Shape transitional aspects of odd-A Eu isotopes studied by the (p, t) reaction*

H. Taketani,[†] H. L. Sharma, [‡] and Norton M. Hintz

J. H. Williams Laboratory of Nuclear Physics, University of Minnesota, Minneapolis, Minnesota 55455

(Received 17 December 1974; revised manuscript received 31 March 1975)

The abrupt shape transition as is observed around $N \simeq 88-90$ in even nuclei has been examined for the odd-A Eu isotopes ¹⁵¹Eu₈₈ and ¹⁴⁹Eu₈₆ by the (p, t) reaction at 18.5 and 19.0 MeV with an average resolution of 10 keV. Angular distributions, taken from 10 to 70°, enabled unambiguous indentification of many L = 0 ($J_f^{\pi} = 5/2^+$) transitions in both residual nuclei; seven for ¹⁵¹Eu and seven or eight for ¹⁴⁹Eu. The summed L = 0 cross sections are close to those of the (p, t) reactions for the neighboring even-A Sm isotopes connecting the same neutron numbers. A number of new levels have been found in both isotopes. We have obtained markedly different level structures for the two neighboring isoptopes. In ¹⁵¹Eu, whose ground state and low-lying states below 200 keV can be described in terms of spherical shell-model configurations, two deformed bands have been tentatively identified. One of these is a $5/2^{+}$ [413] band with members at 261 keV, $5/2^{+}$; 414 keV, ($7/2^{+}$); and possibly a 597 keV, $(9/2^+)$ member. In addition a $5/2^+[413] \beta$ band is postulated with members at 654 keV, $5/2^+$; 801 keV, ($7/2^+$). These deformed states, coexisting with the spherical states, have been strongly excited while the spherical low-lying states have shown vanishingly small (p, t) cross sections. The (p, t) cross sections to the ¹⁵¹Eu states were found to be in strong anticorrelation with B(E2) values from Coulomb excitation and (d, d') cross sections leading to the same final states. On the other hand, ¹⁴⁹Eu has shown the usual (p, t)pattern of a strong ground state transition and weak excited state transitions, showing similar coupling schemes are involved in the ground states of ¹⁵¹Eu and ¹⁴⁹Eu. The detailed experimental results up to 1.6 MeV excitation in both nuclei and their interpretation for some of the levels are presented.

NUCLEAR REACTIONS 153,151 Eu(p,t), E = 18.5 and 19.0 MeV; measured $\sigma(E_t, \theta)$, Q. 151,149 Eu deduced levels, J, π . Enriched targets.

I. INTRODUCTION

The (p, t) and (t, p) reactions connecting two even-even isotopes have shown special features for the nuclei Nd, Sm, and Gd in the well known shape transition region around $N = 88 - 90.^{1-12}$ In a typical example, the (p, t) reaction ${}^{152}Sm_{90}(p, t)$ - 150 Sm₈₈⁷ shows comparable L = 0 transfer strengths for three 0^+ states in ¹⁵⁰Sm: the ground, 738, and 1255 keV states. The 1255 keV state is generally interpreted as a deformed state, to which the strong two-neutron transfer can occur from the deformed (prolate) ground state of ¹⁵²Sm. A similar pattern of intensities had been seen previous- $1y^{1,2}$ in the reaction $^{150}Sm(t, p)^{152}Sm$, indicating a state in ¹⁵²Sm at 1091 keV is mainly spherical. However, the distinction between "spherical" and "deformed" is by no means clear in the above cases, as seen in the comparable splitting of the L=0 transfer strength into three low-lying states. The Kumar-Baranger picture of large zero-point oscillations¹³ is usually employed to account for such a strong mixing of low-lying 0^+ states.

It is interesting to investigate the corresponding (p, t) reaction processes in the odd-proton isotones ${}^{153}\text{Eu}_{90}(p, t){}^{151}\text{Eu}_{88}$ and ${}^{151}\text{Eu}_{88}(p, t){}^{149}\text{Eu}_{86}$, to determine the effect of the odd proton on the deformed and vibrational states of the core. It is known that ${}^{153}\text{Eu}$ has a large static quadrupole

12

108

moment¹⁴ and a ground-state rotational band¹⁵ characteristic of a deformed nucleus. For the nucleus ¹⁵¹Eu there is no ground-state rotational band observed, and the ground state has a much smaller static quadrupole moment than ¹⁵³Eu.¹⁴ All three Eu isotopes, ¹⁵³Eu, ¹⁵¹Eu, and ¹⁴⁹Eu, of the present investigation have a ground-state spin-parity of $\frac{5}{2}^+$, and the two adjacent ground states may be connected with predominantly L = 0 transfers, thus enabling a straightforward comparison of the L = 0 intensity patterns with those for even-even nuclei.

The low-lying levels of ¹⁵¹Eu have been previously investigated by several methods. Zavadil and Graetzer, ¹⁶ using Coulomb excitation by α particles, have deduced the ¹⁵¹Eu levels up to 1106 keV. Lewis and Graetzer¹⁷ have investigated the ¹⁵¹Eu levels to 906 keV by measuring the deexcitation γ rays following Coulomb excitation by protons and α particles. Thun and Miller¹⁸ have assigned spins and parities of levels up to 503.5 keV from Coulomb excitation studies using α particles and ³⁵Cl ions. Boss¹⁹ and Bernstein et al.,²⁰ using inelastic scattering of deuterons, have studied ¹⁵¹Eu levels up to an excitation energy of 1163 keV and have observed those levels populated by L=2or L=3 transitions. Beside these reaction studies, the ¹⁵¹Eu levels below 416 keV have been investigated in the decay of ¹⁵¹Gd.^{21, 22} In spite of the

many experiments published before 1973, there has been no positive evidence for the existence of deformed states in ¹⁵¹Eu. In contrast to ¹⁵¹Eu, the only data available for ¹⁴⁹Eu are those from the decay of ¹⁴⁹Gd.²³⁻²⁷ After this experiment was completed, Burke *et al.* published evidence for shape coexistence in ¹⁵¹Eu from the ¹⁵³Eu(p, t)¹⁵¹Eu reaction at 18 MeV,²⁸ which is quite similar to ours for ¹⁵¹Eu. A preliminary account of the present paper has also been reported at the Munich Conference.²⁹

II. EXPERIMENTAL PROCEDURE

An 18.5 MeV proton beam was obtained from the J. H. Williams Laboratory MP tandem Van de Graaff. Due to technical difficulties encountered in accelerator operation, complete angular distributions from $\theta_{lab} = 10$ to 70° could be taken only at 18.5 MeV. The measurements were repeated later for seven angles at 19.0 MeV, in order to compare the cross sections with those of the $^{152, 150}$ Sm(p, t)-^{150, 148}Sm reactions which had been investigated previously at 19.0 MeV.⁷ The outgoing tritons were detected with an Enge split-pole spectrograph with position sensitive detectors (PSD) in the focal plane.³⁰ Position information was obtained with an on-line computer by dividing the energy-times-position $(\times E)$ signal by the energy (E) signal from each of the PSD's. The E signals were also used for particle identification. The over-all energy resolution including the effect of target thickness was ~10 keV full width at halfmaximum (FWHM) for both isotopes. Isotopically enriched Eu targets of thicknesses 108 $\mu g/cm^2$ $(98.76\% {}^{153}\text{Eu})$ and $71 \ \mu\text{g/cm}^2$ $(96.83\% {}^{151}\text{Eu})$ were made by reduction evaporation of enriched Eu₂O₃³¹ onto 30 μ g/cm² thick carbon backings. The target material was evaporated using a resistively heated Ta boat with powdered Ti serving as the reducing agent. The thicknesses of the enriched targets were determined by measuring the yields, with a known solid angle, of the elastic scattering of 8 MeV protons at forward angles ($\sim 50-65^{\circ}$), and by assuming the cross sections were equal to those for Rutherford scattering. According to the optical-model predictions, deviations from pure Coulomb scattering cross sections at $\theta_{lab} < 65^{\circ}$ are within $\pm 1.5\%$ for the elastic scattering of 8 MeV protons on Eu. The (p, t) measurements were made also for natural targets (¹⁵³Eu: 52.14%. ¹⁵¹Eu: 47.86%) in order to determine the precise cross-section ratios of the two isotopes.

III. EXPERIMENTAL RESULTS

A. General

The Q values for the strongest L = 0 transitions were determined by comparison with reactions of known Q value. Excitation energies of the residual nuclear levels were determined with calibration constants (energy vs position) for the PSD's obtained by positioning the elastic peak and/or the ¹⁵¹Eu(p, t)¹⁴⁹Eu g.s. peak at several different locations on the spectrograph focal plane by varying the magnetic field. Results quoted are averages for 14 angles measured. Estimated errors are ±5 keV for absolute Q values and ±3 keV for excitation energies.

The (p, t) absolute cross sections were obtained using the target thicknesses determined by the elastic scattering of 8 MeV protons, as described in the previous section, and the known spectrometer geometry. The errors in the absolute cross sections for the 261 keV state transition of the ¹⁵³Eu $(p, t)^{151}$ Eu reaction and for the ground-state transition of the ¹⁵¹Eu $(p, t)^{149}$ Eu reaction are estimated to be ±10%, respectively, at $\theta_{lab} = 25^{\circ}$ near the L = 0 maxima. Relative errors are shown in the figures.

As is well known, the angular distributions from (p, t) reactions, at least at energies ≤ 25 MeV, generally give unambiguous assignments of the transferred L value only for L=0. For other L values the angular distributions tend to be without pronounced structure, and are sensitive to the configurations involved in the transfer as well as to higher order multistep processes.^{12, 32-35} In addition to the above ambiguities, more complexities arise from the possible L admixtures due to the nonzero spin of the odd-A target nucleus. For (p, t) reactions the following approximate selection rules hold: $|J_i - J_f| \leq L \leq J_i + J_f$, $\pi_i \pi_f = (-1)^L$. There is an additional K-selection rule for deformed nuclei: $|K_i - K_f| \le L$.] However, if an L = 0 angular distribution is observed, then $J_f = J_i$ in almost all cases. Under such circumstances, the main effort was concentrated in finding L = 0, and hence $J^{\pi} = \frac{5}{2}$ levels. From clear L = 0 patterns seven or eight $\frac{5}{2}$ states were unambiguously identified in both nuclei. Definite assignments for other spins are very difficult to make from (p, t)angular distributions alone. However, we have made tentative assignments of $J^{\pi} = \frac{7}{2}$ for two levels in the present investigation, relying partly on energy and upon well established intensity systematics within rotational bands.³⁶

B. 153 Eu(p,t) 151 Eu

A typical triton spectrum is shown in Fig. 1. The Q value for the ground-state transition was found to be -6.374 ± 0.005 MeV, in agreement with the previously quoted value of -6.378 ± 0.004 MeV.³⁷ The triton angular distributions are shown in Figs. 2(a)-2(c). From these angular distributions,

unambiguous L = 0 ($J^{\pi} = \frac{5}{2}^+$) assignments were made for seven states (energies in keV): the ground, 261, 309 (doublet?), 585, 654, 698, and 902 keV states in ¹⁵¹Eu. Tentative $\frac{7}{2}^+$ assignments were made for the 414 and 801 keV states which have nearly identical angular distributions. Further reasons for the speculative assignment of $J^{\pi} = \frac{7}{2}^+$ for the 414 and 801 keV states are given in Sec. IV A. In Table I, excitation energies, peak cross sections, transferred L values, and assigned spins and parities of the ¹⁵¹Eu levels up to 1641 keV are summarized, together with assignments from other experiments.

C. 151 Eu $(p,t)^{149}$ Eu

A typical triton spectrum is shown in Fig. 3. The Q value for the ground-state transition was found to be -5.872 ± 0.005 MeV. This is the first direct measurement of this Q value and the present result is 58 keV less negative than the previously quoted value of -5.930 MeV,³⁷ which was estimated from β -decay energy systematics. The angular distributions are shown in Figs. 4(a)-4(c). Seven and possibly eight $\frac{5}{2}^+$ states were identified from these angular distributions (L=0): the ground, 754, 879, 955, 1150, 1226, 1319, and possibly the 1064 keV states. In Table II, excitation energies, peak cross sections, transferred L values, and spins and parities are shown for the ¹⁴⁹Eu levels up to 1555 keV, together with the previous ¹⁴⁹Gd decay assignments.

D. DWBA analysis

Since the wave functions of the residual states and their inelastic transition matrix elements are not well known, only a naive distorted wave Born approximation (DWBA) calculation was performed to get a rough idea of the L values involved in each transition. For low-lying states of the residual nuclei studied in the present experiment, the relevant Nilsson orbits of neutrons are mostly those originating from the $2f_{7/2}$, $1h_{9/2}$, and $1i_{13/2}$ shell-model orbits in their spherical limits. Calculations were made for pure spherical shellmodel configurations with various combinations of two of the above orbits for the bound-state wave functions of the transferred neutron pair. Although the calculation gave an order of magnitude higher cross sections for any configuration in which at least one neutron occupied the $2f_{7/2}$ orbit in a given L transfer, the calculated shape of the angular distribution was found to be rather insensitive to the choice of the configuration. Therefore, for each pure L transfer, the angular distribution calculated with the configuration of either $(2f_{7/2})^2_{\nu}$ (for L=0, 2, 4, and 6) or $(2f_{7/2}, 1i_{13/2})_{\nu}$

τ	ABLE I.	Level	pro	berties of ¹⁰¹	Eu from th	e present	(E_{p})	- 18.5 N	leV) and other ex	cperiments. Se	e Sec. III	A for	the erro	ors in the	present e	xperimen	
	153 r .		_							Coulomb exc. ^d	Coulor exc.	dn v	Inel.				
E_x	$\sigma(\theta)_{\max}$	θ_{lab}	ċ		E _x	53 Eu $(p,t)^{1}$ $\sigma(30^{\circ})$			$\begin{array}{c} \text{COULUID EXC.} \\ (\alpha, \alpha') \\ E_x \end{array}$	$E_x^{(P,P,P)}$	$E_x^{(\alpha, \alpha)}$	x,	(d, d') E_x	Decay o E_x	f ¹⁵¹ Gd ^g	Decay of E_x	¹⁵¹ Gd ^h
(keV)	$(\mu b/sr)$	(deg)	L	J۳	(keV)	$(\mu b/sr)$	L	J≞	(keV)	(keV) J ^π	(keV)	Jπ	(keV)	(keV)	J#	(keV)	J۳
0	3.7	30	0	5 2	0	4	0	2 <mark>5</mark> +	0	0 5 ⁵⁺	0	2 2 2	0	0	5 <mark>9</mark> +	0	2 0
22	7.1	10		2 2 2	22					21.6 $\frac{7}{2}^+$	21.54	2 7 1		21.6		21.54	+ ⊷I∾
									195	195.8 $\frac{1}{2}^{+}$	196.21	<u>11</u> - 2	196			196.21	11 ⁻
										$196.5 \frac{11}{2}$	196.45	* *		196.6	<u>11</u> - 2	196.46	$(\frac{1}{2})^{+}$
										$243.0 \left(\frac{1}{2}\right)$	243.1	5		243.6	<u>5</u> , <u>7</u> -	243.22	- - - - -
261	712.9	25	θ	2 <mark>5</mark> +	261	487	0	2 <mark>9</mark> 2+						$260.8 \frac{3}{2}$	$\frac{1}{2}, \frac{5}{2}, \frac{7}{2}$	260.44	$(\frac{3}{2}-\frac{9}{2})^+$
309	26.9	25	0	$\frac{5}{2}^{+} + (\frac{3}{2}^{+})^{*}$	307	~ 17	0	<mark>2 +</mark>			307.0		307			306.99	$(\frac{3}{2}^{+})$
(doublet)					(doublet)					$306.8 \frac{3}{2}^{+}$							
									313		307.45			308.0	$\frac{5}{2}^+, \frac{7}{2}^+$	307.47	$(\frac{3}{2}-\frac{7}{2})^+$
														350.3	9 I	349.76	9 1 1
				+				+ + +						354.2	+	353.56	$\frac{5}{2}, \frac{7}{2}$
414	104.8	10		$(\frac{1}{2})$	415		-	(<mark>-</mark>)		500	100 6			416.3			
508	9.0	15							511	503.1	503.5	+ 6 1 0	503				
585	17.1	25	0	+ -9 -0	587	10	0		580	578		J	583				
597	48.1	10	(+ .c	600	c L	¢		604	600.6			602				
654	242.4	30	0	» «	653	176	0										
698	28.5	30	0	ہ <mark>ہ</mark> +	696	23	0			(969)			701				
721				I					718	719			720				
755	4.4	20											758				
									775	(781)			785				
801	36.5	10		(<u>1</u> +)	797				(810)				806				
869	3.2	25		ġ													
902	4.2	30	0	ما ی +					006~				1.99				
				v					(broad)								
$911 \\ 944$	2.3	30 40								(906)			908 947				
•	-	2 H							963				965				
1007	7.8	10											1036				

<u>e</u>

^b Reference 28. ^c Reference 16. ^d Reference 17. ^e Reference 18. ^f References 19 and 20. ^g Reference 21. ^h Reference 22.

<u>12</u>

(for L=3) is shown in Fig. 5 as an example.

A zero-range DWBA code TWOPAR³⁸ was used to calculate the angular distributions for each L value. The optical-model potential used in the DWBA analysis was of the form

$$V(r) = -\frac{V}{1+e^{x_v}} - \frac{iW}{1+e^{x_w}} - \frac{i4W_D e^{x_w}}{(1+e^{x_w})^2} + U_C(R_C A^{1/3}),$$

where $x_i = (r - R_i A^{1/3})/a_i$ and U_c is the Coulomb potential of a uniform charge distribution with radius R_c .

The optical-model parameters used are listed in Table III, where the proton parameters are those taken from Ref. 39, and the triton parameters are from Ref. 40.

Neutron bound-state wave functions were calculated in a real Woods-Saxon potential plus a spin-orbit potential of the Thomas form. The parameters for the neutron bound-state well were radius $R_v = 1.25$ fm, diffuseness $a_v = 0.65$ fm, and a spin-orbit strength of 25 times the Thomas term $(\lambda = 25)$. The neutron binding energy was taken to be one-half the two-neutron separation energy for each of the transferred neutrons.

As seen in Figs. 2(a) and 4(a), for each residual nucleus there are seven or eight experimental angular distributions which are in good agreement with the calculated L = 0 angular distributions. The remaining experimental angular distributions are rather structureless and no angular distribution calculated for a single L value is able to reproduce the data.

IV. DISCUSSIONS

A. 153 Eu(p,t) 151 Eu

In this section we will classify each level in the residual nucleus ¹⁵¹Eu according to the mode of excitation. In Fig. 6 are shown the B(E2) values from Coulomb excitation¹⁶⁻¹⁸ and cross sections at 90° from the (d, d') reaction^{19, 20} together with the (p, t) peak cross sections to each level in ¹⁵¹Eu. We have also shown in the figure preliminary cross sections at $\theta_{lab} = 25^{\circ}$ for the 150 Sm(3 He, d) 151 Eu reaction from data taken recently at this laboratory.⁴¹ As seen in this figure, there is a strong anticorrelation between the B(E2) values from Coulomb excitation or (d, d') cross sections, and the intensities seen in the ${}^{153}Eu(p, t)$ reaction. The Coulomb excitation and the (d, d') reactions give essentially no strength for the 261, 414, 654, and 801 keV states to which strong or moderately strong (p, t) transitions have been observed. In contrast, the (p, t) cross sections are rather weak to the unresolved doublet at 307 keV and the 508 keV state to which Coulomb excitation and the

<u>с</u>

 $\overline{151}_{Eu(p, t)}^{149}_{Eu}$

10

911

101

10

See Sec.	
J^{π} assignments from other work.	
Asterisks indicate	
e ¹⁴⁹ Gd decay data.	
= 18.5 MeV) and th	
$^{149}\mathrm{Eu}$ from the present (E_{p}	t experiment.
Level properties of	errors in the present
TABLE II.	III A for the t

	H. TAKETANI,	H. L. SHARMA, AND N. M.	HINTZ
23 J ^π	(+) $(+)$	$\left(\begin{array}{ccc} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	Ĵ
E_x (ke V)	0 149.8 404.0 496.5 534.3 666.6 672.5	749.0 795.1 813.2 877.0 939.3 956.9 979.7 1013.2	1097.8
.24 Jπ	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
Ref. E_x (keV)	0 150 497 535 666	750 796 940	
d .ef. 25 J″	영영 영영 (1) 10 11 11 11 11 11 11 11 11 11 11 11 11	이어 (1)	
cay of ${}^{149}_{ m R}$ C ${}^{E_x}_{ m (keV)}$	0 150 497 534 667	750 796 934 939 958 (963)	1099
f. 26 J ^π	20 20 20 20 20 20 20 20 20 20	οίο οίο οίο οίο οίο οίο οίο	ା ଜୁନ ଜୁନ ଜୁନ ଜୁନ ଜୁନ ଜୁନ ଜୁନ ଜୁନ ଜୁନ ଜୁନ
$\mathop{\rm Re}\limits_{E_x} ({\rm keV})$	0 149.8 496.6 534.4 666.6	749.1 795.1 939.1 956.9	1097.8
f. 27 J ^π	$\begin{array}{c} \frac{5}{2}, \\ \frac{1}{2}, \\ \frac{1}$	8월 2월	2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
$E_x^{E_x}$ (ke V)	0 149.6 459.9 496.2 534.2 534.2 666.0	748.2 794.8 812.4 875.8 933.3 933.3	1097.3
J#	<u>5</u> 	بوان مان بهان مانی عاقب مان مان م	ი ა ი ა ი ა • •
t) xp. L	0	• • • §	0 0 0
${}^{151}_{ m Fu}(p,$ resent e ${}^{ heta_{ m lab}}_{ m lab}$ (deg)	25 10 10 10	30 12.5 25 25 25 25 25 25	30 30 30 30 30 30 30 30 30 30 30 30 30 3
$\sigma(\theta)_{\max}$ P $(\mu b/sr)$	957.7 6.6 17.2 6.1	27.5 8.3 8.3 8.3 11.4 2.9 5.5 5.5 5.5 3.3	11.0 3.2 3.7 3.7 2.4 2.4 9.4 9.4 10.1 8.0
$E_{\mathbf{x}}^{E_{\mathbf{x}}}$ (ke V)	0 150 535 666	754 778 801 816 911 935 955 955	1150 1190 1212 1226 1226 1319 1356 1439 1508

$$V = 165.0 - 0.17E - 6.4 \frac{N-Z}{A}$$
 (MeV)

and

1

$$W = 46.0 - 0.33E - 110 \frac{N-Z}{A}$$
 (MeV),

where E is the corresponding laboratory triton energy (MeV).

	V (MeV)	<i>R</i> _v (fm)	<i>a_v</i> (fm)	W (MeV)	R _w (fm)	a _w (fm)	W _D (MeV)	<i>R_c</i> (fm)	Target	Ref.
Protons	57.03 56.78	$1.17\\1.17$	$0.75 \\ 0.75$	$\begin{array}{c} 1.37\\ 1.37\end{array}$	$\begin{array}{c} 1.32\\ 1.32\end{array}$	0.633 0.626	9.28 9.16	1.30 1.30	¹⁵³ Eu ¹⁵¹ Eu	39 39
Tritons	$\begin{array}{c} 162.03\\ 162.02 \end{array}$	$\begin{array}{c} 1.20 \\ 1.20 \end{array}$	$\begin{array}{c} 0.72 \\ 0.72 \end{array}$	24.08 25.22	$\begin{array}{c} 1.40 \\ 1.40 \end{array}$	0.84 0.84	0 0	$\begin{array}{c} 1.30 \\ 1.30 \end{array}$	¹⁵³ Eu ¹⁵¹ Eu	40 40

FIG. 5. A sample of DWBA curves for the ${}^{153}\text{Eu}(p,t)-{}^{151}\text{Eu}$ reaction at 18.5 MeV calculated by the program TWOPAR (Ref. 38). Transferred L values, bound-state wave functions of the transferred neutrons, and the excitation energies in ${}^{151}\text{Eu}$ are as follows: (a) L = 0, $(2f_{7/2})^2_{\nu}$, $E_x = 0$; (b) L = 2, $(2f_{7/2})^2_{\nu}$, $E_x = 414$ keV; (c) L = 3, $(2f_{7/2}, 1i_{13/2})_{\nu}$, $E_x = 500$ keV; (d) L = 4, $(2f_{7/2})^2_{\nu}$, $E_x = 557$ keV; (e) L = 6, $(2f_{7/2})^2_{\nu}$, $E_x = 1000$ keV.

(d, d') reaction show very strong transitions. Coulomb excitation and (d, d') reactions on ¹⁵¹Eu can be expected to excite strongly states corresponding to collective vibrations around an equilibrium shape similar to that of the mainly spherical ground state. The (³He, d) reaction will populate states with a large component of a single nucleon coupled to the spherical ¹⁵⁰Sm ground state. The data illustrated in Fig. 6 show very little singlenucleon transfer yield to the four states seen strongly in (p, t), namely the 261, 414, 654, and 801 keV levels.

The possibility of these four states arising from two-phonon vibrations (which would also be weak in Coulomb excitation and single-nucleon transfer) is quite small, since the (p, t) cross section for two-phonon states is usually of the order of 1-2%of the ground state.⁴² The above facts suggest that the four states strongly excited in the (p, t)reaction have equilibrium shapes quite different from that of the ground state and are closer to that of the ¹⁵³Eu target ground state, the $\frac{5}{2}$ (413) bandhead, which has a prolate shape with $\delta \simeq 0.25$. Thus it is reasonable to assume that the 261 keV state is the head of a $\frac{5}{2}$ + [413] rotational band and that the 654 keV state is the head of a " β -vibrational" band, $\frac{5}{2}$ [413] β , with a core similar in structure to the 688 keV 0⁺ state in ¹⁵²Sm.

The states at 414 and 801 keV are populated with intensities of $\sum_{\theta} \sigma(\theta) / \sum_{\theta} \sigma_{5/2^+}(\theta) = 1/6.9$ and 1/5.3, respectively, relative to their assumed bandheads (the 261 keV state for the 414 keV state and the 654 keV state for the 801 keV state), which are close to that expected for the lowest rotational excitations $(J = \frac{7}{2})$ of the two $K = \frac{5}{2}$ bands. For example, in ¹⁷³Yb(p, t)¹⁷¹Yb, at $E_p = 19$ MeV,³⁶ the

FIG. 7. Systematics of rotational parameter A for the known ground and excited deformed bands of Sm (Ref. 7) and Eu against neutron number. Solid lines connect A values for deformed bands.

 $\frac{5}{2}$ and $\frac{7}{2}$ members of the favored $\frac{5}{2}$ [512] band are excited with a ratio $\sum_{\theta} \sigma_{7/2} - (\theta) / \sum_{\theta} \sigma_{5/2} - (\theta)$ = 1/5.4, and in ¹⁶¹Dy(*p*, *t*)¹⁵⁹Dy the favored $\frac{5}{2}$ +[642] band shows a ratio $\sum_{\theta} \sigma_{7/2} + / \sum_{\theta} \sigma_{5/2} + = 1/6.6$ at E_p =18 MeV.43 In previous cases where excited deformed bands have been seen in spherical eveneven nuclei their first rotational states have been observed with similar intensity ratios (~1/5 for 150 Sm and ~1/3.6 for 148 Sm). If the 414 and 801 keV states are tentatively assigned as the $\frac{7}{2}$ members of the two $K^{\pi} = \frac{5^{+}}{2}$ bands, their rotational parameters A can be compared with those of bands in the neighboring Sm and Gd nuclei. The 261 keV band would then have A = 21.9 keV, and the 654 keV band A = 21.0 keV. These are quite close to the A values for the neighboring even deformed nuclei $^{152}_{62}$ Sm₉₀ (A = 20.3 keV for the ground band and A = 21.0 keV for the " β band" at 685 keV) and ${}^{154}_{64}$ Gd₉₀ (A = 20.5 keV for the ground band), but are somewhat larger than for the ¹⁵³Eu ground-state band (A = 11.9 keV). In Fig. 7 we have plotted A values for the known ground and excited deformed bands against neutron number. It is seen from this figure that the Eu deformed sequence follows a pattern similar to that observed for the Sm ground and excited bands through the transitional region. Furthermore, the angular distributions of the 414 and 801 keV states are quite similar, as can be seen in Fig. 2(b). These angular distributions have a structure fairly similar to the experimental and theoretical (p, t) angular distributions for the 2^+ members of the ground-state rotational bands in deformed nuclei.³³

From this evidence, admittedly circumstantial, it seems reasonable to make the 414 and 801 keV states the $\frac{7}{2}$ members of the $K^{\pi} = \frac{5}{2}$ bands, although it is necessary to confirm this assignment by studying the γ decay of these states. Such an experiment is now in progress. Higher members of these bands cannot be assigned with any certainty but the state seen in (p, t) at 597 keV has the correct energy and intensity to be the $\frac{9}{2}$ member of the $\frac{5}{2}$ [413] band starting at 261 keV.

Assuming the above assignments are correct, it is interesting to note that the effect of the odd proton in ¹⁵¹Eu is to lower the deformed state by almost 1 MeV, from 1255 keV in ¹⁵⁰Sm to 261 keV in ¹⁵¹Eu, and to decrease the rotational parameter A from 27 keV in ¹⁵⁰Sm to 21.9 keV in ¹⁵¹Eu. However, the energy measured from the ground state of the 654 keV " β vibration" in ¹⁵¹Eu is near that of the low 0^+ states in both of the neighboring spherical and deformed nuclei, namely, 740 keV for ¹⁵⁰Sm and 685 keV for ¹⁵²Sm. Evidently the energy of the lowest J = 0 vibration in these transitional nuclei is relatively independent of the average deformation of the ground state. If however the energy of the " β vibration" (654 keV) is measured from the bandhead of the lowest deformed state in ¹⁵¹Eu (261 keV), its energy is ~300 keV lower than for the neighboring even nuclei. In any case, the nature of these states in the 700 keV region of even nuclei is certainly not well understood and it is necessary to postulate large zeropoint shape oscillations in the target or residual states to explain their strong population in (t, p)and (p, t) reactions.¹⁻¹¹

FIG. 8. Residual A dependence of (p,t) Q values for Eu isotopes (solid line). The dashed line gives an estimate of the location of deformed states in ¹⁴⁹Eu and ¹⁵¹Eu.

The expected location of deformed states in the "spherical" nucleus ¹⁵¹Eu can be determined approximately from the (p, t) Q-value mass number dependence as shown in Fig. 8. Extrapolation of the Eu(p, t) Q value from the deformed side to the lower-mass spherical side indicates that a deformed state is expected at ~500 keV in ¹⁵¹Eu and at ~1700 keV in ¹⁴⁹Eu.

For comparison, we have also shown in Fig. 6 the level scheme of the neighboring even isotone of ${}^{150}_{62}\text{Sm}_{88}$ and the corresponding (p, t) cross sections at $E_p = 19$ MeV. It is interesting to note that the summed L = 0 cross section ($E_x \leq 1.5$ MeV) is conserved in adding one proton to the Sm core. The summed L = 0 cross section ($E_x \leq 1.5$ MeV) at 19 MeV for the residual nucleus ${}^{151}\text{Eu}$ is 1139 μ b/ sr at 25° which is, within the errors, the same as the value of 1180 μ b/sr at 25° for ${}^{150}\text{Sm}$.

It is also interesting to note that the cross-section ratio in ¹⁵³Eu(p, t)¹⁵¹Eu of the deformed "ground" bandhead (261 keV) relative to the " β vibration" bandhead (654 keV) is 2.94 closer to the ¹⁵⁴Sm(p, t)¹⁵²Sm ratio of 3.04 for the 0⁺ ground relative to the 0⁺ " β vibration" (685 keV) than to the corresponding ratio of 1.18 in ¹⁵²Sm(p, t)¹⁵⁰Sm for the ground to 0⁺ (740 keV) transitions.

By using the combined data on level energies, B(E2) values, single-nucleon transfer cross sections, and (p, t) cross sections for both the ¹⁵¹Eu and ¹⁵⁰Sm levels, we can tentatively classify the ¹⁵¹Eu levels in addition to the four deformed levels (261, 414, 654, and 801 keV) discussed above. The ground state is predominantly a $d_{5/2}^{-1}$ (or $d_{5/2}$) proton state and the first excited state (22 keV, $J^{\pi} = \frac{7}{2}$) is predominantly a $g_{7/2}^{-1}$ (or $g_{7/2}$) proton state on a spherical ¹⁵²Gd (or ¹⁵⁰Sm) ground state.^{21, 22} The 309 keV state is known to be a doublet $(J^{\pi} = \frac{5^{+}}{2})$ and $\frac{3^{+}}{2}$, which might explain the departure from a pure L=0 for the angular distribution. The 196 $(\frac{1}{2})$, 307 doublet $(\frac{3}{2})$ and $\frac{5}{2}$, and 508 $(\frac{9}{2})$ keV states which are strongly excited in Coulomb excitation and in the (d, d') reaction, and weak in (p, t), are interpreted as containing a large fraction of the $d_{5/2} \otimes {}^{150}$ Sm (2⁺) multiplet. The weak L = 0 transition which we see at 307 keV is presumably to the $\frac{5^+}{2}$ member of the multiplet. The $\frac{7}{2}$ member of the multiplet is missing so far, but in view of its very small (p, t) cross section there is a possibility that the first excited state (22 keV, $\frac{7}{2}$) contains some of the component.

Several degrees of freedom remain to explain the L=0 transitions seen to states at 585, 698, and 902 keV. A $\frac{5}{2}$ ⁺ member of the expected $\frac{3}{2}$ ⁺[411] deformed band, which is known in ¹⁵³Eu at 173 keV, would be populated by L=0 transfer if there is mixing of the $\frac{5}{2}$ ⁺[413] and $\frac{3}{2}$ ⁺[411 bands. On the basis of the single-particle energies, either the 585 or 698 keV state would be a candidate for this state. More speculatively, if the coexistence picture is taken literally we might expect a $\frac{5}{2}^+$ state in the vicinity of 700 keV to be formed by coupling a $d_{5/2}$ particle to the 0⁺ vibration of ¹⁵⁰Sm at 740 keV. Such a state would be comparable in (p, t) cross section to the $d_{5/2}$ ground state in view of the fact that the ground and 740 keV 0⁺ states in ¹⁵⁰Sm are equally populated in the (p, t) reaction.

The present data on the ${}^{153}Eu(p, t){}^{151}Eu$ reaction show a completely different L = 0 strength pattern from the analogous (p, t) reaction on even-A isotone ${}^{152}Sm_{90}(p, t){}^{150}Sm_{88}$, where comparable L=0strengths were seen to all of the three 0^+ states in ¹⁵⁰Sm below 1.3 MeV, the ground, 738, and 1255 keV states. As Burke, Løvhøiden, and Waddington²⁸ have already noted, a reason for this is that there is a lack of overlap between the target (^{153}Eu) and residual (¹⁵¹Eu) nuclei in two respects, the odd proton and the core. The $\frac{5^+}{2}$ [413] Nilsson orbit originates from the $g_{7/2}$ shell-model orbit in its spherical limit and contains only a small fraction (~0.25) of the $d_{5/2}$ shell-model amplitude even at $\delta \sim 0.25$. Since the ground state of ¹⁵¹Eu seems to be a rather good spherical $d_{5/2}$ proton state, the ground state of 153 Eu ($\frac{5}{2}$ +[413]) has a poor overlap with the ground state of ¹⁵¹Eu, partly as a result of the difference in the odd-proton orbit. Also, it is known⁴⁴ that the change in the intrinsic quadrupole moments between the Eu isotopes is larger than for the two Sm isotopes, which will result in a smaller core overlap factor for the Eu case.⁴⁵ The very small ground-state (p, t) cross section to ¹⁵¹Eu thus implies a much smaller zero-point oscillation in the ¹⁵³Eu and ¹⁵¹Eu ground states than in the case for the ^{152, 150}Sm isotopes.

Finally, in the (d, d') reaction,^{19, 20} about six L = 3 levels are tentatively identified in the energy region 785–965 keV as the weak coupling octupole multiplet: $d_{5/2} \otimes^{150}$ Sm (3⁻) or $d_{5/2}^{-1} \otimes^{152}$ Gd (3⁻). There is no direct correspondence between this multiplet and the levels excited by the (p, t) reaction, except for weak transitions at 911 and 944 keV.

B. 151 Eu(p,t) 149 Eu

In contrast to the ¹⁵³Eu(p, t)¹⁵¹Eu data, there is no unusual feature in the observed ¹⁴⁹Eu level structure. The L = 0 transfer strength ($J^{\pi} = \frac{5}{2}^+$) is concentrated in the ground state, as it is for (p, t) reactions on even-even nuclei connecting two nuclei with similar coupling schemes. In addition, there are six or seven L = 0 transitions ($J^{\pi} = \frac{5}{2}^+$) to excited states observed. The strongest of these ($E_x = 1.226$ MeV) carries intensity less than 10% of the ground-state transition. In Fig. 9, we compare the level scheme and (p, t) cross-section pattern for ¹⁴⁹Eu with those for the neighboring even isotone ¹⁴⁸Sm₉₈. At an incident proton energy of 19 MeV, the summed L = 0 cross section $(E_x \leq 1.5 \text{ MeV})$ for ¹⁴⁹Eu is 1168 µb/sr at 25°, which is only 20% lower than the value of 1395 µb/sr for ¹⁴⁸Sm to the same range of excitation energy. Unfortunately, there are no data available on Coulomb excitation or inelastic scattering on ¹⁴⁹Eu to

12

compare with the (p, t) data, since ¹⁴⁹Eu is not stable. The only data on ¹⁴⁹Eu are those from γ or conversion electron spectroscopy on the decay of ¹⁴⁹Gd²³⁻²⁷ and it is rather difficult to determine the configurations of the residual levels. Eppley, McHarris, and Kelly²⁷ have discussed the level structure of the low-lying states and conclude that the ground state and the first excited state $(E_x$ = 0.150 MeV, $\frac{7}{2}$) are predominantly $(2d_{5/2})^{-1}$ and $1g_{7/2})^{-1}$ single-proton states, respectively, and

FIG. 9. Known energy levels and a comparison of the cross sections in the ${}^{151}\text{Eu}(p,t){}^{149}\text{Eu}$ reaction at 18.5 MeV and those in the (p,t) reaction for the neighboring even isotones ${}^{150}\text{Sm}(p,t){}^{148}\text{Sm}$ at 19 MeV (Ref. 7). L=0 transitions are indicated as "0" on the bars. Excitation energies of ${}^{149}\text{Eu}$ levels with asterisks are the averages of five experiments (Refs. 23–27) on the decay of ${}^{149}\text{Gd}$. Excitation energies of the other ${}^{149}\text{Eu}$ levels are determined from the present experiment. See Table II for the sources of the spins and parities shown. The level scheme of ${}^{148}\text{Sm}$ was taken from Ref. 7.

not $K = \frac{5}{2}$ rotational band members. The only other predominantly single-particle state that Eppley *et al.* have identified is an $h_{11/2}$ state at 496.2 keV, which was not seen in the present experiment.

The (p, t) Q-value systematics of Fig. 8 suggest the existence of a deformed state at around 1.7 MeV excitation in ¹⁴⁹Eu. We could not find any prominent L = 0 transition at this energy region. However, in view of the fact that the deformed states begin at 261 keV in ¹⁵¹Eu, as compared to \sim 500 keV estimated from the Q values, we might expect the deformed ¹⁴⁹Eu states to be somewhat lower than 1700 keV. Two fairly strong $\frac{5}{2}$ states at 1.226 MeV (~9% of the ground state) and 1.319 MeV ($\sim 6\%$ of the ground state), may be due to the fractionation of a deformed bandhead. As seen in Fig. 9, the 1.426 MeV 0^+ state in ¹⁴⁸Sm, which was identified by Debenham and Hintz⁷ as an excited rotational bandhead, is close to the above two $\frac{5}{2}$ states in excitation energy, and its (p, t) cross section (217 μ b/sr at 25°) is comparable to the estimated sum of the (p, t) cross sections of the above two states (170 μ b/sr at 25°) in ¹⁴⁹Eu at the same incident energy. In contrast to the ¹⁵³Eu- $(p, t)^{151}$ Eu reaction, the lowest odd-proton states in the target (^{151}Eu) and the residual (^{149}Eu) nucleus are both predominantly $(2d_{5/2})^{-1}$ states, and hence the overlap of the odd-proton part is good. Thus, the L=0 strength to the excited rotational bandhead in ¹⁴⁹Eu, if it exists, would be similar to that in the corresponding even-A core (p, t)reaction, ${}^{150}Sm_{88}(p, t){}^{148}Sm_{86}$.

V. SUMMARY AND CONCLUSIONS

The shape transitional aspects of the odd-mass Eu isotopes, ${}^{151}\text{Eu}_{88}$ and ${}^{149}\text{Eu}_{86}$, have been investigated with the (p, t) reaction at $E_p = 18.5$ and 19.0

MeV. A number of new levels were found in both ^{151}Eu and ^{149}Eu . A number of L = 0 transitions were unambiguously identified in both nuclei, indicating the existence of seven $\frac{5^+}{2}$ states in ^{151}Eu and seven or eight $\frac{5^+}{2}$ states in ^{149}Eu .

In 151 Eu, whose ground state is known to be predominantly a spherical $d_{5/2}^{-1}$ state, several deformed states, 261 $(\frac{5^+}{2})$, 414 $(\frac{7^+}{2})$, 654 $(\frac{5^+}{2})$, and 801 $\left(\frac{7}{2}\right)$ keV have been strongly excited, while the ground state has shown a vanishingly small cross section. The $\frac{7}{2}$ assignments are tentative and are based mainly on (p, t) cross-section and moment of inertia systematics. These deformed states have not been seen in Coulomb excitation or (d, d') reactions, both of which are expected to excite strongly the collective shape vibrations of the spherical ground state. The above experimental data, together with the energy systematics in the neighboring deformed even-A Sm isotopes and the known configuration of the ¹⁵³Eu ground state, indicate that the 261 keV, $\frac{5^+}{2}$ state is the head of a $\frac{5^+}{2}$ [413] rotational band with its $\frac{7^+}{2}$ member tentatively identified at 414 keV, and, possibly, its $\frac{9^+}{2}$ member at 597 keV. The 654 keV, $\frac{5^+}{2}$ state is probably the head of a $\frac{5+}{2}$ [413], " β band," with its $\frac{7}{2}$ member tentatively at 801 keV.

The neighboring odd-A isotope of ¹⁴⁹Eu, in contrast, has shown the usual (p, t) pattern of a strong L=0 ground state $(\frac{5}{2}^+)$ and weakly excited states, indicating similar coupling schemes are involved in the ground states of the target (¹⁵¹Eu) and the residual (¹⁴⁹Eu) nuclei.

One of us (H.T.) would like to thank Professor B. Bayman and Professor N. Onishi for useful conversations concerning the theoretical interpretation of the present data.

- *Work supported in part by the U. S. Atomic Energy Commission.
- [†]Present address: Department of Applied Physics,
- Tokyo Institute of Technology, Meguro, Tokyo, Japan. [‡]Present address: Schuster Laboratory, University of Manchester, England.
- ¹S. Hinds, J. Bjerregaard, O. Hansen, and O. Nathan, Phys. Lett. <u>14</u>, 48 (1965).
- ²J. H. Bjerregaard, O. Hansen, and O. Nathan, Nucl. Phys. 86, 145 (1966).
- ³J. R. Maxwell, G. M. Reynolds, and N. M. Hintz, Phys. Rev. <u>151</u>, 1000 (1966).
- ⁴W. McLatchie, J. E. Kitching, and W. Darcey, Phys. Lett. 30B, 529 (1969).
- ⁵W. McLatchie, W. Darcey, and J. E. Kitching, Nucl. Phys. A159, 615 (1970).
- ⁶P. Debenham and N. M. Hintz, Phys. Rev. Lett. <u>25</u>, 44 (1970).

- ⁷P. Debenham and N. M. Hintz, Nucl. Phys. <u>A195</u>, 385 (1972).
- ⁸D. G. Fleming, C. Gunther, G. B. Hagemann, B. Herskind, and P. O. Tjøm, Phys. Rev. Lett. 27, 123 (1971).
- ⁹T. W. Elze, J. S. Boyno, and J. R. Huizenga, Nucl. Phys. <u>A187</u>, 473 (1972).
- ¹⁰R. Chapman, W. McLatchie, and J. E. Kitching, Phys. Lett. <u>31B</u>, 292 (1970).
- ¹¹R. Chapman, W. McLatchie, and J. E. Kitching, Nucl. Phys. <u>A186</u>, 603 (1972).
- ¹²K. Yagi, K. Sato, Y. Aoki, T. Udagawa, and T. Tamura, Phys. Rev. Lett. <u>29</u>, 1334 (1972).
- ¹³K. Kumar and M. Baranger, Nucl. Phys. <u>A110</u>, 529 (1968).
- ¹⁴R. Winkler, Phys. Lett. <u>16</u>, 156 (1965).
- ¹⁵G. G. Seaman, E. M. Bernstein, and J. M. Palms, Phys. Rev. 161, 1223 (1967).
- ¹⁶D. A. Zavadil and R. Graetzer, Nucl. Phys. <u>A146</u>, 259

(1970).

- ¹⁷T. Lewis and R. Graetzer, Nucl. Phys. <u>A162</u>, 145 (1971).
- ¹⁸J. E. Thun and T. R. Miller, Nucl. Phys. <u>A193</u>, 337 (1972).
- ¹⁹G. R. Boss, M. A. thesis, Western Michigan University, 1969 (unpublished).
- ²⁰ E. M. Bernstein, G. R. Boss, G. Hardie, and R. E. Shamu, Phys. Lett. <u>33B</u>, 465 (1970).
- ²¹Å. Hoglund and S. G. Malmskog, Nucl. Phys. <u>A138</u>, 470 (1969).
- ²²J. W. Ford, A. V. Ramayya, and J. J. Pinajian, Nucl. Phys. A146, 397 (1970).
- ²³B. Harmatz and T. H. Handley, Nucl. Phys. <u>81</u>, 481 (1966).
- ²⁴I. R. Williams, K. S. Toth, and T. H. Handley, Nucl. Phys. 84, 609 (1966).
- ²⁵J. M. Jaklevic, E. G. Funk, and J. W. Mihelich, Nucl. Phys. <u>84</u>, 618 (1966).
- ²⁶I. Adam, K. S. Toth, and R. A. Meyer, Nucl. Phys. <u>A106</u>, 275 (1968).
- ²⁷R. E. Eppley, Wm. C. McHarris, and W. H. Kelly, Phys. Rev. C <u>2</u>, 1077 (1970).
- ²⁸D. G. Burke, G. Løvhøiden, and J. C. Waddington, Phys. Lett. <u>43B</u>, 470 (1973).
- ²⁹H. Taketani, H. L. Sharma, and N. M. Hintz, in *Proceedings of the International Conference on Nuclear Physics, Munich, 1973*, edited by J. de Boer and H. J. Mang (North-Holland, Amsterdam/American Elsevier, New York, 1973), Vol. 1, p. 229.
- ³⁰ P. H. Debenham, D. Dehnhard, and R. W. Goodwin, Nucl. Instrum. <u>67</u>, 288 (1969).
- ³¹Obtained from Oak Ridge National Laboratory, Oak Ridge, Tenn.
- ³²T. Tamura, D. R. Bes, R. A. Broglia, and S. Landowne, Phys. Rev. Lett. <u>25</u>, 1507 (1970); <u>26</u>, 156(E) (1971).
- ³³R. J. Ascuitto, N. K. Glendenning, and B. Sørensen, Phys. Lett. <u>34B</u>, 17 (1971); Nucl. Phys. <u>A183</u>, 60 (1972).
- ³⁴T. Udagawa, T. Tamura, and T. Izumoto, Phys. Lett. <u>35B</u>, 129 (1971).

- ³⁵T. Udagawa and T. Tamura, in Proceedings of the Symposium on two-neutron transfer and pairing excitation, Argonne National Laboratory, 1972 [Argonne National Laboratory Informal Report No. PHY-1972H (unpublished)], p. 193.
- ³⁸M. A. Oothoudt and N. M. Hintz, Nucl. Phys. <u>A213</u>, 221 (1973).
- ³⁷N. B. Gove and A. H. Wapstra, Nucl. Data <u>A11</u>, 129 (1972).
- ³⁸B. F. Bayman, zero-range DWBA Code twopAR (unpublished).
- ³⁹F. D. Becchetti, Jr., and G. W. Greenlees, Phys. Rev. 182, 1190 (1969).
- ⁴⁰ F. D. Becchetti, Jr., and G. W. Greenlees, in Proceedings of the Third International Symposium on Polarization Phenomena in Nuclear Reactions, Madison, 1970, edited by H. H. Barschall and W. Haeberli (Univ. of Wisconsin Press, Madison, Wisconsin, 1971), p. 682.
- ⁴⁴H. L. Sharma, H. Taketani, and N. M. Hintz, in J. H. Williams Laboratory of Nuclear Physics, University of Minnesota Annual Report, 1974 (unpublished), p. 114; and (unpublished).
- ⁴²For example, at $E_p = 19$ MeV, the (p,t) cross section for the 1.133 MeV 0⁺ state of ¹⁰⁶Pd is 2% of the groundstate value [A. W. Kuhfeld and N. M. Hintz, in J. H. Williams Laboratory of Nuclear Physics, University of Minnesota, Annual Report, 1972 (unpublished), p. 77]. In the Te(p,t) reaction, the two-phonon 0⁺ states are populated with less than 1% of the ground-state cross section [R. Seltz and N. M. Hintz, in J. H. Williams Laboratory of Nuclear Physics, University of Minnesota, Annual Report, 1972 (unpublished), p. 88].
- ⁴³G. Hagemann, N. M. Hintz, P. Kleinheinz, and M. A. Oothoudt, in J. H. Williams Laboratory of Nuclear Physics, University of Minnesota, Annual Report, 1972 (unpublished), p. 95.
- ⁴⁴V. S. Shirley, in *Hyperfine Interactions in Excited Nuclei*, edited by G. Goldring and R. Kalish (Gordon and Breach, New York, 1971), p. 1255.
- ⁴⁵T. Takemasa, M. Sakagami, and M. Sano, Phys. Lett. <u>37B</u>, 473 (1971).