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The expansion coefficients of a fourth-order collective Hamiltonian for the low-lying
quadrupole vibrations are derived from the microscopic fermion Hamilton operator by a
modified Marumori boson-expansion method. Their dependence on the phonon structure,
on the parameters of the two-body (surface &) interaction, and on the single-particle ener-
gies is numerically investigated. For the isotopes 76Se, Se and Ru, Ru the results
are compared with coefficients that are obtained from phenomcnological. fits to low-lying
levels. QuadrupoI. e moments and B(E2) values are calculated in lowest order.

NUCLEAR STRUCTURE 76' Se, ~ ' Ru collective states microscopically by
boson expansion.

I. INTRODUCTION

The low-lying phonon states in spherical even-
even nuclei still present a challenging problem to
nuclear theory. The phenomenological collective
model for quadrupole vibrations' predicts a first
excited state with spin and parity 2, a triplet of
two-phonon states at approximately twice the en-
ergy of the first with characters 0', 2', and 4',
eventually followed by a three-phonon quintet (0,
2', 3, 4', 6 ) with strongly enhanced electric
quadrupole matrix elements connecting members
of different multiplets.

Nuclei following this pattern are found mainly
in the medium weight region 50&A& 150. In lighter
nuclei the single-particle features are too pro-
nounced to al.lom pure slow collective vibrations,
while the rapid onset of deformation in heavier
open-shell nuclei leaves little space for isotopes
that are soft enough for low-lying vibrations but
not yet permanently deformed. The collective
quadrupol. e motion appears to be best developed
and mell separated from single-particle motion
for nuclei at least four protons and four neutrons
(or four proton holes and four neutron holes) away
from closed proton or neutron configurations. If
there are only two particles or holes outside a single
closed shell, two-particle (hole) states tend to
interfere with the phonons and ought to be included
explicitly into model calculations. Subshell c lo-
sure (Z= 40, &=38, 56) can be sensitively reflected
in the vibrational pattern, especially if the other
kind of particles are close to filling a major shell. .'

These considerations leave about seven groups
of isotopes as candidates for a description in terms
of a purely collective oscillator Hamiltonian with

small anharmonicities to account for the splitting
of the multiplets and the deviations of transition
matrix elements from the pure oscillator values:
72 -78G e 74-80Se 76 -82Kr. 98-1028 100-108Pd46"' ",',Xe, and '" "„'Ba. The first excited 0 state
seems to be especially sensitive to the subshell
closure at &=38 (Ge, Se) and Z = 40 (Zr). For
light Ge and Se isotopes model calculations there-
fore ought to include mechanisms for obtaining
low-lying 0 states (e.g. pairing vibrations').

The rotational band structure of nuclei with
permanent quadrupole deformation in principle
can be obtained from the col.leetive quadrupole
phonon model, ' e.g. by increasing the third-
order anharmonicities. This is possible and is
so simple because the intrinsic structure of the
phonon operator enters into the collective Hamil-
tonian only through the expansion coefficients, and
these are determined by a phenomenological fit to
the spectrum of a given nucleus. In a microscopic
determination of the expansion coefficients, how. —

ever, the intrinsic phonon structure must be al-
lowed to change during the spherical-deformed
transition, i.e., there hag, , to be a self-consistent
feedback from the calculated anharmonicities to
the intrinsic structure of the phonon. Such a pro-
gram, however, we do not intend in this paper and
we will restrict our considerations to nuclei from
the abovementioned groups of isotopes which are
oscillating around an essentially spherical shape.

As in phenomenological approaches the physical
meaning of the phonon operators need not be spec-
ified, there is a lot of freedom in choosing the
model. Hamiltonian. The simplest versions' '
assume a fourth-order coupling term diagonal in
the phonon number. This then requires an expan-
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sion of the trarisition operators up to third order. ' '

The remaining freedom in the Hamiltonian (three
parameters, apart from a scaLe) seems to be suf-
ficient to describe the positions of the highest an-
gular momentum members of the different phonon
multiplets with good accuracy. Most of the other
low-lying members, however, cannot be repro-
duced by such simple Hamiltonians. (E.g. , for
degenerate 2' and 4' two-phonon states the model
predicts degeneracy of the 0', 3', 4', 3,nd 6'
members of the quintet. This is in strong contra-
diction with a case like '"Ru where the complete
quintet seems to be present. ) Furthermore, a
Hamiltonian diagonal in the phonon number im-
plies a very complicated microscopic structure
of the phonon. , containing not only two-quasiparti-
el.e components, but also large four-, six-, etc. ,
quasiparticle components, meaning that the prob-
lem of anharmonicities has to be solved essential-
ly in the fermion space. An alternative approach
specifies the physical meaning of the phonon, for
exampl. e by assuming a rapidly converging expan-
sion of the quadrupole operator in powers of the
phonon operators (usually only the linear term is
kept). ""'" The fourth-order Hamiltonian then
contains all possible off-diagonal terms with al-
together seven parameters (apart from a scale).

The number of parameters may be reduced by
formally dividing the Hamiltonian into potential
and kinetic energy parts V(Q)+ T(P, Q) and requir-
ing the kinetic energy T to be of the form P'/2M,
with M as constant inertia parameter. This leads
to simple rel.ations between the parameters for
diagonal and off-diagonal terms of a given order
in the phonon Hamiltonian. ' It is an interesting
question whether it is necessary to introduce
sixth-order terms into the potential V(Q) while
omitting fourth-order terms like P Q' or P, as
sixth-order terms can introduce triaxial minima
into the potential energy surface whil. e fourth-
order terms cannot. "

Phenomenological fits of the most general
fourth-order ansatz to experimental spectra tend
to produce general. similarities in the ratios be-
tween diagonal and off-diagonal terms which will
be discussed in See. II. It is the main aim of this
paper to investigate whether these features can be
obtained from a genuinely micros copic approach
to the anharmonicities in vibrational nuclei. The
most. appropriate means to construct the collective

Hamiltonian on a microscopic basis seems to be
the boson-expansion method. "" These expan'-

sions originally have been formulated in terms of
pure quasiparticle operators"" or bvo quasipar-
ticle states" where their convergence may be
quite poor. It has been demonstrated in solvable
models"'" that the convergence of these expan-
sions is excel. lent if they are formulated from
the very beginning in terms of the collective op-
erators (or collective states). This can be done
very easily in the case of Marumori's expansion.
The only additional difficulty arising is that the
normalization constants of many-phonon states
in fermion space have to be calculated. From
Ref. 16 it can be seen that this approach is de-
finitely superior to Sgrensen's expansion (in that
model). These arguments led us to make use of
Marumori's expansion modified in the above sense
to derive the coll.ective Hamiltonian. The details
are given in Sec. III.

An important question is how strongly the pre-
cise structure of the phonon operator enters into
the resulting anharmonieities. For comparison
we use a schematic phonon and the collective solu-
tion of the Tamm-Dancoff equations. The random-
phase approximation (RPA) in most cases does not
lead to stable solutions and cannot be used as a
starting basis. The backward going graphs, how-
ever, show up for Tamm-Dancoff phonons in sec-
ond-order off-diagonal terms of the boson expan-
sion, and there they are easily taken into account
because the fourth-order terms restore the stabil-
ity of the collective motion.

The dependence of the resulting anharmonicities
on the phonon structure, the parameters of the
surface 6 two-body interaction, the single-particle
energies, and the particle number is numerically
investigated in Sec. IV. For four isotopes we pre-
sent a detailed comparison of the microscopically
determined expansion coefficients with phenomeno-
logical fits to the experimental level scheme.

II. ANHARMONIC VIBRATOR MODEL

We have selected four different nuclei, the Se
isptopes "Se and "Se and twp Ru isptppes ' Ru
and '"Ru, which we consider to be favorable ex-
amples for a description in terms of an anharmon-
ic vibrator Hamiltonian containing only the collec-
tive quadrupole degree of freedom. The phenom-

enological model. Hamiltonian is taken as

H,.„q,
——2EO+ gh~~[B B]o+h20[B B ]0+h3O[[B B ]2B ]O+h2~[[B B ]2B]0+Jz40[B B ]o[B B ]0

+@3i[B'B']o[B'B]o+ Q ~h'. '[[BB ]~[ B]~]0+"'
J =o,a, 4
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The operators B create bosons with angular mo-
mentum 2, and the brackets indicate angular mo-
mentum coupling. Without introducing higher-
order terms, the @20 part can always be eliminated
by a unitary transformation and therefore can be
omitted. Apart from the uninteresting constant
E, and a common scale factor (e.g. h»), this
Hamiltonian contains seven independent param-
eters which can be fitted to obtain the eight triplet
plus quintet members of the phonon spectrum of a
given nucleus. In three of the four isotopes men-
tioned above only seven states are known (only in
'"Ru the quintet is complete), therefore the miss-
ing quintet member is tentatively predicted from
the fits. The resulting wave functions then can be
used to calculate matrix elements of transition
operators. In lowest order the quadrupole opera-
tor is taken as

In this approximation ratios of B(E2) values then
are parameter free. In previous work"'" we have
pointed out that it is advantageous to start the fit-

ting procedure from the following relations:

h„l&3p = 3p ~,] 44p = 4 (Sa)

(sb)

These relations follow' from a collective Hamil-
tonian which contains a kinetic energy quadratic
in P ~ i(B —B) with a constant inertia parameter,
and a potential up to fourth order in Q ~ (B +B).
It turned out that satisfactory fits can be obtained
while keeping the ratios (Sa) fixed or close to the
starting values. However, satisfactory fits in
most cases can only be reached with the ratios
(3b) differing appreciably from the starting val-
ues; especial. ly the A.„' coefficient tends to be
quite small and even negative (cf. e.g. the three
Kr isotopes"'. "Kr, "Kr, "Kr, and 'O'Ru"). In
Figs. 1-4 we compare the experimental spectra
with the lowest eigenvalues of the Hamiltonian
(1); the fitted coefficients x,, =h;, /h» are given in
Table I. Rewriting the Hamiltonian (1) in terms

Exp.
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FIG. 1. The experimental energy levels (Ref. 29) of 76Se as compared to the eigenvalues of the collective Hamiltonian
(1) with the fitted coefficients given in Table I. The full curve shows the corresponding potential energy in the intrinsic
p-y frame for y=0 . The dashed curve is the potential resulting from the microscopic calculation.
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FIG. 2. Energy levels (Ref. 30) and potential energy for ~8Se. See caption of Fig. 1.

of Q and P leads to a separation of H into kinetic
and potential energy parts T(P, Q)+ V(Q)." The
potential energy V(Q), transformed into the in-
trinsic P-y frame, is plotted in Figs. 1-4 for the
different nuclei along the y = 0' axis. Evidently all
four isotopes display a maximum for the potential
at zero deformation implying that an RPA approach
for the phonons would fail. The quality of agree-
ment for the B(E2) values and the quadrupole mo-
ments is presented in Tables II-IV. Of course one
might try harder than we did here to obtain even
better agreement for the energies with slightly
changed coefficients r... but the over-all features
of the transition probabilities remain essentially
the same; and, in any case, one should not try to
push this simple model too far. Our main aim in
the following sections wil. l be to try whether one
can obtain the general pattern for the coefficients
r„which results from these fits from a boson ex-
pansion of the microscopic fermion Hamiltonian
for these nuclei.

III. MICROSCOPIC DERIVATION OF THE EXPANSION

COEFFICIENTS

[B„„B~,]=5„5„,—5„,5„

and the antisymmetry requirement

(4)

B~„=-B„~,

The index pair p, v corresponds to the indices p,, v

of a two-quasiparticle operator b~~b~ in the space
of fermions. Writing

~ 0) and
~
0) for the vacua of

fermions and bosons, respectively, the transfor-
mation is given by

As outlined in the Introduction, we shall use a
modified Marumori expansion to construct the
collective Hamiltonian on a microscopic basis.
The original Marumori transformation~4 from the
fermion space to the space of ideal bosons is de-
fined in terms of antisyrnmetric operators B~~„,
satisfying the Bose commutation relations
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FIG. 3. Energy levels (Ref. 29) and potential energy for Ru. See caption of Fig. 1,

1v=g „,i( „)„, Q Q (-) (&'„,, &„',)I0)(0I&, &„
~j.vj. ' ' ' ~nvn

(8)

with denoting all possible permutations of the
(p, ;j. Using for the projector on the boson vacuum
the identity

I 0)(ol =: exp (- l P B,„B„.):

~( i)y fy t
i ~ pv p v

pv

and, correspondingly, for the bosons

(10)

the image O~ of any fermion operator O~ in the
boson space is then obtained as an infinite normal-
ordered power series in terms of the operators
B„„and B„„:

O~ =UO~U (8)

A natural way to obtain a collective Hamiltonian
for phonons which are linear super'positions of
two-quas ipartic le operators

seems to be the following: Invert relations (10)
by making use of the completeness of the coeffi-
cients c~„',~

c„'„*c', = —,(5 5, —5„,5, )

to obtain

(12)
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FIG. 4. Energy levels (Refs. 29 and 30) and potential energy for Ru. See caption of Fig. ]..

and then insert this into the transformation (6):
2"[(2n —1)!!j '"

(2n)!

y, B,. B,. 0 0 A. , '''A. ;'n 'n

Instead, if one wants to establish a transforma-
tion similar to Eq. (6) in the subspace of collec-
tive phonons only, one has to put up the operator
U directly in terms of normalized multiphonon
states and not try to start from Eg. (6). That is,
we write

As long as the comP/ete sums over the indices i
are performed, this transformation stil. l is identi-
cal with Eg. (6) aithough the states A, A. , t 0)
are neither orthogonal nor normalized no longer.
However, usually one will truncate the i sums to
include only the interesting collective modes (i =0,
say), and then obtain

TABLE I. The coefficients &;, resulting from phenom-
enological fits to the low-lying levels of Se and Ru iso-
topes.

U= Q
2 t(2n i)'ll (Bt )n~ 0)(0~ g )n (i2)

r21 30 22
y(2)

22
r(4)

22 3i 40

This, however, obviously no longer is a meaning-
ful and unitary transformation, because neither
the fermion nor the boson states are correctly
nor maliz ed.

~6Se 0.278 0.062
Se 0,212 0.071
Ru 0.385 0.128
Ru 0.332 0.111

0.192 0.028
0.277 0.189
0.254 0,161
0.237 0.049

0.375 0.389
0.526 0.605
0.386 0.580
0.349 0.480

0.070
0.115
0.125
0.120
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TABLE II. Comparison between experimental (Refs. 30-33) and theoretical ratios of B(&2)
values.

J7l ~ J7T/J/'|T ~JI 7T

i f i f

"Se
B(E2) /B' (E2)
Theo. Exp.

casse

B(E2) /B' (E2)
Theo. Exp.

iooRu

B (&2)/B'(E2)
Theo. Exp.

i02Ru

B(E2) /B' (E2)
Theo. Exp.

02 2i /2i Oi

2,'-O,'/2,'-2,'
4i 2i /2i Oi

O3 -2,'/0, 2,'

3i 2i/3i -4,'
23 0i /23 2i

2,
' -O,"/2,' -O,'

23 0i /23 22

23 0i /23 4i

42 -2i/42

42 2i /42 4i

6i 4i /2i Oi

1.011 0.919

0.060 0.031

1.731 1.979

0.122

0.087

0.351

85.3

0.013

0.060

0.031

0.037

0.060

2.14

0.545

0.016 0.030

1.554

0.094

0.024 0.025

0.074

1.462 0.33

0.015

0.189 0.009

0.072

0.007

0.009

1.803

O.479 1.0 0.956

1.635 1.3
0.616

0.043

0.213

1.809

0.061

0.063

0.099

22.4

1.137

1.477

1.712 1.408

0.035 0.160

0.061 0.028

0.349 0.170

1.538 1.10

0.005 0.003

0.021

0.012

0.020 0.007

0.039 0.013

2.049

0.045 0.066 0.081 0.055

with

(oi BQBo™i0) =5„(N„) '

&oia,"a™io)=a„.(N"„)-2 .

A similar difficulty ought to appear in the
Beliaev-Z elevinsky method which also sta, rts

out from two-quasiparticle operators, then is
transformed into the i representation Eqs. (9)
and (10) before being truncated to the collective
branches. Investigations of this point are in pro-
gress' and are especially interesting because the
BZ method allows a summation of the infinite
boson series in terms of square roots. '

We restrict the following considerations to

TABLE III. Comparison between experimental (Refs. 30-33) and theoretical B(&2) values;
[B(&2, 2i Oi) normalized j.

J7T ~ J'TT
i f

2i Oi

02 2

2 22 i

2 02 i

4+ ~21i i

0+ 23 2

3+ ~2+i 2

2+ ~0+
3 2

4+ ~2+
2 2

6+ 4+
1

49.6

50.2

50.3

3.03

85.9

47.1

64.8

39.3

49.0

106.1

49.6

45.6

34.0

l.05

98.2

"se
B(E2) (s.p.u.)
Theo. Exp.

35.6

19.4

37.6

0.687

55.3

29.7

44.8

19.9

31.2

64.2

35.6

33.8

1.01

"se
B(E2) (s.p.u. )
Theo. Exp.

41.4

19.8

29.4

1.3

14.5

15.5

19.4

0.014

61.2

41,4

41.7

24.3

1.6
52.9

iOORu

Bg2) (s.p.u.)
Theo. Exp.

"'Ru
B (&2) (s.p.u. )
Theo. Exp.

50.4 50.4

49.9

36.0 25.9

2.9 1.43

89.4 71.0

34.7

75.8

45.3

44.7

106.9
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quadrupole phonons

A,'„=g c., „f'„f8t=g c...P tf,'],„, (i8)

TABLE IV. Theoretical values for the static quadru-
pole moments (only relative signs are determined by the
theory).

ab

where the bracket again indicates angular-momen-
tum coupling and o.'= In„, l~, j„,m„, T3 „j,
a =[n„,l„,j T,„j denote the quantum numbers
of the single fermion levels. We take the coeffi-
cients c„,diagonal in the third component of the
isospin and in the following we will omit the index
2 at the phonon operator A2 and the coefficients
c,~,. For the expansion of the Hamiltonian up to
fourth order we shall need the operator U (14) up
to the three phonon states:

2'
1

2'
2

4+
1

2'
3

4+
2

76Se

Q (eb)

-0.471

+0.377

-0.688

-0.390

-0.073

-0.931

78Se

Q (eb)

-0.283

+0.248

-0.390

-0.238

+0.047

-0.440

100Hu

Q (eb)

-0.560

+0.355

-0.743

-0.290

-0.564

-1.077

102Ru

Q (eb)

-0.673

+0.563

-0.933

-0.339

-0.320

-1.294

U=l 0)&ol+ g I1, 2M)&1, 2MI+ g I2, ~M)&2, &MI+3 g I3, 2(&)M)&3, 2(&)MI (17)
Z=Og2 y4
N

J =0)2o4
Af

with

I 1, 2M)=N, B~I 0),

I 2, ZM) =N,'~[B'B']&~I 0),
I 3, 2(J)M)=N, (g) [[BB )~B ],„I0),

I 1, 2M&=N, A„I 0),
I 2, ZM& =N~, [A'A'],„I0&,

I 3, 2(Z)M& =N, (~) [[A A ]~ ], I 0) .
(18)

The microscopic fermion Hamiltonian

H = t„ea„aB+ 4 ~ V„B&za„aBaza&
n8 n8y6

(19)

is rewritten in terms of BCS quasiparticle opera-
tors b~=u„a„+v~a-„:

H'=H tuV =Hoo+H„-+H, o+H„+H„+H,o, (20)

H„)) = UHU = UH'U + A.UNU (21)

we obtain H„„ in the form (1) with the coefficients

where H,; denote the terms containing i quasipar-
ticle creation (annihilation) operators and j anni-
hilation (creation) operators. Transforming this
Hamiltonian H into the boson space by means of
the transformation U (14)

h;, given by the following reduced matrix elements:

z, =&ollHII 0&,

f „=(1,2IIHII 1, 2&- ~5 &0IIHII 0&=&1, 211 H„+H„ll 1, 2&,

I „=&2,0IIHII 0&H~& =&2, oIIH„II 0&H~l,

@., =(2, 2IIHII 1, 2&/~2! =&2, 2IIH. , II 1, 2&/v2l,

A„=~~ ((3, 2(0) II Hll 1, 2
&
- &14 h, )

= v —,
' ((3, 2(0) II H,.II 1, 2) —&14 A'„),

A!~ = [(2J+1)'~'/2!] ((0IIHII 0&-2'&1, 2IIHII 1, 2&/~5)+&2, ~IIHII 2, ~&/2'

= (1/» ) 4(2, &II H„+H..ll 2, ~& —[(2~+1)/5]"'~„},

h, o-h4o —0 .

(22)
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In the Eqs. (22) we have omitted the second term
of Eq. (21) because it essentially contributes only
two constants ~N for protons and neutrons, re-
spectively. The explicit expressions for the ex-
pansion coefficients h,-, and the normalization con-
stants N„and N„ in terms of the amplitudes c,~,
the matrix elements of the two-body force V„B&z,
and the BCS occupation amplitudes u„and v are
given in the Appendix A.

Phonons of the form (16) lead to vanishing coef-
ficients h» and h„because the Hamiltonian (20)
contains only terms of at most four fermion crea-
tion or annihilation operators. On the other hand,
the coefficient h» in Eg. (22) generally does not
vanish, but turns out to be of the same order of
magnitude as the diagonal h„ term. In fact, for
the nuclei considered here the absolute value of
820 is slightly larger than 2h„meaning that the

B,q ——xB~+y( —) B ~

with x and y satisfying the unitarity relation

(23)

(24)

Rewriting the boson Hamiltonian in terms of the
operators (23) now introduces nonvanishing
h„[[B'B'],B'], and h„[B'B'),[B'B'], terms
The relations between the new coefficients h,-,
and the original h„ from Eqs. (22) are

motion in the direction of the collective degree
of freedom is unstable (in second order) in agree-
ment with the phenomenological results of Sec. II.
To make it evident how the higher-order terms
restore the stability and to be able to compare
directly with the results of Sec. II, we introduce
a new boson operator by the unitary transforma-
tion

h„= (x'+ y')h„+ 4xyh, o+~ xy(x'+ Sy')h, „+~ x'y'h, o+ ~
—y' Q [56~ox'+J(x'+ y') ]h~„',

J =0,2,4

h„=xyh„+ (x'+y')h„+ ~ y'(Sx'+y')h„

+~xy(x'+y')h„+~ xy Q [56~,(x'+y')+4Jy']ha~~' ~

J =0,2,4

h, „=3xy (x + y)h, o + (x' + 2x'y + 2xy' +y')h„,
h„= (x' +y')h„+ xy(x+ y)h„,
h„= (x'+ 6x'y'+y )h„+4xy(x'+y')h, + 2xy(x'+y') Q f(J)h„

~=0)2 s4

(25)

h« = xy(x'+ y')h» + (x'+ y')h„+ x'y' g f(J)h2~, ~

J =0)2)4

f(0) = 1, f(2) = 2v 5/7, f(4) = 7, zi(J) =Jf.
2 2L

h2~,
~ = 2(6zo+-,'J)xy(x'+ y')h» + 4(6+0+ 5 J)x'y2h«+ (x'+ y~)h2~, ~ + 4x'y' P g~(J)h2~2~~,

&=0)2 y4

J=(2J +I)'~' .

Imposing the condition h„=0 together with Eq. (24)
determines x and y. The resulting anharmonicity
coeff icients

V(I, 2) = —4n'(g, P, +g,P, )
' ' 6(6„)

P 2

(26)
=V+V, , (27)

now can be directly compared with the results of
Sec. II.

IV. NUMERICAL INVESTIGATION OF THE

EXPANSION COEFFICIENTS

For the numerical work we used the surface 6
interaction" (SDI) as a residual interaction among
the nucleons. It is defined by

where P, and P, are projection operators on
singlet and triplet states with g, and y, being the
corresponding strength parameters. The details
of its particle-hole and particle-particle matrix
elements G~(abed) and F~(abed) which enter into
the boson-expansion coefficients are given in Ap-
pendix B.

For the Se isotopes the five proton and five neu-
tron states shown in Fig. 5(a) provide the main
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contributions to the phonon (16). The proton Fermi
level lies between the 1f,r, and the 2P, r, states.
The neutron Fermi level for the different isotopes
is close to the 1g», level. The single-particle en-
ergies are taken from the work of Nilsson et al."
with the ig„, and 2d», neutron states shifted
slightly lower to account for the experimentally '
observed shifting of the subshell closure from
X=40 to N =38. We also included a scaling factor
common to all single-particle energies to obtain a

higher level density hs indicated in experimental
work. '~

In Fig. 6 we compare the amplitudes c„of all
the two-quasiparticle states that contribute to
three different types of phonons:
(i) the collective, angular momentum 8=2 solu-
tion of the Tamm-Dancoff (TD) equations for the
SDI, i.e. , the lowest-lying solution of the eigen-
value equation

(&,+F» —~)c, r,
= —Q [(1+6,I, )(1+6,„)] [(u,v~u, v„+v,u, v, u, )Fe(abed)

o —d

—(u,vt tv, + v, u, v u, )(-)" '"F,(abdc)+ (u, u u,u, + v, v, v, v~)G, (abed)] c,„, (2s)

where E, and E~ denote the quasipartic le energies
and I', and G, are the SDI matrix elements given
in Appendix B;

(ii) a schematic quadrupole phonon of the form

c, =(u, v + v, u, )(all r'Y, ll b)/(8, '+E, —uI) .

(29)

0.6—

P oto

l
N=4

9/2

2p
2

(a)

Q6

Neutron

2d5
/2

The dependence on ~ is weak as long as it is not
close to the two-quasiparticle energies E,+E„
and in Fig. 6 we plot the static values for c„
(ur =0):

Qa—
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FIG. 5. (a) Single-particle levels in the Se region.
(b) Single-particle levels in the Ru region.

FIG. 6. The phonon-structure amplitudes c,& for three
different types of phonons: full lines, collective TD so-
lution for SDI; .dashed lines, schematic phonon defined
in Eq. (2); and dashed-dotted lines, the two quasiparticle
part of the quadrupole operator.
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TABLE V. The anharmonicity coefficients r;~ calcu-
lated for three different types of phonons: (i) collective
Tamm-Dancoff solution for SDI; (ii) schematic phonon
defined in Eq. (29); (iii) two-quasiparticle part of the
quadrupole operator.

TD

~(0)
22

r(2)
22

~(4)
22 40

0.5-
(i) 0.284 0.057 0.243 0.171 0.306

(ii) 0.269 0.057 0.241 0,171 0.274
(iii) 0.160 0.036 0.268 0.186 0.291

0.420 0.077
0.396 0.075
0.398 0.074 I

15
I

17 19 21 23 78'XsIo

(iii) the two-quasiparticle part of the quadrupole
operator

c„=(u.v, + v.u, )(a[) r'y', )[ 5) . (30)

All three phonons display a similar structure with
a quite broad distribution among the proton levels
and an almost pure single j-shell (1g», ) form of
the neutron part. The TD solution is quite close
to the schematic phonon (29), while the quadrupole
operator leads to more evenly distributed ampli-
tudes.

Evaluating the ratios r, , (26) for these three
different types of phonons, we see from Table V
that the quadrupole operator phonon (30) leads to
marked differences in the third-order r» and +3p,
while the fourth-order terms remain relatively
unaffected by the choice of the phonon structure.
Although there is no a priori best choice of the
phonon operator, the TD solution is distinguished
by the fact that it separates all degrees of free-
dom in the "foreward-going" part of the second
order. The "backward-going" second-order term
and higher orders might again couple these normal
modes to some extent and change their structure,
but given all the uncertainties of the configuration
space, single-particle energies, choice of residu-
al interaction and its strength parameters, ne-
glect of higher than fourth-order terms, we will
restrict ourselves to the collective TD normal
mode neglecting the influence of small couplings
to other degrees of freedom on the phonon struc-
ture.

The difference between the TD energy ~TD and
the excitation energy of the first 2' state of the
full fourth-order Hamiltonian is shown in Figs.
7(a) and 7(b) as functions of the singlet and triplet
interaction strength. The corresponding anhar-
monicity coefficients r, , are plotted in Figs.
8(a)-(c). The singlet parameter g, multiplied
with the constant radial matrix element Io (cf.
Appendix B) enters as the pairing force strength
into the BCS equations, so we consider for g, I,
values between 17/A to 23/A (MeV). Keeping g, I,

(b)

0
0.5-

I

0.7 1.0 1.3 x)
Xs

fixed at 17/A, which is slightly higher than the
critical. value where the BCS solution collapses
and leads to a gap of ~~ =0.83, 4„=0.9't for "Se,
the anharmonicities rise steeply with the ratio
g, /X, [Fig. 8(b)]. Therefore the decrease of the
first 2 energy E,+ with increasing y, /g, is much
slower than that of the TD energy &uTo [Fig. 7(b)]
and we find it impossible to reach the experimen-
tal 2 energy of about 0.6 MeV for "Se. For a.

scaling factor SF =0.8 in the single-particle ener-
gies (s.p.e.), and g, =y, =17/AI, where the anhar-
monicities are of a magnitude comparable to the
fitted values, the 2' energy is still at 0.95 MeV.

However, it can be seen from Figs. 8(a)-(c)
that the ratios of different coefficients r;, for a
given order remain essentially unaffected by
changes of g, , g, /g, , and the s.p. e. scaling factor
SF. The increase in the pairing strength (even
keeping y, =y, ) leads to a decrease of the third-
order anharmonicities [Fig. 8(c)], i.e. , to a re-
duction of the tendency of the nucleus to become
deformed. A similar effect has the scaling factor
SF on the third-order coefficients, where the "de-
formation" goes through a maximum at SF =0.8,
and the larger level. spacing at SF =1 as well as

FIG. 7. The collective TD frequency » and the lowest
2' eigenvalue of the full collective Hamiltonian as func-
tions of (a) the strength parameter Ag, I0, keeping )(,
=g& and (b) the ratio y, /p„keeping g, I0 =17/A. Both
cases are plotted for Se with a s.p.e. scaling factor
SF =().8.
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FIG. 8. The anharmonicity coefficients r;, for A =78 as functions of {a) the s. p.e. scaling factor SF, for g
=17/A I&, {b) the ratio Z&/Z„with Z, =17/A Io, SF =0.8, and {c) the parameter Z„keeping Z, =&&, SF =0.8.

the increased gap at higher level density (SF = 0.6)
leads to a reduction of the deforming tendency
[Fig. 8(a)].

Choosing again ))', = )), = l t/AI„SF = 0.8, we show
in Fig. 9 the anharmonicities as functions of the
neutron number in the Se isotopes. The subshell
effect at ~= 38 is markedly pronounced in the
third-order coefficients which go through a deep
minimum at %=38-40. Then with the filling of
the 1g», shell the deformation rises till &=46
before it bends down towards the N= 50 shell
closure. The fourth-order anharmonicities de-
crease almost monotonously as the neutron num-
ber comes closer and closer to N=50. Similarly,
in the Bu isotopes where the neutron number in-
creases beyond N = 50 [we use the configuration
space shown in Fig. 5(b)] there is an a,lmost mono-
tonous rise of the anharmonicity coefficients with
the neutron number (Fig. 10). Beyond N= 58 (ap-
proaching the N=64 gap in the s.p.e. values) r»
decreases again, but for these neutron numbers
our configuration space certainly is no longer suf-
ficient. Again we remark that the ratios of coeffi-
cients for a given order remain roughly constant
for the different isotopes. Average values for the
Se isotopes are

r»/r, o = 4.8, r„/r„= 5.5,
rl,"/r„= 4.5 .

For the Ru isotopes we have approximately

These numbers ought to be compared with the num-
bers given in E)I. (3). It is satisfying that we find
roughly similar relations between the diagonal and
off-diagonal coefficients as implied by the simple
model leading to E)I. (3) and that these relations
seem to be rather stable against variations of all
sorts of parameters in the microscopic theory.

The precise values of the coefficients x;, them-
selves, however, depend sensitively on the posi-
tion of individual single-particle levels. We have
tried to use this freedom to improve the agree-
ment between the calculated coefficients and the
numbers obtained in the phenomenological fits
from Sec. II. It is interesting to note that inter-
changing the Ig,„and 2P, „neutron levels (which
has been suggested elsewhere" ) and interchange
of the 1f»2 and 2P», proton levels [Fig. 11(a)]
leads to almost quantitative agreement for the
"Se and "Se isotopes (Table VI). In the Ru iso-
topes with N = 56 and N= 58 we simply multiply
the Nilsson s.p.e. values with a common scale
factor [Fig. ll(b)] to obtain the coefficients r;,
given in Table VI.

Although the agreement is remarkable, we have
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to point out that we always obtain the r,'," term
larger than the fitted value by a factor of up to
1.5 and that we have not been able to obtain the
very small. r„" values which tend to emerge from
phenomenological fits. Of course, those fits are
not unique and one can try to obtain reasonable
fits with larger x„' values. For example, the
' 'Ru fit presented in Sec. II differs from the one
given in Ref. 11 by having a r,," coefficient which
is 0.049 as compared to -0.0535 of the previous
r„", the quality of the previous" fit being sl.ightly
better, however, than the present one. Further-
more, the results for "Kr, "Kr, and "Kr con-
tained in Ref. 18 require smal. l. negative values
for r22' which we did not obtain from the micro-
scopic calculation.

Finally, the level schemes depend quite sensi-
tively on the precise values of the coefficients r,&,
and, therefore, the agreement shown in Table VI
still does not lead to very satisfactory agreement

Q4-
3)

for the energy levels. As an example we repeat
in Fig. 12(a) the fitted spectrum for the nucleus
'"Ru from Fig. 3. Figure 12(b) then shows the
level scheme that results from the microscopical-
ly calculated coefficients of Table VI. As we dis-
cussed earlier in this section, the energy of the

31

t4)
'22

"22

21

)2)

21

'I.O

I I I I I I I
72 74 - 78 80 82

34 35 34 % 34 40 R 42 34 44 R l6 3P 48

I l l i
&00o )02 &04

11,""ss ei, "ss u "so

FIG. 9. The anharmonicity coefficients &;, for the Se
isotopes as functions of the neutron number (g, =g&
=17/AI, , SF =0.8).

FIG. 10. The anharmonicity coefficients &;; for the
Ru isotopes as functions of the neutron number (y, =g&
=20/AID, SF =0.7).
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sensitive, lying much too high. This can be traced
directly to the r„) coefficient which is larger than
&~i," (fit) by a factor of 1.5. Lowering the value of
r~l,", we see in Fig. 12(d) that this has a strong ef-
fect on the spectrum and especially on the position
of the 0' states. Figures 12(c) and 12(e) show the
effect of putting r» or r,,'on their fitted values
while keeping all other coefficients fixed at their
theoretical values. It seems that the 2' and 4
members of the triplet remain essentially unaf-
fected by these changes.

Rewriting the collective Hamiltonian in terms of
momentum P~i(B —B) and coordinate Q~(B +B),
we obtain the coefficients p" for the kinetic and
potential energy as defined in Eqs. (3) of Ref. 11.
For the nuclei discussed here we list the fitted
and the theoretical coefficients in Table VII (again
with h» normalized as discussed above). The re-
sults for the potential (given by p'o, p'o, and p")
are excellent, while the discrepancies f'om Table
VI seem to enter mainly into the anharmonicities
of the kinetic energy terms. For comparison we
have included in Figs. 1-4 the theoretical poten-
tial energies (in the intrinsic P-y representation
for y =0) to show the similarity of the fitted result
with the curve obtained from the boson expansion.

FIG. 11. Adjusted single-particle energies for the
isotopes (a) 6Se and 7 Se and (b) Ru and Ru under-
lying the expansion coefficients r;, given in the rows b
of Table VI.

first excited 2' state turns out to be too high (by
a factor of 1.37 for "Ru) as compared to the ex-
perimental 2' level; therefore for this comparison
we have normalized the theoretical h» by the in-
verse of this factor to obtain the 2 state at the
experimental value. Then we see that the theore-
tical coefficients give the ground band (4', 5') with
good accuracy, which indicates the insensitivity of
these yrast states to the details of the theory. On
the other hand, the 0 states seem to be the most

V. CONCLUSION

In this paper we have made an attempt to apply
the Marumori boson expansion to nuclei which
oscillate around a spherical equilibrium while at
the same time the potential energy surface for the
coll.ective motion displays a maximum for zero
deformation. The basis of the model is an expan-
sion of the collective Hamiltonian in terms of
quadrupole boson operators up to fourth order,
and we tried to obtain the expansion coefficients
on the one hand by fits to experimental level
schemes, on the other hand by calculating them
on a completely microscopic basis from a modi-

TABLE VI. Comparison for the anharmonicity coefficients &;,: (a) denotes phenomenologi-
cal fit (cf., Table I) and (b) denotes microscopic calculation with the configuration space of
Fig. 11, TD phonons, and SDI.

~(o)
22

y(~)
22

~(4)
22 3i

"Se
b

78 a
b

'ooRu
b

"'Ru
b

0.278
0.272

0.212
0.187

0.385
0.377

0.332
0.338

0.062
0.060

0.071
0.041

0.128
0.080

0.111
0.069

0.192
0.228

0.277
0.429

0.254
0.389

0.237
0.337

0.028
0.165

0.189
0.244

0.161
0.247

0.049
0.214

0.375
0.360

0.526
0.448

0.386
0.384

0.349
0.336

0.389
0.397

0.605
0.633

0.580
0.593

0.480
0.525

0.070
0.073

0.115
0.120

0.125
0.113

0.120
0.097
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FIG. 12. Calculated level schemes for Ru: (a) spectrum resulting from the phenomenological fit (coefficients r&~

given in row a of Table VI), (b) spectrum resulting from microscopic theory (coefficients r;~ given in row b of Table VI),
(c) same as (b) with r&0 ——0.128, (d) same as (b) with rgb =0.320, and (e) same as (b) with r(22& =0.161.

fied Marumori approach.
There are several ambiguities in such an at-

tempt: The most severe seems to be the restric-
tion of the expansion to the fourth-order. By fit-
ting a fourth-order Hamiltonian to a given energy
spectrum, one might renormalize the effects of
terms higher than fourth order into the low-order
coefficients. It therefore seems doubtful whether

a comparison with theoretical third and fourth-
order terms is justified. This might wel. l be a
reason for discrepancies which we found for the
x„"and r,," coefficients. However, for the nuclei
considered here, which are essentially spherical
with still rather small amplitudes of the collective
motion, we think that the fifth- and sixth-order
terms should be unimportant. Furthermore, in

TABLE VII. The coefficients p'~ for kinetic and potential energy I cf. Eqs. (3) of Ref. 11]:
(a) denotes phenomenological fit, and (b) denotes microscopic calculation with the configura-
tion space of Fig. 11, TD phonons, and SDI.

p20 p30 p40 p 22 p 32 p42 p42 p42
4

44

a -0.556 0.131 0.139
b -0.642 0.123 0.146

a -1.212 0.117 0.237
-1.248 0.093 0.252

1.516 0.142
1.098 0.137

1.413 0.000
1.477 0.104

0.062 0.112 -0.109 -0.164
0.088 0.042 -0.046 -0.010

0.129 0.073 -0.127 -0.214
0.067 0.067 -0.008 -0.092

'00'.u
b

-1.133 0.242 0.248 2.323 0.002
-1.102 0.185 0.231 1.583 0.219

0.049 0.032 -0.117 -0.418
0.054 0.034 0.006 -0.133

'023,u
b

-0.655 0.166 0.165 1.879 0,0
-0.776 0.139 0.171 1.383 0.177

-0.005
0.041

0.073 -0.114 -0.228
0.028 0.003 -0.129
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principle the fourth-order Hamiltonian already re-
quires a seven-parameter fit, and with often in-
complete experimental information it is difficult
to find a true minimum in the seven-dimensional
parameter space. Higher orders introduce too
much freedom for a meaningful model.

Naturally, the microscopic approach contains a
number of ambiguities of different kinds. As usual. ,
one has to deal with the uncertainties of single-
particl. e l.evels, two-body interaction, and the
truncations of the configuration space. A question
in principle is the choice of the phonon operator
which is used as a basis for the expansion. We
made use of the collective Tamm-Dancoff solution
because it separates the degrees of freedom at
least in the lowest order (which is by far the larg-
est term). Then there is the problem of choosing
among at least three different expansion techniques.
Marshalek's remark" about this in mind, we fol-
low here our appreciation of Marumori's meth-
od, with sl.ight modifications brought about by the
truncation to the subspace of collective phonons.

Despite all. these ambiguities we have found a
remarkable agreement for the ratios of anharmon-
icity coefficients with the fitted values. These ra-
tios seem to be rather insensitive to the details of
the microscopic theory and are not too different
from the results of a very simple I"/2M+ V(Q)
model. . For two of the diagonal. fourth-order coef-
ficients we found more serious discrepancies with
the fitted values which we could not resolve up to
now. Comparing with the above-mentioned
P'/2M+ V(Q) results [Eq. (3)], however, we
have the feeling that the trouble is not neces-
sarily with the Marumori expansion but possibly
with the fitted coefficients [especially in case of
r2~22l which often differs strongly from Eq. (3)j.
The 0' states are mainly affected by these coeffi-
cients and it seems that the small. x22 and r22' val-
ues needed to bring them down to their low experi-
mental. positions try to make up for a different
physical mechanism which is not contained in the
quadrupole phonon approach. Another hint in that

direction is provided by the extremely low-lying
0' states at subshell closure, which cannot be
satisfactorily described by the phonon model
alone, but indicate further coupling -to other de-
grees of freedom (especiaily to pairing vibra-
tions"). Such couplings seem to be more impor-
tant" than including higher-order terms into a
pure quadrupole-phonon Hamiltonian.

The boson-expansion approach discussed here
complements the ATDHF method" in the sense
that for smaller amplitudes around the spherical
shape (which, however, go beyond a harmonic ap-
proximation) it supplies a genuinely quantum-
mechanical description with the collective mode
being at least partly determined by the microscopic
dynamics, without any classical steps. It does not
make assumptions about the form of the kinetic en-
ergy of the collective Hamiltonian. For genuine
large amplitude collective motion, however, the
ATDHF method seems superior by the ease with
which it takes the deformation of the underlying
fermion basis into account, whil. e in the boson ex-
pansion the structure of the phonon is fixed; in our
case it is always expressed in terms of single-
particle states in a spherical basis.

One of us (GH) would like to thank Dr. T. Kishi-
moto for helpful correspondence.

APPENDIX A

We present here the explicit expressions for the
normalization constants N„and N„defined in Eqs.
(15) and the boson-expansion coefficients h,.„. from
Eqs. (22). The boson-normalization constants are

N =—-- J=02 4
1

I22J
N, (~)

—— 2 1+2(2Z+1)
f

The Fermi normalization constants are

-g/2

N~ = 2 ~ay&ay = 1
ab

j. i 2 '/'

1
1 —200+ c„c,~c„c,~ y, y~ 2

, 2 2 J
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(
N, «& = 2 g b +2JK b» —400 b«+2M g c„c„c.,cb, j, j, 222K

K=Oe2 o4 2 K

+ 8000/K g c„c„c„,c„c„zc,~ g (-)' (2j+1)(2j'+1)

Z= (2J + 1)'~' .

The normalization constants for the three-phonon states satisfy the relations

2(2g+ 1)»&

N3g N3~ 7
4=2, 4 .

The expansion coefficients h;, are given by

h„=2' N, g (E,+E,) c~c~ + —,
' P [G,(ab, cd)(u, u, u, u~+v, v~v, v~)+4F, (ab, cd)(u, u, v, v„)c„c,~]

ab a~d

h» = —F10 N~~ P [G,(ab, cd)u, u~v, v~ —2F, (ab, cd)u, u„v, v, ] c,„c,~,
a d

h„=20''10 N~N, g [G,(ab, cd)(u, u, u„v, —v,v, v„u, )

+2F,(ab, cd)(u, v, v, v~ —v, u, u, u„)] c„c„c~,
~e

~c ~d

N N~„=~;;a„.,rs- ("; "„; i)a...
20 30

22 J'
h„z--—2ODN„N, g k(i!+, +2K/ r

.2 2K)K=012 y4

(-)"+'~+"'+'~[4F~(ab, cd)u, u, v,v„+G,(ab, cdtu, u~v, v„]
a-f

jd je [ jd je

j. 22[ j~22
~C ~d

—G, (ab, cd)u, u, v, v, j, jz 2

2 2 K

C abCcqCdf ef,
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h22 = —400J N~q Q (E, yE») c,»c,~ c,»c»~

~a 2Q

~C ~d

2 2 J
2

+ p [G,(ab, cd)(u, u, u, u„+v,v»v, v~)+4F, (ab, cd)u, u, v»v~] j, j& 2 c„c»zc,~c,&

2 2 J

g (Gz, (ab, cd)(u, u» u, u~ + v, v»v, v~)+ 2[F~(ab, cd )u, u, v» v~
a-f

—(-)'""' Fz(ba, cd)u»u, v, v„]]c,', c»~c,)cqgp (2j+1) j, j~ j
2 2 J

~C ~lg

2g 2f

2 2

830 840 0

The quantities u, and v, denote the BCS amplitudes; the particle-particle and particle-hole matrix ele-
ments G& and E& are defined by

&&Pl V I z~&= P G~(ab, cd)(j,m, j»m»[ JM)(j.m. j&m&l JM)

= P Fz(ab, cd)(-)"~ '(j,m, j, —m, ( JM) (-)'» ~»(j m j» —m»~ JM)

and are given for the SDI in Appendix B.

APPENDIX B

The SDI particle-particle matrix element for
proton pairs or neutron pairs are

G~(abed) =(ab J
~ V, ( cdJ) ~s

= 2(-)'»"» y, [1+(-)'"'»' ]M(abed, J) .

Particle-hole matrix elements for protons
((pp ') (V~(pp ')) or neutrons ((nn ') jV)(nn ')) are

Fz(abed) =(ab ~J~V~ cd V) A~

= 2g,[(-)'~"»' M(abed, J) —N(abed, J)]

AS denotes antisymmetrization and we have

1
M(abed, J)=-

)
Io

$Jg + 2 C 1Q Jg J y

2 PO
)=Q d

1
N(abed, J) = —

4(2J 1)
Io

(
)la+tcG»ia~GidJc~1111——1ZZ Zz 1

$= a-d

Particle-hole matrix elements for neutron-parti-
cle-neutron-hol. e and proton-particle-proton-hole
((nn ') )V~ (pp ')) are

Fz(abed) =(ab 'J ~V~ cd J)~s

The radial integrals I,

I, =g,* (R)y,* (R)P, (R)g, (R)R'

[i=(2j+1)'"].

= [(X&+X.)(-)'"""+2X, ]M(abed, J)
+(X~ —X,)N(abed, J) .

have been as usual approximated by the same con-
stant for all different states.
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