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The exactly soluble R(8) model of Krumlinde and Szymanski is used as a testing ground for three many-body
methods applied to the yrast band: (i) the self-consistent cranking model, (ii) self-consistent cranking plus
random-phase approximation, and (iii) variation after projection of particle number. All three methods agree
very well with exact results outside of the critical region. The behavior in the critical region is examined in
detail.
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I. INTRODUCTION

'The peculia, r behavior of the nuclear moment of
inertia at high spin has elicited considerable ex-
perimental and theoretical efforts in recent years. '
Among mic roscopic theories, Har tree-Bogoliubov
self-consistent cranking (SCC) calculations' (and
approximations to such calculations') have been
especially successful in accounting for the sharp
increase in the moment of inertia, "backbending, "
and "gapless superconductivity"' in realistic cases.
The SCC method has the virtues of greater sim-
plicity and speed in comparison with shell-model
calculations with the same Hamiltonian a,nd yet is
rich enough to encompass all the possible mech-
anisms which may contribute to the behavior of
the moment of inertia at high spin, such as Cori-
olis antipairing and realignment (decoupling},
gapless superconductivity, band mixing, and
changes in shape. Nevertheless, this technique
has some potentially serious deficiencies. First,
it is basically a, classical approximation, and,
second, the cranked wave functions violate sym-
metries (e.g. , conservation of angular momentum
and particle number), the two aspects being re-
lated, as is well known.

The classical aspect should not be a shortcom-
ing at sufficiently high spin, but it must be kept
in mind that this is only so in regions well re-
moved from "phase transitions, " since in critical
regions quantum fluctuations may become very
large. Actually, there exist proofs of the validity
of SCC both at low and very high spins, but these
make use of infinite power-series expansions in
the angular momentum, which cannot be expected
to converge in critical regions. ' The violation of
symmetries in the wave functions renders diffi-
cult the calculation of the transition amplitudes.

Projection of particle number and angular mo-

II. DESCRIPTION OF THE MODELS

A, R(8) model

The R(8} model consists of 20 identical fermions
interacting via a pairing force, distributed among
two 20-fold degenerate single-particle levels
separated by the energy 2c and coupled to an ex-
ternal rotor with fixed moment of inertia a '. The
Hamiltonian is

If =(-,'a)~f-i~2+a„+If„ (2.1)

where I is the total angular momentum of the
system, and j is the particle angular momentum.
The single-particle Hamiltonian H,

„

is given by

JI„=eg (a„a,+a~a —, —b„b,—b,—b —,), (2.2)

mentum before variation is one possible remedy
for the above difficulties. Another, recently pro-
posed remedy, is the inclusion of random-phase
approximation (RPA) correlations as the next im-
provement to the SCC model (SCC+RPA). ' As is
well known, the RPA maintains the conservation
laws to the order of the approximation. Both meth-
ods introduce quantal correlation effects.

Our first aim in this paper is to shed light on
these questions by testing the three approxima-
tions: SCC, SCC+RPA, and variation after pro-
jection of particle number (VAPN), on the "exactly
soluble" R(8) model of Krumlinde and Szymadski. ' '
The SCC+ RPA method has been previously suc-
cessfully tested on the R(5) model, ' but that is only
a two-dimensional model, whereas the R(8) model
is three-dimensional. Our second aim is to illus-
trate how transition probabilities can be simply
calculated in the SCC+ RPA framework, a pro-
cedure which can be easily extended to realistic
cases.
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while Hp is the pairing interaction of strength G:
Q Q

Hz=-G g (a, a;+btb;) g (a—,a„+b,b, -).

(2.3)

The operator a, creates a fermion in the upper
level and b~ in the lower level, while a—, and b —,

are the corresponding time-reversal conjugate
operators: a-„=Ta~T ', b,—= TbtT '. The particle
angular momenta as defined by Krumlinde and
Szymanski are

This transformation leavesH p andH
p

invariant:

H, p (a, a, b, b ) =H, ~ (a, a, b t, b ),
(2.6)

H &(at, a, bt, b) =H&(at, a, bt, b).
The angular momenta take the following form:

Q

j„=—,'(3)'" P (atb„-b„a„+—H.—c.)

Q

+ Q (b,b„—blab-, ),

j+ jx +~ jy

Q

j, = i ,'(-3)-"' p (a-,b, —atb-, —H. c.) (2.7)

=(3)'" Q (atb, —b —,a—„)+2Q btb , , (2—.4a)

j+ 0

j,= — (a ta, —a-, a—,) + — (b Jb, —b —,b —,) .
&=1 v= I

(2.4b)

This corresponds to assigning the z projection
E =

& for the upper levels and K= ~ for the lower
levels.

As discussed in Ref. 8, H is composed of gen-
erators of the group R(8). Exact eigenvalues and
eigenfunctions can be found by diagonalizing a
matrix in the Gelfand basis, so that the exact
solution corresponds to a prototype shell-model
calculation.

We note that the particle HamiltonianH3, p. +H
p

in this model does not commute with j. The total
angular momentum I is conserved only because
the particles are coupled to an external rotor
(which simulates s. core). For this reason, it is
not meaningful to test angular momentum projec-
tion on the R(8) model.

As a final point, we shall restrict the space of
the model to the representation of R(8) containing
the ground state.

Q

i Q— (btb, -b —,b„), -
v=1

j,=—g (ata-, +a—,a, ) ——g (b, b;+b „b,).—
Q

P=$ v=1

Matrix elements of j„between time-reverse con-
jugate states, are now replaced by diagonal matrix
elements, which is sufficient to reduce the dimen-
sion.

In the case of a self-contained many-fermion
system with HamiltonianH, the SCC model is
usually derived by applying Hartree-Bogoliubov
factorization to the operator H —mj„.With the
R(8) model, there is no need to subtract cu j„since
the rotor already cranks the system. Instead, we
assume in the first approximation that the total
angular momentum is aligned in the x direction
and has the classical c-number value I:

I„=I, I, =O, I,=O. (2.8)

Subsequently, Hartree-Bogoliubov factorization
of H yields the SCC HamiltonianH:

Q

H =80(~)+:H,„-hP (ata1+bJb„+H.c.) —&uj—„:.
v=],

B. Self-consistent cranking model

Before deriving the SCC model, it is convenient
to perform a simple unita, ry transformation due to
Goodman. ' The purpose is to eliminate matrix
elements of j„between time-reverse conjugate
states, which, in turn, halves the dimension of the
Hartree-Bogoliubov matrix. We introduce new
fermion operators (a, a, b, b ) defined by

at =(2) '"(at —a,—}, a, =(2) '"(at+a—)—

(2.9)

The terms embraced by the symbol:: are to be
regarded as normal ordered with respect to the
vacuum state of H, the energy being given by

$,(v ) = (H, ,„)—b '/G + ,' a (I—(j„))', —(2.10)

where ( )„denotes the expectation value with re-
spect to the vacuum of H . The gap parameter d

and the angular frequency (d are determined by the
self -consis tency conditions

b =(2) '"(bt+b-) b —=-(2) '"(bt b)——
(2 6)

b =G P ((a—„a,) +(b„-b,) ) (2.11)



12 TEST OF MANY- BODY METHODS ON AN EXACTLY SOLU BLE... 1019

(2.12)
(e2 + 4iI& 2)1/2 (2.19)

There are also the requirements

(2.13)

which are fulf illed automatically.
The form of the SCC model derived above, which

shall be specifically referred to as SCC1, is pure-
ly classical, and as such, valid mainly for high
values of I. For low values of I, the rotational
energy goes as I' rather than I(I+1)." However,
the addition of quantum fluctuations arising from
the BPA, to be discussed later, gives the correct
I(I+1) dependence. If RPA corrections are not
included, the cranking energy may be improved
for low I by directly modifying (2.12) as follows:

—= [I(I+1)]'"—
&j.&. (2.14)

This version of self-consistent cranking, which
corresponds to the usual procedure, shall be called
SCC2.

Let us briefly consider the problem of diagonal-
izing the fermion qua.dratic form FI . This is sim-
plified, first of all, by the fact thatH is the sum
of 0 identical quadratic forms, and, second, by the
fact that the chemical potential vanishes indepen-
dently of x, which is a consequence of the fact
that the number of pa.rticles is half the available
number of levels. H can be brought into the diag-
onal form

e(u)) =E, .
Then

(2.21)

U»=-V»=F (-e, -&u), U» =V»=o, F, (-e, -ur),

Vs, = —U~~ = -F, (e& -tu), V~, = Us~ = -(x F (e, -(u)
&

U„=V,4= F, (e& -M)
& U22= —V, , =F (e& R)&

V„=U„= F( e-, (u), -V„=-U„=F,(-e, (u),

(2.22)

in which 0., is a phase factor given by

o, = sgn[y —2(u + e(-(u)]. (2.23)

%ith the aid of the Bogoliubov transformation
(2.16), and (2.22), one obtains from (2.11) the
simple gap equation

GQ y+ 2e y —2(d
+ =1, (2.24)

which determines 6 as a function of (d.

Similarly, (2.12) or (2.14) determine the rela-
tion between I and ~:

The coefficients of the Bogoliubov transforma-
tion are explicitly the following. Define

(y+e)[y+2u) +3e+4e((u)] [ '"
+16ye(&u)

(2.20)

where

0
= 8,(~) + P E; g n t (i)n, (i), (2.15) &»+ (a &&

—&~)J=—+ j„=—+-
a " a 2 E, (2.25)

where the n, (i) are independent quasiparticle
creation operators related to the particle oper-
ators by the Bogoliubov transformation

n, (i) = U„at + U„.b, + V„b, + V„a„—, —

n „(i)= V„.a, + V„bt + U„b„+U4; a—„,—

i=1, 2,

i=3, 4,

(2.16)

where the U's and V's are independent of the index
v, and correspond to the eigenvectors of a 4x 4
matrix with eigenvalues E;, i =1, 2 and -E&, i =3, 4.
If it were not for the Goodman transformation
(2.5), one would have to deal with an 8 x 8 matrix.

The quasiparticle energies explicitly are

where J is defined as follows:

(2.26a)

(2.26b)

The moment of inertia is defined as usual by

g =2/~. (2.27)

The total cranking energy (2.10) has the ex-
plicit value

-6 Q 2y+(d 2y —(d 6 (d
h (~)= + ——+—,

2y E, E G 2a '

(2.28)

E, =-2(u+E )
j.

E, =
~ cd+E,

where

E = —'(d+E

E, = (e'+ a'+ (u'+ ~y)'"

(2.17)

(2.18)

with co related to I through (2.25) and (2.26).
Finally, we call attention to the fea.ture of "gap-

less superconductivity" in this model. For ~e
~

greater than a critical value u&, = 3[y, —(4, -2e')'"]&
the quasiparticle energy E, may turn negative
(this can only happen for E,), while the order pa-
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rameter 6 c0. At a larger value ~2=-2[y2+(622
-2e')' '], E, may again turn positive. (It is neces-
sary of course that b,' —2e'&0 at these two points
for the behavior to occur. ) The name of the phe-
nomenon derives from the consequent disappear-
ance of the gap in the excitation spectrum. In
realistic calculations, it seems that only one quasi-
particle energy turns negative. Since the spectrum
of an even-fermion system requires creation of at
least two quasiparticles in different states, the ex-
citation energies remain positive. The artificial
degeneracy of the R(8) model, however, poses a
special problem, since a state o., (1)(2, (1)

~ e),
I/ t I/' ( ~

&u) is the quasiparticle vacuum) can be
created with energy 2E, (0 etc. ' '" The restriction
of the space of the model to a single representa-
tion of R(8) containing the ground state, however,
rules out the troublesome quasiparticle states and
the behavior is more like that of the realistic cas-
es. We note that the gapless superconductivity
arises from the K=—,'-E=-—,

' matrix elements ofj„,i.e., the term 2+,b, b —, in (2.4a). Omission
of this term would leave all quasiparticle ener-
gies nonnegative.

C. Self-consistent cranking plus RPA

We now consider the corrections to SCC1 de-
scribed by the RPA. The boson-expansion tech-
nique provides a convenient way to introduce the
additional correlations. Boson expansions to all
orders for the group R(2n) have been given in
Ref. 11. In the present problem, II must first be
expressed in terms of the quasiparticles (2.16).
Then, the quasiparticle pair operators are ex-
panded in bosons to the RPA order as follows:

ing change of phase:

B,2- zB,2 Bs~- z B3~, (2.31)

as will be seen later.
In addition to the particles, the core must also

be expanded in bosons, which physically corre-
sponds to its wobbling motion about the steady ro-
tation. A full description of the boson representa-
tion of a quantized rotor, with expressions valid
to all orders, is given in Ref. 12. We follow here
the lowest-order treatment originally applied by
Bohr and Mottelson to the asymmetric rotor, '
which is applicable to the symmetric rotor as well.
The body-fixed components of the total angular
momentum are given by

I+ =Ip +I'I2 =(2I)' b

I =I„—I'I2 = (2I )'"f),

I„=I-b &.

(2.32a)

(2.32b)

[f,B,, ] =[f,B,'., ] =0. (2.33)

In the boson representation, the Hartree-Bogo-
liubov HamiltonianH exactly takes the form

H = g, (~) +
2 P (E, +E, )B('1B,/

1
(2.34)

Upon adding the BPA correlations, one finds that
the total Hamiltonian breaks up into two disjoint
quadratic boson forms:

Equation (2.32a) omits terms of order I "', while
(2.32b) is exact. We see that these include the
small-oscillation correction to the classical ansatz
(2.8). The core bosons commute, of course, with
the particle bosons:

Q& 2 +& g Q ~Bsq& (2.29a) H =HRpA = $&)((a&) +H, +H4. (2.35)

n„io., i = B&B;,,
p=y

(2.29b)

(I &I) j&I))2 + I g(I (I) j (I))2 (2.36)

H, is given by

H2 = (db k +(E, +-E —(d)B,2BI2+(E~ +E +(d)B2AB22

where the B;&,B;, are boson operators obeying
the usual commutation rules

where

[B / B2(]=0 [B / B2)] =~(2&/I

(2.30)

I (I) —(I I)1/2(kt +k)

I (I) =I {II)l/2(k f t) (2.37a)

and the antisymmetry condition B&; =-B;;.
Equation (2.29a) omits terms of order 0 '"

(anharmonic corrections), while the finite ex-
pression (2.29b) is exact. Note that only those
boson degrees of freedom are included which are
relevant to the single representation of R(8) with
which we are concerned.

It turns out to be convenient to make the follow- (2.3Vb)

g
(&)

=k[(E, +E —(d)(E, +E +2&())(B,2+B„)
—(E, +E +~)(E, +E —2&v)(B„+B„)],

j,=j',"=ik(d[(E, +E +2(d)(BIt2-B»)

(Ei +E —2(() )(BRA —B—2A)],
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and the factor k is given by

& =l (E, +E )
"' ((i.}./~)'" (2.38)

quency normal modes leads to the quadratic form
2

H, =g, (zp)+ g ~,.8,'.8,.+ ,'(f. --j, )&'&2/M„

j,-(j).=j."' =-. (3fl)'"e (B..+B.,)24 24

——(B&3+B&s) (2.40)

and P"' is the fluctuation of the pair-transfer
operator about the value n. /G given by

P"' = —(B-+B.4}+ (B)3+B&s)
(3Q)'"ea 1 t 1

Q(E, +E ) y+2e y —2v
16y' E, E

x [(y —E)(B23 B&,) + (y +—c)(B,",—B„.)] .
(2.41)

Note that (j„)/&u =&I —a ' is just the particle con-
tribution to the moment of inertia, and remains
fini. te as (d-0.

The three-boson quadratic form H3 takes into
account the wobbling of the rotor and its coupling
to the particles and also the fluctuations of j, and

j, away from the values (2.13).
The four-boson quadratic form H, is given by

H4 = (E, +E )(Bt&~B,4+B~~SB~~) +2E,B2t4B2~

+2E B B + —', a(j"')' —GP" ' P"' (2 39}

where

[H, N] =0. (2.48)

Correspondingly, in the RPA, we have

[H, N" '] = 0, (2.49)

where N"' is the linear boson approximation to
N. The Hamiltonian can then be written in the
form

where M3 is an "inertial parameter" associated
with the zero-frequency mode. The operator 8„
is a boson creation operator for a vibrational
normal mode with frequency v„.It can be ex-
pressed as a linear combination of the original
bosons:

8„=X(3v)b + Y(3v)b +X»(3v)B„+Y»(3v)B»

+Xg4(30')Bpg + Ypg(3v )Bp4 p (2.47)

where the X's and P s are RPA amplitudes. The
energy of the zero-point oscillations is g~(zp).

In the case of H4, one must distinguish between
the two situations b, wO and a =0. If AWO, Eq.
(2.42) applies and there are three nonzero-fre-
quency modes and one zero-frequency mode, which
is the so-called pairing rotation, arising from
conservation of particle number A'.

It is useful to note from (2.24) that

Q(z, +z ) v+2~ r —2~ i'* . Ez) "*,:,:.:
16y E, E 8Gy

3

H, =(&l~(zp)+ g &d„8„8~,+—', N""/M4,
a=y

(2.50)

(for n, e0). (2.42)

[H, I.-j.] =0.

Correspondingly, in the RPA, one must have

(2.43)

H4 describes pair vibrations and rotations and
the fluctuations in j„about the value (j„).

We shall consider briefly the diagonalization of
the quadratic forms in terms of normal modes.
Further details are given in the Appendix. In the
case of H „onefinds two nonzero-f requency modes
and one zero-frequency mode. The latter arises
from the fact that I, —j, is a constant of the mo-
tion:

8~t, =X„(4v)B&t,+ Y&3(4v)B»+X„(4v)B~,

+ Y&4(4v)B„+X23(4v)B~,+ Y„(4v)B„
+X,~(4v }B24+Y24(4v}B24 (2.51)

and the total zero-point energy is g,(zp).
If 6 = 0, there is no pairing rotation, but instead

there are pairing vibrations. H4 then takes the
form

where M, is the pairing-rotational inertial pa-
rameter. The vibrational normal-mode boson
creation operators corresponding to the frequency
~4, have the form:

[H„(r,-j, )&'&] =0,
where

(2.44) H~=g~(zp)+ Q &()~()8~()84().
0=I

(2.52)

(I j )(&) —I(&& j(&) — &() I)&/2(bt b) j(&&

(2.45)
The technique of Ref. 14 for treating zero-fre-

Letting 0 = 3, 4 denote the pairing vibrations, one
finds that au43 (d44 corresponding to a degeneracy
of the two-particle and two-hole transfer modes.

The total yrast energy is the sum of the crank-
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ing energy and the RPA zero-point energy:

$ = $,(~)+$,(zp)+ $.(zp). (2.53)

$ = ,' aI(t+1) —GQ-(0+1), (2.54}

in complete agreement with the energy of the fully
paired band as given in Ref. 8. The cranking mod-
el contributes —,'aI'- GQ' while the correction
—,
' aI, of relative order I ', is just $,(zp), and the
correction -GQ, of relative order 0 ', is $~(zp).
For 6 =0, one obtains

$ = —,
' a(I 20)(I —20+—1), (2.55)

in complete agreement with the energy of the fully
aligned band as given in Ref. 8. The cranking
model contributes —,

' a(I- 20)' and gs(zp) = —,
' a(I

-20). $,(zp} vanishes in this case.
Let us now consider the renormalization of the

rotational frequency in the RPA. One begins with
the usual relations-~p~=A@/8[I(I+1)]'~' and 8 „p„
= I[(I+1)]'~'/eR». However, it should be kept in
mind that the energy g omits corrections of rela-
tive order I ' (higher RPA corrections), so that
for consistency the above definitions should be
expanded in I '. One then finds that

Both zero-point contributions provide corrections
to the cranking model of the order 0 ', but $,(zp)
also provides corrections of the order of I '. It is
important to note that in this way, the RPA im-
proves the low-spin behavior of SCC1. Thus, at
low spin, g, goes as —,'8, 'I', where Ho=a '
+lim, (j„&J(d. It is readily checked that $~(zp)
provides a correction 280 'I to give the proper
I(I+1) dependence. It therefore follows that SCC2
must not be used with the RPA, since this correc-
tion would then be counted twice.

The special case when c =0 is a very interesting
limit, for one finds that SCC1+RPA is then exact.
In this limit, the "phase transition" is complete-
ly discontinuous. The 6 0 solution as obtained
from the gap equation (2.24) is just 6 =2GQ, for
u &2GQ, while 6 =0 for v &21"Q. Making use of
the results in the Appendix, the total energy (2.53)
for b, 0 is found to be

tive quadratic forms as is obvious from (2.36) and

(2.39}. Therefore, there is always the possibility
of an onset of instability and the consequent break-
down of the cranking approximation. In particular,
this can occur in the backbending region if the pa-
rameter a is sufficient, ly small. We return to this
point later.

D. Variation after projection of particle number

(j(=Oh p„c(ur, n, ), (2.59)

where 4(e, 6) is the ground state of H „(2.9), for
arbitrary co and 4, X is a normalization factor,
and P„is the usual projection operator to the sub-
space with N particles:

4(P- )
2mi

(2.60)

The parameters v and 6 are then determined by
the condition

(2.61 )

Since self-consistent cranking, or any Hartree-
Bogoliubov approximation, in general violates
symmetries of the exact Hamiltonian, one may
hope to improve the situation by projecting out
from such wave functions the components with the
correct symmetry. As noted previously, the R(8)
model is not suitable for testing angular momen-
tum projection, since the particle angular mo-
mentum is not a constant of motion of the exact
Hamiltonian. On the other hand, particle number
is conserved by H, but not by H ~, and we may
therefore apply particle-number projection, which
has been used by several authors in the backbend-
ing region. " It is of interest to compare the pro-
jection method with the RPA, since both intro-
duce correlations, and the RPA conserves particle
number approximately (to order 0 '} through the
pairing- rotation term.

For optimum results, the variation is performed
after projection (VAPN). To improve the crank-
ing model, the projected wave function g with
particle number E, is given by

(8 RpA
= R + 5 (d

~

where (d is the cranking frequency and 5(d is

(2.56)
analogous to (2.14), and by the variational condi-
tion

5(d = d[g, (zp) + $,(zp)]/dI . (2.57} ega... ((u, n, )/Bb =0, (fixed (d), (2.62)

The moment of inertia HARP„ to this order becomes

(2.58)

where Sp j is defined by

$~„,=(g)H, .„—&uj„+H~+H~ ( g&,

P, being given by

(2.63)

where 8 is the SCC1 moment of inertia.
As a final point in this section, we call attention

to the fact thatH, and H~ are not necessarily posi-

(2.64)

The terms (2.64) are neglected in the cranking
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model, but are taken into account by the HPA,
and have therefore been included in (2.63) in order
to provide a more valid comparison of VAPN and
SCCA + RPA.

The actual energy is not $p j but $,„;., given
by

(2.65)

~e note that if g is replaced by the unprojected
Hartree-Bogoliubov state and the usual factoriza-
tion of the interaction terms is used, then the
above procedure reduces to self-consistent crank-
ing.

The stationary points of $p j are found numeri-
cally as a function of b for fixed e. 8p'„; is eval-
uated using the method of "residuum integrals"
first proposed by Dietrich, Mang, and Pradal. "
This method is applicable when projecting from a,

wave function having the BCS form

4 = Q (U„+V„c~&c—„)i0), (2.66)
p &0

where c„,c &
are fermion creation operators, with

vacuum i0), and U„,V„areoccupation amplitudes
satisfying U„'+7„'= I. The vacuum of H~ has
exactly this form, but the single-particle basis

~ p) = c„~0) is the basis in which the one-particle
density matrix and pairing tensor are in the "ca-
nonical form. " The canonical basis is related to
the a~, b~ basis by a unitary transformation. The
states c„,c—„which are paired in (2.66) are not
time-reverse conjugate states since the term (dj„
violates time- reversal invariance. The pairing is
defined dynamically by the canonical form. The
method of Ref. 16, however, depends only on the
form (2.66) and not on pairing of time-reverse con-
jugate states. Further details on the calculation
of expectation values of one and two-body operators
may be found in Ref. 16.

It can be shown that in the limit e = 0, VAPN
reproduces the exact energies, as is the case for
SCCI + RPA.

III. E2 MATRIX ELEMENTS WITH SCC1+ RPA

In this section, the calculation of quadrupole
matrix elements within the framework'of SCCI
+ RPA is illustrated. Although the R(8) model
serves as a paradigm, the technique is obviously
applicable to more realistic models, and since
it is somewhat novel, it seems worthwhile to go
into some detail.

The electric quadrupole operators have the form

SR(E2,M) =QD~~»SR'(E2, K) =QD„»K'(E2, K),
K

(3.1)

where the operators D'„Kare usually realized as
representation matrix elements of the three-di-
mensional rotation group, and the Sg'(E2, K) are
intrinsic quadrupole operators. The O'„K and
K'(E2, K) are the corresponding operators, but
defined relative to quantization along the x axis
in accord with the classical direction of the angu-
lar momentum. Following Krumlinde and Szymah-
ski, we write

K'(E2, K) = Q, 6», + qQ~», (3.2)

where Q, is the core quadrupole moment, Q,» are
the particle quadrupole operators, and q is a pa-
rameter. The Q,» have been constructed in Hef.
8.".One can then write

K'(E2, K) = Q,'» + qQ~»,

where the core contribution is given by

(3.3)

The particle operators, which satisfy the com-
mutation rules

(3.5)

r„=i—b~b,

I, =b (2I —b b)'", (3.6)

At high spin, these operators can be defined on a
space of functions

iI 4'(bt )I- »
IK)

[ (
.

) ]|gg ~
0) (3.7)

where ~0) is the boson vacuum, and then

dc (3.8)

As shown in Ref. 12, the states ~IK) may be inter-
preted as a representation of the rotor eigenfunc-
tions [ IMK) having M = I, and then 4 = Q + g, the
sum of two Euler angles. The bosons replace the
0 degree of freedom.

Correspondingly, the core operators D~«may
be realized as functions of b, , b, and 4, which

can be easily constructed as linear combinations
of the Q,».

The next task is to transcribe the operators into
the boson representation. First, consider the
transcription of the core operators. Equations
(2.32) express the total angular momentum opera-
tors projected on the intrinsic frame as functions
of bosons b, b . These relations can be interpreted
as the leading order of a Holstei:n-Primakoff re-
presentation given by
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can be obtained from the commutation rules.

[I., D'w»]
,
=&D»»

[6 I~(++ 1)] +N»7 1 y

and the unitarity condition

(3.9)

The remaining coefficients are explicitly as fol-
lows:

q&,"=(3f},)'"e'/(4yE ), q,',"=(30)»e'/(4yE, ),

2A Q(E, +E )
jI4 23

y 86.
"2t "2

De@DII/I. z —5
K

(3.10)

For the BPA, one only requires the linear boson
approximation, and the result is

D' =1 8 ' =(3/I)"'b'

yfy(z, +z ) y+2+ y —
2ty)q() +

+2 (3.15)

P2 (3/I)1/2e-& @b D2 e
—1 4

= (2/I)1»e

D2 (2/I)1/2e-&24b D2 e-&24'

(3.11)

D'-~-» = (-)" 'D~». (3.12)

Closed forms to all orders are given in Ref. 12.
The linear boson approximation to the intrinsic

quadrupole operators is

Q23=

Q21=

Q22 =

(0)
q74 ( 14 14 23 23) y

'q (B12 34) ()2- 1 Q2 I

( Q g +q&2&Bt +p&2&B +q(2&BJ

(2)
p24 24 y Q2-2 Q22 '

(3.13a)

(3.13b)

(3.13c)

The expectation values with respect to the vacuum
of H, ( Q2$ and ( Q»), are given by

e(E, —E )[(E, +E )' —4v']
(SyE,E ~) (3.14a)

(3.14b)

with all other D~~ with M & 0 vanishing in the RPA
order. The D2~~ with M &0 can be obtained from
the relation

P(2) + 2

From (3.1)-(3.5), (3.11), and (3.13), the elec-
tric quadrupole operators in the RPA order are
given by

3}f(E2) 0) = -~2Q. +a Q23 y

3tf(E2, -2)= e-"'(--,' ~Q, +&}Q, ,},
K(E2, -1)= e ' (—,'Q, (3/I)'"(b —bt)

+q[-(3/I)'» (Q„)b+(2/I)"

x(Q..) b'-q'„"(B,', +B„)]),

(3.16)

where Q„and Q, , are given by (3.13). The next
step, of course, is to express (3.16) in terms of
the normal-mode bosons. In the following, we

ignore K(E2, -1) which is responsible for BI=1
transitions. The other transition operators have

the form

3tf(E2 0) =- Q, +&}(Q,o) +&} g g q', &'[X,&(4o) —Y';&(4o)](et, +8„),
a

3tf« — ) =e "'(-2~2Q. +n(Q»).)+e "'q p g f[p,",X„(4o)—q'Jl „(4o)]8,'.
a

+ [qe&JX„(4o)—pe&&& Y„(4o)]8„].

(3.17)

The first two constant terms of SR(E2, 0) give the
static electric quadrupole moment of the yrast
band, while the second term is responsible for
AI =0 transitions involving a change of one phonon.
The operator 3g(E2, -2) is responsible for I I —2

transitions. The first term accounts for the

I

stretched E2 transitions along the yrast cascade,
while the second accounts for transitions involving
a change of one phonon. The B(E2)'s involving a
change in the number of phonons are weaker by a
factor of the order of 0 ' (the order of the RPA
amplitudes squared) compared to the yrast cas-
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cade, which is just the type of selection rule re-
quired to account for the experimental data.

The M=2 matrix elements require some addi-
tional discussion. In general, these have the form

(n'I' &o(I') ~SR(E2, -2) ~nI &u(I) &,

where n collectively denotes the phonon numbers,
I the total angular momentum, and &u(I) the crank-

ing-model angular velocity as a function of I.
Since the rotor wave functions (3.7) have a factor
(2v) "'e", this factor occurs in the wave func-
tion ~nI +&. We therefore see that states having
different values of I are automatically orthogonal.
The operator K(R2, -2) decreases I by two units
in the exponential. However ~(I —2) 4: +(I) so that
the underlying cranking-model states are different.
For example, the transition matrix element along

the yrast line is given by

( n = 0I —2 ~(I —2)
~
3g( E2, -2)

~
n = 0 I &u(I) ) = (--,'v —,g, + q (g» )„)„p„(u&(I—2)

~
&u(I) )„p„

+& Q Q ~~ ~+if( o) —Clyy~g( o)~ RPA(~(I —2)164a I &(I) &Rpg+' ' '
y

(3.18)

where
~
co(I) &ap„is the vacuum corresPonding to a

cranking solution with frequency a&(I). The states
~
v(I) )„p„and~

&u(I —2))„p„arenot orthogonal.
Also, we have that although 6„~+(I)&R~„=O,
ap„((u(I—2) ~e„e0.In general, then, one must
calculate overlap integrals, and not simply be-
tween Hartree-Bogoliubov states, but between the
corresponding RPA vacuum states, which is still
more difficult. However, if I is sufficiently large
and outside of the neighborhood of the phase tran-
sition, one may assume

2) &Rang
=

I +(I)&Rpp ~

Then (3.18) simplifies to

(3.19)

(3.21)

Here, there is no problem with overlap integrals
and everything is determined by the cranking model.

( n = 0 I —2 &u(I 2) ~%(E2,--2)
~
n = 0 I &u(I))

= —2~29, +n (Q» ) (3.2o)

which is determined by the SCC expectation value

(Q»& . The approximation (3.19) is fully consis-
tent with the expansion in powers of I ' which led
us to (3.17).

In the neighborhood of the phase transition, how-
ever, the two vacuum states may have radically
different character —

~
~(I —2) &Rpp may correspond

to an essentially paired state and
~ v(I))Rpg to the

aligned state. In that case, the approximation
(3.19) can be expected to break down. It may still
be a good approximation to simply multiply (3.20)
by the overlap „pp((d(I 2)

~
(d(I) &Rp„but such a cal-

culation is beyond the scope of this paper.
The static quadrupole moment along the yrast

line is given by

IV. NUMERICAL CALCULATIONS

A. Choice of parameters

Because of the size of the matrices to be diag-
onalized, the maximum value of 0 for which exact
solutions could be practicably obtained with our
computing facilities was 0 =4." This means we
were limited to not more than eight particles, a
number significantly smaller than that occurring
in realistic calculations. Since the many-body
methods against which the exact solutions are to
be compared become more accurate as 0 increas-
es, we cannot display these methods in the most
favorable light. Just for this reason, one is all.
the more impressed by the favorable comparison
which emerges.

The degree of backbending is controlled mainly
by the ratio e/(GQ): the smaller the ratio, the
weaker the band mixing and the greater the tenden-
cy to bend back. We have followed the procedure
of keeping G fixed and varying e to control the de-
gree of backbending. Exact solutions were obtained
for 0=3, 6=0.1, a=0.02, and c =0.05, 0.10, 0.15,
and 0.20, and 0 =4, G =0.075, a=0.019736, and
g =0.05, 0.10, and 0.15, which covers the range
from sharp backbending to no backbending and a
smooth transition.

As shown in Ref. 8, the critical angular momen-
tum I, is given by

I, =n --,'+-', (G/a)(n+1}.

The ratio 6/a was fixed by the requirement that
the phase transition occur between I =12-14, in
rough accord with experiment. The values of G

were arbitrarily chosen to maintain about the same
magnitude of ground-state pair correlations as in
Ref. 8.

The salient features emerging from the calcula-
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tions are summarized in some representative fig-
ures and tables.

B. Results of calculations

1. Regions of stability and instability

It is seen from the figures that the yrast trajec-
tories can have several regions of interest. The
simplest picture is provided by the cranking mod-
el, in which the trajectories are composed of two
segments, one with 6 t 0, which may or may not
have a backbending region (depending on the value
of e/GQ), along which 6 decreases and 8 increases
continuously with increasing &' until the intersec-
tion with the 6 =0 segment at some +=&~, corre-
sponding to a cusp. For cu'& co*~, the 6 =0 solution
is unstable and is omitted. The situation becomes
more complicated after adding the corrections due
to the RPA, which tests the stability of the self-
consistent cranking solutions.

The 6 =0 segment is always stable for co'& v*',
but as &- &*, the doubly degenerate pairing vibra-
tion [(A35)j drops to zero frequency, signaling the
onset of the transition from a pair-vibrational to
a pair-rotational scheme. As +* is approached
along the 610 segment, one of the RPA frequen-
cies approaches zero, in addition to the already
present zero-frequency solution corresponding to
the pair rotation. Also, as e* is approached along
either segment, dh(zp)/dI, the derivative of the
zero-point energy with respect to angular momen-

0.4

turn, becomes infinite and therefore so does 4~
defined by (2.57). Therefore, the RPA correction
breaks down completely at the cusp, accounting
for the hiatus in the RPA curves.

The 6 c0 segment can show instabilities since
the RPA quadratic form is not necessarily posi-'
tive. In our calculations, instability was indicated
by an eigenfrequency of H~ passing through zero
and turning imaginary. An unstable region occurs
only along a portion of a backbending part, and only
if the parameter a is sufficiently small compared
to GQ/e. That is, the rotor must be sufficiently
massive and the pairing correlations sufficiently
strong. The unstable region is indicated by a dot-
ted line in the figures. Figure 1, for example,
shows quite clearly that as e is increased for fixed
a and QQ, the unstable region decreases in size.
This instability in the backbending region is the
result of competition between the particles, which
favor increasing I with decreasing 1ar~ (the effect
is proportional to GQ/e), and the rotor, which fa-
vors decreasing I with decreasing

~ &u~ (the effect
is proportional to a ). Figure 2, which is a plot
of I vs ~e~, shows that in the unstable region the
rotor wins out, producing the peculiar "down bend-
ing. " This is to be contrasted with Fig. 3, with
another set of parameters, such that the yrast tra-
jectories are stable everywhere. In this case, I
increases with decreasing angular velocity in the
backbending region. Fortunately, in realistic cal-
culations an external rotor introduced to simulate
a core would normally be small enough to avoid
instability problems of this kind. In fact, in an
ideal calculation utilizing a rotationally invariant
particle Hamiltonian and a sufficiently large single-

0.3.-
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32
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FIG. 1. The gap parameter 6 as a function of angular
speed ~ for SCC2. The discrete points correspond to
integer values of angul. ar momentum. The cranking-
model solutions are unstable al.ong the dashed portions
of the curves.
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FIG. 2. The spin I as a function of angul. ar speed +
for SCC2. The cranking-model solution is unstabl. e
along the dashed part of the curve.
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TABLE I. Yrast energies. The cranking energy 80 corresponds to SCC1. The RPA zero-point corrections h3(zp)
and $4(zp) are listed separately, together arith the contribution to each of the zero-frequency modes. Column 7 lists
the sum $0+ $3(zp)+ $4(zp). Column 8 lists the projected energies $p j and the last column the exact energies.

$3(zp)
Zero mode Total

84(zp)
Zero mode Total SCC1+ RPA Projected Exact

0 -1.3333
2 -1.2955
4 -1.1825
6 -0.9956
8 -0.7380

10 -0.4192
12 -0.1332
14:, -0.1297
16 0.4516
18 0.8389
20 1.2961
22 1.8264
24 2.4316
26 3.1130
28 3.8713

-0.0000
-0.0004
-0.0009
-0.0017
-0.0029
—0.0058
-0.0291
-0,0273
-0.0233
-0.0188
-0.0147
-0.0115
—0.0090
-0.0072
-0.0058

0.0065
0.0255
0.0445
0.0635
0.0818
0.0974
0.0842
0.3518
0.1033
0.1167
0.1320
0.1486
0.1662
0.1843
0.2029

-0.1500
-0.1498
—0.1491
—0.1475
-0.1440
-0.1338

0
0
0
0
0
0
0
0
0

-0.3107
-0.3106
-0.3102
-0.3093
-0.3069
-0.2992
-0.1410
-0.0827
-0.0540
-0.0374
-0,0271
-0.0204
-0.0159
-0.0127
-0.0104

-1.6375
-1.5806
—1.4482
-1.2414
-0.9632
-0.6209
—0.1900

0,1394
0.5009
0.9182
1.4010
1.9546
2.5819
3.2846
4.0638

-1.6392
-1.5822
-1.4496
—1.2424
-0.9633
—0.6183
—0.2304

0.1527
0.5397
0.9705
1.4613
2.0200
2.6506
3.3557
4, 1365

-1.6399
-1.5830
-1.4507
—1.2443
-0.9669
-0.6266
-0.2506

0.1132
0.4884
0.9112
1.3968
1.9519
2.5800
3.2833
4.0628

present work.
For good measure, .we emphasize that the spur-

ious instability itself is not due to the cranking
model, but is an inherent property of backbending.
It would occur with any variational wave function,
such as the particle-number projected wave func-
tion, or, for that matter, with an exact eigenstate
of II. Although the stability aspects were discussed
for the R(8) model, we believe the features hold
for more general cases, but we have no general
proofs at this time.

2. ComparI'son of approximate and exact energies

Since, as was already noted, the VAPN and the
SCC1+RPA energies are both exact in the limit
e =0, it is clear that these two methods will be
superior for very small e (very sharp backbend-
ing), except that the second method breaks down
in a small neighborhood of the cusp. A more real-
istic comparison is provided by the intermediate
case with 0 =4, c =0.1, given in Ta.ble I, which al-
so presents an enumeration of SCC1+RPA contri-
butions. From this, one can see that the zero-

I ~ I i I I I I
'

I I 0 I .
I

I I
I

I
I

I
I $ I

I
I

0.8
0.8—

M 0.6— CU

I~ 0.6—

I

0 4

C@
0.4—

0.2—
0.2—

0.0
0 4

I a I s I a I I I s I I

- 8 I2 I6 20 24 28 32
I

00 i I i I s I i I i I i I s I i I

. 0 4 8 l2 16 20 24 28 32
I

FIG. 6. Yrast excitation energies vs spin I. Symbols
are as foll.ops: , exact; 6, SCC2; &, SCCl+RPA;
0, VAPN.

FIG. 7. Yrast excitation energies vs spin I. Symbols
as the same as Fig. 6. .
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I 20
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Q =4
o = Q,OI97

.0750
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point contributions of the zero-frequency modes
play a very important role. Figure 6 is a plot of
the yrast excitation energies vs I for this case,
while Fig. 7 is a similar plot for the case Q =4,
& =0.15, in which the backbending disappears.

It is seen that all three methods, SCC2, SCC1
+RPA, and VAPN are pleasingly accurate on the
upper and lower branches outside of the transition
region. The least embellished method SCC2 is
also least accurate, especially in the transition
region, although it is asymptotically exact in the
classical limit of large I, where all the methods
eventually converge. The transition region, how-
ever, only encompasses three states or so. Clear-
ly, SCC1+RPA provides a nice improvement with
only a bit more expenditure of time, except for the
failure in the neighborhood of I= 12, due partly to
the pernicious influence of the cusp and partly to
the large amplitude of the pair fluctuations. These
effects, however, present no problem for the
VAPN method, which is quite good all the way
through. It turns out to be very important to in-
clude the contribution (2.64) in the VAPN to achieve
good results. For large I, the absolute energies
given by SCC1+RPA are better than those given by
VAPN.

As e increases so that the backbending disap-
pears, the VAPN method emerges as the best.
SCC is also significantly less accurate with no
backbending than with sharp backbending, which

I 20

I QQ—

40
0

I

0.04
I

0.08
QJ

l

Q. I 2 Q.I6

FIG. 9. Moment of inertia vs square of the angular
speed. The finite difference formula is applied to both
theoretical and exact energies as a function of integer
values of spin. Symbols are the same as Fig. 6.

0.6—

may be a general rule since this result is a conse-
quence of the enlargement of the transition region
in which the two bands are strongly mixed and
zero-point oscillations become important.

The results may also be presented in the popular
way as a plot of the moment of inertia vs angular
speed. But then some ambiguity enters. In one
type of plot, exemplified by Fig. 8, the "theoret-
ical" values of g are plotted as continuous func-
tions of the corresponding value of e, while the
"experimental" values are obtained from the finite

80—

Q 4

60 —.

3
0.2

UJ

40
0

I

0.04
I

0.08
Q] 2

I

O. I 2 O.I6

0.0
FIG. 8. Moment of inertia vs square of the angular

speed. The theoretical values are obtained by differen-
tiating the energy as a continuous function of spin. The
"exact" values are obtained by applying the finite-differ-
ence formula to the exact energies as a function of integer
values of spin. The dashed portion of the SCC2 curve is
unstable. Symbols are the same as Fig. 6.
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FIG. 10. The quasiparticle energies vs anguLar speed.
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difference formulas

&(f) —&(&-2) '
4I-2

1 $(1) —8(r —2) -'
2 4I -2

(4.4)

In actuality, then, one is comparing somewhat dif-
ferent quantities. The alternative is to apply the
formulas (4.4) to both the theoretical and experi-
mental data. As can be seen from Fig. 9, the com-
parison is slightly better. The disadvantage is
that one is presenting an approximation to the theo-
retical 8 vs & curve when the full continuous curve
is known. Perhaps the best way to avoid such
problems is to simply plot the excitation energies
vs angular momentum for all cases.

As a final point connected with energies, Fig. 10
is a plot of the quasiparticle energies defined by
(2.17) as a self-consistent function of the angular
velocity. The plot shows that the lowest quasipar-
ticle energy E, can turn negative for certain val-
ues of +, corresponding to gapless superconduc-
tivity. Moreover, the curve displays an intriguing-
knot when plotted in this way. The occurrence of
this phenomenon is a function of the choice of pa-
rameters. We have found that backbending is
strongly correlated with gapless superconductivity,
as has been suggested elsewhere, but the corre-
spondence is by. no means one-one. ' In particular,
we have found instances of backbending concomitant
with entirely positive values for all quasiparticle
energies. This is no surprise, since the R(5) mod-
el exhibits backbending while completely excluding
gapless superconductivity.

3. Comparison of transition matrix elements

Because of computing limitations, it was possi-
ble for us to calculate exact transition matrix ele-
ments only along the yrast line, and then only for
cases with 0 = 3. Table II is a comparison of the
exact and approximate matrix elements, corre-
sponding to (3.20) and (3.21), with q = 1 and Q, =0.
The approximate matrix elements are not as ac-
curate as the corresponding energies. The break-
down of SCC in the transition region is clearly evi-
dent, but the transition quadrupole moment suffers
more than the static quadrupole moment. This is
just what was expected as a consequence of the ne-
glected overlap integrals in the former case. The
improvement of the approximate static moment
with increasing I is clearly evident, and expected
from the nature of the approximations. Consider-
ing the small number of particles (six), the com-
parison is really quite good. We expect that with
the large number of particles in a realistic calcula-
tion, the cranking model should provide a reliable



12. TEST OF MANY-BODY METHODS ON AN EXACTLY SOLUBLE. .. 1031

and simple method for calculating static moments
of the yrast band, outside of the transition region
and for calculating the yrast cascade, which is a
topic of great current interest.

V. SUMMARY

Qf the three many-body methods tested on the
R(8) model, SCC2, the most simple, is also least
accurate. Nevertheless, it is still a very reason-
able approximation except in the transition region,
but this only encompasses two or three yrast
states. In the classical limit, I- ~, SCC2 be-
comes exact. A significant improvement is pro-
vided by SCC1+RPA, which extends the usefulness
of self-consistent cranking a little further into the
transition region at little extra cost. However, the
RPA correlations do break down over part of the
transition region, owing mostly to the singularity
at the cusp, but also in part to the large magnitude
of the pair fluctuations. In realistic eases, it ap-
pears that the observed "phase transition" is due

mainly to the complete alignment of a single pair
of nucleons in high-j orbitals. ' While the value of
~ is then attenuated, it does not vanish, so that
the cusp does not occur in this region. Of course,
at some higher value of co = ~* for which additional
nucleons align, the blocking effect will cause 6 to
vanish and a cusp will occur. If the pair fluctua-
tions are not too large, the validity of the BPA
may extend beyond the phase transition to & = +*,
and then again for e beyond this value.

The VAPN results are quite comparable to SCC1
+RPA, except in the transition region. Since a
discontinuity in 6 does not occur with projected
wave functions, there is no problem with a cusp.
Thus, the projected energies sail right through the
transition region, although they are relatively less
accurate there than elsewhere. The price one pays
is additional difficulty in computation. In particu-
lar, realistic calculations of transition probabili-
ties would require both angular-momentum and
particle-number projection. The SCC1+RPA meth-
od, on the other hand, provides a simple prescrip-
tion for calculating transition probabilities at hid
spin, not only along the yrast line, but also be-
tween excited states built on the yrast line. One
can then calculate properties of the yrast cascade.
The method can also be systematically improved
by the boson-expansion technique.

Finally, it is perhaps worthwhile to point out
that the exact, that is, group-theory based shell
model calculation is of the order of 100 times
slower than the approximate many-body methods.
A comparison of the accuracy, to say nothing of
physical insight, makes the appropriate choice of
technique in this kind of situation clear-cut.

APPENDIX: DIAGONALIZATION OF H~p~

The details of diagonalizing the quadratic forms
defined by (2.35)-(2.42) are outlined below.

First consider H, . The separation of the zero-
energy mode, defined by (2.44), can be achieved
by the method of Ref. 14. One seeks a variable e
canonically conjugate to (I, —j,)"',

[e, (I, -j,)'"]=f, (Al)

which commutes with the intrinsic bosons 63 63,.
Taking note of (2.46), 6 must satisfy the inhomo-
geneous equation

[HB, e] = -iM3 (I, —j,)'" . (A2)

z = -(,'I)"(E' —cd'-)(DM, )-',
Z„=kcd'(E+cd)(E+2cd)(DM, ) ',
Z„=—kcd'(E —cd)(E —2cd)(DM, ) ',

(A4)

where k is defined by (2.38), and the abbreviation

(A6)

is used. The parameter M, is given by

cd(E —cd )
D + cd(E —cd )

where

D =f(E' —cd') —2k'cd'[(E + cd)(E + 2 cd)'

(A6)

+ (E —cd) (E —2 cd )'] . (A7)

The vibrational frequencies z3, and the phonon
operators (2.47) may be obtained with the usual
BPA techniques. With the notation b, =5, &, =B,2,
53 = B34 H, may be written in the form

1
H, = constant+ g 8„&b,b& + —p(c8, &b, b.&~ +If.c.),

where Q and S are real symmetric matrices. The
equation [H„GJ',] = cd„8„is equivalent to the usual
BPA equations

QX(3v) —CBY(3v) = cd„X(3v),

C8X(3cr) —8Y(3v) = cd~~ Y(3cr) .

From the form of (I, —j,)'", it is obvious that 8
must have the form

e =z(b'+b) +z„(H,', +B„)+z„(a,', +a„).
(A3)

The coefficients of M,9 are obtained by solving
(A2), while the inertial parameter M, is fixed by
the normalization (Al). [It is somewhat easier to
work with H,' =H, ——,'a(f p' —j,'")' rather than H„as
is seen from (2.36).] In any case, one arrives at
the result
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The dimension of the eigenvalue problem can be
halved by the well-known device of adding and sub-
tracting the pair of equations leading to

(& —$)[X(3o)+ Y(3&)] = ~ o[X(») —Y(3&)],
(A6)

(8+$)[X(3o)—Y(3o)] = (u„[x(3o)+ Y(3o)],

and finally

(8+$)(8 —$)[X(3o)+ Y(3o)] = co„'[X(3o)+ Y(3o)],

(8- $)(8+$)[x(3o)—Y(3o)]= ~„'[X(3o)+ Y(3o)].

(A9)

Either one of the two eigenvalue equations (A9),
which only involve a 3~3 matrix, may be solved
for the +„andX+ Y, while (A8) can be used to
provide the complementary combination Xw F' for
&sa ~0

In addition to the zero-frequency solution, one
obtains the roots

with

k = 2(z'+ (o') +4ak'E(z' —2(u')(E' —4(u'),

c =(E' —uP)'+4ak'E(z' —(u')(E'+2(o')(E' —4uP) .
(A11)

The corresponding eigenvectors are given by

-X(3o )((u +(o„)= Y(3o)((u —(u„)= (-,'I)"'K, ,

-X~(3o)(z —(u —(u„)= Y~(3o)(E —(u+(u„)

=k(E —(u)(E+2(u)K, , (A12)

X4(3cr)(E + (u —(u„)= -Y,4(3&&)(Z + (u + (u„)
= k(z + (u)(z —2 (u)K, ,

where X is a normalization factor obtained from
the condition

X'(3o) +X '(3o) +X„'(3o)
—Y'(3o) —Y~'(3a) —Y„'(3o)= 1. (A13)

2 = &[k k (k2 —4c)1/2] (A10)
The zero-point energy $,(zp) is obtained by ex-

pressing H, in the normal-ordered diagonal form

(2.46). The result is

$,(zp) = ,'aII+k'(E+—2&v)'[(E—~)'+uP]+k'(E —2~)'[(E++)'+uP]]

—g ~,g g ~
Y$(3o)

~
4'[I+4k'M'-(E-'+4QP)]M, -'.

a=1
(A 14)

The last term in (A14) is just ——', ((I~/ —j',")'/M, )
( ) denoting the expectation value with respect to
the Hartree-Bogoliubov vacuum. It is a correction
arising from the presence of the zero-frequency
mode.

Next, we take up the diagonalization of H, . The
two cases, 6 f 0 and 6 =0 must be considered sepa-
rately. 1f 6 o0, the identity (2.42) holds and there
is a zero-frequency mode, the pairing rotation,
corresponding to Eq. (2.49). The number operator
in the RPA is given by

then turns out to be

8g2
4 GE2 ' (A18)

The genuine vibrational modes can be obtained
by the same technique applied to H, . However, it
turns out to be more convenient to proceed in a
different manner. First, one observes that in the
space of the B„,B» bosons there exists an obvious
canonical pair of variables commuting with N'"
and p, given by

g2 1/2

N=20+N" =20 — (B~~+ ~B+4B 23+~B).3GE
(A15)

Q~ = 2E (B~4+B~4—B~s —B23),

(A19)

[II4, Q] = IM4 N' '- (A16)

The gauge angle Q canonically conjugate to N'" is
found by solving the equation

Ps —wpz (Bx4 —Bx4 —B2~ Bas) .

It is also convenient to introduce the following
canonical variables:

and has the simple form

+0 -4 2~~ (Bi4 —Bw+&a3 —B23) (A17)

Q~
= 2E4 (B24+B~4),

@2 = IE- (Bis +Bus) ~

P~ =i E+ (B24 —B24) ~

Pa =sz (B,3 —B,~) ~

(A20)

The inertial parameter for pairing rotation 314 This provides a complete set of commuting pairs,
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in terms of which H4 takes the form The zero-point energy is then explicitly given by

1 ' 3

H»= 2E-+2N'" /M»+ —Q P, +—. Q K1/q,.q/,
1'

g»(Zp) = 2E—+—Q (d»a . (A26)

(A21)

where K is a real symmetric matrix defined as
follows:

K11=4E, +3@ QE, (a —2G62y 2),

K» =-3e'Q(E+E )-'"(a+2G~'y-'),

P(6GQ)1/2e2y 2E 1/2E

K22 = 4E '+ 3e'QE '(a —2GA'y '),
K 6(6GQ)1/2e2y2E1/2

K =4' Ey

(A22)

Z, =P C;,q&,

The diagonalization of H, reduces to the simple
task of diagonalizing the potential-energy quadratic
form. This is accomplished by introducing a new

set of coordinates Q and canonically conjugate
momenta 6', where

The contribution of the pairing rotation is

—
2 (N /M»)~= »E—.

The X's and Y's in (2.51) may be obtained in
terms of the C„bycombining the transforma-
tions (A26), (A23), (A20), and (A19). The result
ls:

X„(4v)=-2'(2E, ~„)"'(2E, +(o»„)C„,
Y„(4v)= --,'(2E, (u„)"'(2E,—(u„)C,

X„(4v)=-,'(2E cu„)'"(2E +&a„)C„,
Y„(4v)=--', (2E (u„) '"(2E —(u„)C„,

(A29R)

X„(4o)=-X„(4v)= 2(2Eu)„)1/2(E+(u„)C„,

Y,»(4v) = -Y23(4v) = ~2(2Ea&4 ) '/ (E —v»„)C3

(A29b)

Finally, take the case 6=0. Then, H, breaks
up into two disjoint quadratic forms:

(A23) H, =H, (pp) +H, (ph), (A30)

+a = Q C1aP1,

in terms of which H4 takes the diagonal form

where H»(pp) is the pair-vibrational Hamiltonian
describing the transfer or removal of a pair of
particles, and H, (ph) describes particle-hole exci-
tations. Explicitly, these are given by

3

H» = 2E + 2N'" -/M» +—Q (6'a + (u»a Za ) .
and

H»(pp) =E(B1»B14+B23B23) —GP'" P'" (A31)

(A24)

The diagonalization of the potential energy leads
to the eigenvalue problem

H (ph) =2E„B24824+2E 813B,3+2aj„''

in which P"' is the b, =0 limit of (2.41), and

(e2 + +2 + +e)1/2

(A32)

(A33)
3

2
K;yC;~ =(d4, Ci~ j

f=1
i=12 3 (A25)

I, =(2(u„) '"(8,', +8„),
Pa =2(&»a/2)"'(8»a —8,a) .

In terms of these, H4 takes the form

(A26)

and the kinetic energy is automatically diagonal if
the eigenvectors are normalized. Since the &«'
are roots of a cubic equation, we shall not bother
to write them out explicitly.

The normal-mode bosons 8„,64, may then be
defined in the usual way:

First consider the pair-vibrational branch. Since
N'" = 0 when 6 = 0, there is no zero-frequency
mode. Nevertheless, it is useful to introduce the
following canonical variables analogous to (A15),
(A17), and (A19):

Q3 2 ( 14 B14 B23 B23) &

P3 —
W2 E (B14 —B14—B23 + B23)

Q»= 2 E ( 14 B14+ 23 23)~

P4 = 2E (B14+B14 23 23

When expressed in terms of these variables, H, (pp)
is immediately in diagonal form:

1
3

H4 = 2E + Q ~»a + Q ~»a8»a8»a ~

a=1
(A27)

H»(pp) =-E+2[P3 +P» ++& (Q3 +q» )]

43843 844 44) & (A35)
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where the pair-vibration excitation energy is given
by

GQ 6 +2+) f —2
(dp = 6043 = C044 =E 1 — +

2Q

(A36)

It is clear from the gap equation (2.24) that v~-0
at the transition point from the normal to the su-
perconducting solution, signaling a switch from
the pair-vibrational to the pair-rotational scheme.
The degeneracy in (A36) means that the excitation
energy is equal for the two-particle and the two-
hole transfer processes. Because of the degener-
acy, the operators 84, e„arenot uniquely de-
fined, but we shall not need these in the present
work.

To diagonalize H, (ph), it is convenient to again
perform the canonical transformation (A20). The
result is

H, (ph) = E+—,'(P-,'+P, ')+&(u, Q,'+u Q, '+2vQ, Q, ),
(A37)

where

zg =4E 2 +3gq2QE

v= 3am'Q(E-, E ) ' '.
The quadratic form is easily diagonalized by the

canonical transformation

1'
H, (ph) = -E +—g (6',' + (u„'g,') ) (A40)

where the frequencies are given by

(u„'=-,'(u, +u + [(u, -u )'+4v']"')

and

(A41)

cos'8 =-,' j1+ (u, —u )[(u, —u )'+4v ] "'] . (A42)

The phonon operators may be defined by (A26).
Then (A40) takes the form

1'
H4(ph) = -E +—Q (d4~ + Q C04~8g~84~ .

a=1
(A43)

The X and Y' amplitudes have the form of (A29a)
with cll 22 6) 12 21

From (A36) and (A43), we see that the total zero-
point energy for the 6 =0 case is given by

1
'

$,(zp) = 2E +2 Q (u—„. (A44)

&, = cos 8Q, +singQ, , 6', = cos 8P, + singP, ,

0, =-singQ, +cosgQ» (P, =-singP, +cosgP, .
(A39)

In terms of these variables,
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