-
off so that all terms are finite. The fact that the
equation is not Fredholm implies that in the limit
as the cutoff becomes large, the equations do not
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FIG. 2. Real. and imaginary parts of the quasi-two-body amplitudes f for the three solution methods for coupling
strength v = 0.98 and energy (a) E = 1, (b) E = 0.1, and (c) E = 0.01 as a function of the odd particle momentum.
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TABLE I. The real and imaginary parts of the Fredholm denominator D of the three-body
equations for the three solution methods, Schrodinger, 48, and illegal for various values of
the coupling strength v and energy E.

v/E
Schrodinger

Real D Im D Real D
48

ImD
Illegal

Real D ImD

0.98/1
0.98/0. 1
0.98/0. 01
0.5/1
0.5/0. 1
0.5/0. 01

0.822
-0.2933
-0.420

0.88
0.420
0.361

-0.808
-Q.674

0.116
-0.397
-0.276
-0.070

0.895
-0.545
-0.537

0.890
0.382
0.343

-0.928
-0.747

0.266
-0.429
-0.279
-0.0687

38.7
23.7
8.01

-3,41
-0.843
-1.03

56.2
-11.9

22 Q3

4.0
2.66
2.04

fN(P) =f(P)/f(0) (13)

This is just what one would do in trying to fit the
shape of the final state particle distribution, but
not its over-all magnitude. In Figs. 3(a), 3(b),
and 3(c) we show the normalized amplitudes for
v=0.98, E=1.0, 0.1, and 0.01. Now we see that
the agreement is much better and in fact for the

possess well defined solutions.
It is precisely because the various D's do not

agree and because D sets the over-all scale that
the various f's in Fig. 2 do not agree. 'Ihe conclu-
sion then is that the over-all (complex) scale of the
amplitudes is a detailed dynamical quantity and ap-
proximate treatments of the dynamics can lead to
very different values for it. But what of the shape
of f? We can define a normalized f via

shortest-range case E =0.01 is essentially perfect.
Hence, even in this case of very important final
state interaction (v=0.98) the shape of f is deter-
mined nearly entirely by the nearby singularities
which singularities are required by unitarity while
only the magnitude of f reflects the details of the
dynamics or, what is the same thing, the more
distant singularities. For v =0.5 we see similar
results for the normalized amplitudes in Figs.
4(a), 4(b), and 4(c). Again for the longest-range
case, the dynamics is important, as one would
expect, and agreement among the cases is poor,
but for E=0.1 it is good and for E=0.01 it is ex-
cellent. 'Ihis is in spite of the fact that the unnor-
malized f's are very different in these three cases.
This is shown in Fig. 5 where we show the l f l' for
v=0.5, E =0.01. We see again the remarkable fact
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FIG. 3. Real. and imaginary parts of the normalized quasi-two-body amplitudes f„for the three solution methods for
coupling strength v = 0.98 and energy (a) E = 1, (b) E = 0.1, and (c) E = 0.01 as a function of the odd particle momentum.
For the case E =0.01 three cases agree to within the numerical precision of our calculation and therefore only one line
is shown.
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FIG. 4. Real and imaginary parts of the normalized quasi-two-body amplitudes f„for the three solution methods
for coupling strength &=0.5 and energy (a) E =1, (b) E=0.1, and (c) E=0.01 as a function of the odd particle momen-
tum. For case E = 0.01 three cases agree to within the numerical precision of our calculation and therefore only one
l.ine is shown.
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FIG. 5. Absolute square of the quasi-two-body ampli-
tude f for the three solution methods for &=0.5 and
E = 0.01.

that the shape is well given while the magnitude is
not. It should be noted that in getting the shape
correctly the amplitudes are not simply getting
the form of the singularity at (E —«P')'~' = 0 cor-
rect. This can be done in Born approximations as
we have shown, ' but the shapes of f(p) are agree-
ing throughout the physical range of P including
parts of the P range that are not dominated by the
singularity. As can be seen from Ref. 5, the var-
ious Born iterations that do get the shape of the
singularity correctly do not get the shape for all
p.

In summary, we have seen that at least in a
simple s-wave model, the three-body equations
derived from unitarity and analyticity do not re-
produce the magnitude of the correct (Schrodinger)
amplitudes, but they do reproduce the shape, par-
ticularly when the range of the force is short. We
have seen that it is so even when we use a singular
form of the equation which has no mathematical
credential. We are presently investigating the
question of why this works, as well as trying to
determine which of the ingredients of the equations
determines the shape. We are also exploring a
numerical model involving resonant final state
interactions and will report on these results in a
subsequent note.
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