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Background: Saturation of nuclear density is a fundamental property of atomic nuclei but in reality, the nuclear
internal density distribution is not uniform, e.g., some nuclei are known to have the so-called bubble structure,
in which the central density is depressed.
Purpose: We aim to unveil the emergent mechanism of the nonuniformity of the nucleon density distributions
for whole nuclear mass regions, generalizing a typical bubble structure.
Method: We systematically investigate the nucleon density distributions using the Skyrme Hartree-Fock plus
Bardeen-Cooper-Schrieffer calculation represented in the three-dimensional Cartesian coordinate space. The
ground states of 1389 even-even nuclei are generated. To quantify the nonuniformity of these density distribu-
tions, a “generalized bubble parameter” is introduced.
Results: We find that the bubble structure appears around the magic numbers, which correspond to the regions
where the s orbit appears near the Fermi surface. The nuclear deformation and pairing correlations strongly affect
the occupation number, but the robust bubble structure of a medium-mass nucleus, 100Sn, is found. We confirm
that the Coulomb force enhances the bubble degree in the superheavy region. The nuclear nonuniformity is
further generalized by the “multilayered” bubble structure, which exhibits some density depression in the internal
regions of the density distributions.
Conclusion: The nonuniformity of the internal density distribution occurs due to the deficiency of the specific
single-particle orbits: the nodal s, p, and d orbits. This is certainly reflected in the density distribution near the
nuclear surface, which can be deduced from proton-elastic scattering.

DOI: 10.1103/PhysRevC.111.014313

I. INTRODUCTION

The saturation of nucleon density is a fundamental prop-
erty of an atomic nucleus, which leads to the empirical nuclear
radius formula, ∝ A1/3, with A being the atomic mass num-
ber. In 1946, Wilson pointed out the nonuniformity of the
internal density due to the electrostatic forces [1]. This con-
jecture was realized by microscopic mean-field calculations:
The single-particle orbits are pushed out by a strong Coulomb
field in heavy-mass nuclei [2,3]. This remarkable character-
istic is called the “bubble” structure, which exhibits a central
depression of the internal density. The emergent mechanism
of the bubble structure has attracted many researchers as it
may be related to the nuclear saturation property along with
the evolution of the shell structure.

In the 1970s, the bubble structure for both light and heavy
nuclei was predicted by mean-field models [4,5]. Subsequent
theoretical research also predicted many bubble nuclei in
medium-mass [6,7], superheavy [8], and hyperheavy regions
[9]. The emergence of the bubble structure is due to the
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lack of the occupation of the s orbit. Possible mechanism
of the change of the s orbit occupation has been discussed
in terms of nuclear deformation, pairing correlations, as
well as the temperature dependence [10,11]. Furthermore,
the correlation between the degree of the bubble structure
and the equation of state (EoS) of nuclear matter was dis-
cussed towards constraining the EoS parameters [12]. The
role of the s orbits for central nuclear density has been in-
vestigated experimentally from the comparison between the
charge density distributions of 206Pb and 205Tl [13]. For
light nuclei, many theoretical studies, including the shell-
model calculation, predicted a significant depletion of the
internal density in 34Si [7,8,14–16]. Evidence supporting the
proton-bubble structure in 34Si was reported experimentally,
indicating smaller occupation number of the 1s orbit than that
in 36S [17].

A systematic investigation of the nuclear spectroscopic
properties is necessary to identify the bubble nuclei on the
nuclear chart. For this purpose, it is quite useful to investigate
the nuclear density distribution near the nuclear surface. It was
shown that the nuclear surface diffuseness defined in Ref. [18]
is closely related to the nuclear spectroscopic properties near
the Fermi level [19,20] and allows one to discuss the bubble
structure [21].
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In this paper, we systematically study the density dis-
tributions of 1389 kinds of even-even nuclei to clarify the
emergent mechanism of the bubble structure in the different
mass regions. In addition to the discussions on the ordinary
bubble structure, we study the “multilayered” bubble (MLB),
which is regarded as a higher-order bubble structure. With this
generalized bubble structure, the nonuniformity of the nuclear
density distributions is quantified for the whole mass region.

The paper is organized as follows. Section II summarizes
the formulations necessary to investigate nuclear density pro-
files. The mean-field model employed in this paper is briefly
explained in Sec. II A. The numerical setup for about 1400
even-even nuclei is shown in Sec. II B. The quantifications
of the internal density depression and the nuclear surface dif-
fuseness are given in Sec. II C. The calculated internal density
depletion is presented in Sec. III. The emergence of bubble
nuclei on the nuclear chart is overviewed in Sec. III A and de-
tails of their structure from light to heavy nuclei are discussed
in Sec. III B. Section III E discusses the MLB structure is a
natural extension of the bubble structure. Finally, the summary
and conclusion are made in Sec. IV.

II. FORMULATION

A. Mean-field model

To obtain the nuclear density distributions for a wide
range of mass regions, we employ Hartree-Fock plus Bardeen-
Cooper-Schrieffer theory (HF + BCS) with Skyrme energy
density functional. To describe various nuclear shapes, the
wave function is expressed in the three-dimensional (3D)
Cartesian coordinate space (x, y, z) [22], which is discritized
in a cubic mesh with �x = �y = �z. The ith single-
particle wave function is represented as 〈x, y, z; σ |φi,τ 〉 =
φi,τ (x, y, z, σ ), where σ and τ denote the spin (↑ and ↓) and
isospin (neutron: n and proton: p) coordinates, respectively.
The intrinsic nuclear density at r = (x, y, z) is calculated as

ρτ (r) ≡
∑
i,σ

v2
i,τ |φi,τ (x, y, z, σ )|2, (1)

where v2
i,τ is the occupation probability of the ith state and

for each τ . The matter density distribution ρm(r) is a sum of
ρn(r) and ρ p(r). The intrinsic density is calculated fully self-
consistently according to HF and BCS gap equations [23]

[h, ρ] = 0, (2)

2εi,τ ui,τvi,τ + �i,τ
(
2v2

i,τ − 1
) = 0, i > 0, (3)

where h and ρ are the single-particle Hamiltonian and nor-
mal density matrix, respectively, and εi,τ is the single-particle
energy of the ith state, which is equal to the value of the ith
pair state in even-even nuclei. �i,τ is a pairing gap parameter.
The procedure of the computations is given as follows: (i)
solve HF equation of Eq. (2) with the normalization condi-
tion; (ii) update the HF single-particle Hamiltonian with the
density Eq. (1) and calculate a single-particle energy of ith
state: εi,τ = 〈φi,τ |h|φi,τ 〉; (iii) solve the BCS gap equation of
Eq. (3) with the single-particle energy and its pairing gap;
and (iv) back to (i) with the updated occupation probabilities.

This iteration procedure is repeated until the total energy is
converged [22,23].

B. Numerical setup

We investigate the nuclear densities of even-even nuclides
with Z = 6 − 118. For Z < 50, we calculate the isotopes
whose neutron or proton chemical potential is higher than
2 MeV to avoid unphysical nucleon gas problems in the
HF + BCS applications [24]. For Z � 50, the isotopes up to
N = 2Z are computed. The total number of the calculated
even-even nuclides is 1389.

In the numerical computations, the mesh size �x and box
size Rcal are taken appropriately depending on the size of
nucleus chosen as: �x = 0.8 fm with Rcal = 12 fm for Z =
6 − 18, �x = 1.0 fm with Rcal = 15 fm for Z = 20 − 80, and
�x = 1.0 fm with Rcal = 20 fm for Z = 82 − 118. Note that
the root-mean-square radius of 354Og (Z = 118) is about 8.5
fm. The Rcal value we adopted is sufficiently large. The SkM∗

[25] parameter set is used as a primary effective interaction
otherwise mentioned.

C. Nuclear density and generalized bubble parameter

Once the converged intrinsic density is obtained, we con-
vert it to the laboratory frame by taking an average over angles
as [26]

ρτ (r) ≡ 1

4π

∫
d r̂ ρτ (r). (4)

For the sake of convenience, we introduce a “generalized
bubble parameter,” G(rτ

min), to quantify the nonuniformity of
the nuclear density distributions including the bubble structure

Gτ
(
rτ

min

) ≡ 	τ
max − ρτ

(
rτ

min

)
	τ

max

, (5)

where 	τ
max is the maximum density in the range from rτ

min
to the root-mean-square radius of the density distribution and
rτ

min is defined as a radial distance at local minima. In general,
a nucleus has multiple rτ

min in which density depression may
occur not only at the center of a nucleus but also in the middle.
When rτ

min = 0 and ρτ (rτ
min) < 	τ

max, it is nothing but the
quantity defined in Ref. [10] and quantifies a central density
depression, namely, the bubble structure. Hereafter, Gτ (0) is
simply denoted as Gτ

B. Figure 1 plots the matter, neutron, and
proton density distributions of 132Sn. The rτ

min 	= 0 and 	τ
max

values are indicated by arrows and open circles in Fig. 1.
The proton density distribution exhibits the central depres-
sion, and its bubble parameter is evaluated as Gp

B = 0.21,
	

p
max = ρ p(r = 3.8 fm). But for neutron, the Gn

B is zero by
definition, as the density distribution does not show the central
depression. In total, the Gm

B is finite, although it is small,
less than 0.05. In this paper, we call this sort of nucleus a
semibubble nucleus, which only has a bubble structure for
neutrons or protons.

As shown in Fig. 1, the density distributions of 132Sn
exhibit some local minima. This MLB structure is indicated
by an arrow for each distribution of Fig. 1. The number of
the local minima excluding at rτ

min = 0 is called a bubble
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FIG. 1. Nucleon density distributions for 132Sn with SkM∗ pa-
rameter set. The matter density distribution is halved for visibility.
The arrows indicate the local minima of the density distributions.
The 	τ

max is indicated by an open circle for each distribution.

multiplicity Mτ
B , which is used to classify the nuclear bubblic-

ity in the present paper. When Mτ
B > 1, the nucleus has the

MLB structure as indicated in the all density distributions of
132Sn (Mn,p,m

B = 1) in Fig. 1, although the neutron density has
no bubble at the central part.

When we discuss the MLB structure, the generalized bub-
ble parameter is denoted as Gτ

MLB and its value is calculated
with the rτ

min, giving the minimum density between its center
and 	τ

max, excluding the value at the origin (rτ
min = 0). For

132Sn, the Gp
MLB = 0.031 and Gn

MLB = 0.044 are calculated
using the densities at rp

min = 2.8 and rn
min = 1.6 fm.

The bubble structure is reflected in the density profile near
the nuclear surface [21]. To quantify it, the nuclear diffuseness
parameter is deduced by introducing the two-parameter Fermi
function,

ρ̃τ (r) = ρ̃τ
0

1 + e(r−R̃τ )/aτ
, (6)

where ρ̃τ
0 is determined by the normalization condition for

given aτ and R̃τ . The diffuseness aτ and radius R̃τ parameters
are fixed by the fitting procedure prescribed in Ref. [18] using
ρτ (r).

III. RESULTS AND DISCUSSIONS

First, the bubble parameters GB are investigated to provide
an overview of the emergence of the bubble structure on the
nuclear chart and then the nuclear density distributions for
specific isotopes and isotones are examined to see the emer-
gent mechanism of the nuclear bubble structure. The effects of
nuclear deformation, pairing correlations, and Coulomb force
on the bubble formation are investigated. Finally, the nuclear
MLB structure is discussed.

A. Bubble structure on the nuclear chart

Figure 2 plots the bubble parameters Gτ
B for (a) neutron, (b)

proton, and (c) matter density distributions. The emergence

FIG. 2. Bubble parameters for (a) neutron Gn
B, (b) proton Gp

B, and
(c) matter Gm

B density distributions on the nuclear chart. The vertical
and horizontal lines denote the neutron and proton magic numbers
(20, 28, 50, 82, 126, and 184), respectively.

of the bubble structure is closely related to the magicity of
neutron and proton numbers as the bubble structure prefers a
spherical shape: The large Gn

B (Gp
B) values are found at around

N = 14, 16, 50, and 126 (Z = 14, 16, and 50) regions. The
proton bubble structure also appears in superheavy (Z > 100)
regions. We see large Gm

B values roughly at four regions; (i)
at N = 14, 16 and Z = 14, 16, (ii) at around Sn isotopes, (iii)
Z < 82, N > 100, and (iv) superheavy regions. The large Gm

B
areas can be roughly explained by the combination of of Gn

B
and Gp

B patterns. The maximum amplitude of Gm
B appears at

100Sn, while Gm
B of 132Sn gets small as the neutron distribution

fills the depressed proton distribution in the internal regions.
To see them more quantitatively, in Fig. 3 we also plot Gτ

B
as a function of the mass number. The GB = 0 regions N ≈
4 − 6, 16–30, and 74–98 in Figs. 3(a) and 3(b) respectively
correspond to the regions where the 1s, 2s, and 3s orbits are
occupied. This antibubble effect was discussed in many pre-
vious studies [2–11]. We see several peak structures between
the Gτ

B = 0 regions. Gp
B is more pronounced than Gn

B because
protons are more deeply bound than neutrons. We will discuss
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FIG. 3. Bubble parameters for (a) neutron, (b) proton, and
(c) matter density distributions as a function of neutron, proton, and
mass numbers, respectively.

the emergent mechanism of the bubble structure for specific
nuclei where the bubble structure is pronounced.

B. Evolution of the bubble structure

The occupation of the s orbits is an essential viewpoint to
understand the emergent mechanism of the bubble structure
[2–11]. In this subsection, the evolution of the nuclear bubble
structure along isotope and isotone chains are discussed in
detail.

1. Bubble structure in the region (i): N, Z = 14, 16

Here we investigate the nuclear density profiles for Si
(Z = 14) isotopes. Figure 4 displays the density profiles, bub-
ble and diffuseness parameters, and occupation numbers of
s states for Si isotopes. Figures 4(a1)–4(d1) show HF + BCS
results, while the results obtained with the spherical constraint
are displayed in Figs. 4(a2)–4(d2). Details for the spherical
constraint calculations are given in Ref. [22]. We see that
the bubble parameters of the spherical constrained HF + BCS
calculations tend to be larger than those of deformed ones
(N = 10, 12, and 14). As pointed out in Ref. [21], the larger
bubble parameter, the smaller diffuseness parameter becomes.

We calculate the occupation number of the specific spherical
single-particle orbit for the deformed states, which is extracted
as

ητ
j (nl ) ≡ (2 j + 1)

∑
i

v2
i,τ

〈
φR

j,τ (nl : r)|φi,τ (r)
〉
, (7)

where |φi,τ 〉 is the single-particle states of the HF + BCS
state and |φR

j,τ (nl )〉 is a reference orbit with the total spin
j, principle and angular momentum quantum numbers (nl)
obtained from the spherical constrained HF calculation.

We obtain the deformed ground states for 24Si, 26Si, and
28Si. For instance, the reference orbit is chosen as a 2s state
with j = 1/2, and ηn

1/2(2s) [ηp
1/2(2s)] are 0.096 (1.052), 0.812

(0.934), and 1.022 (1.374) for 24,26,28Si, respectively. The
occupation of the 2s orbit reduces the bubble parameter and
enhances the diffuseness parameters since no centrifugal bar-
rier exists near the nuclear surface [19]. This behavior is
seen in Figs. 4(a1)–4(d1). When 24Si, 26Si, and 28Si have a
spherical shape, the occupation numbers of s states for neutron
and proton are reduced, while their bubble parameters are
larger and diffuseness parameters get smaller. As the Coulomb
interaction is not large in such light nuclei, we see the
isospin symmetric behavior on the nuclear density for N = 14
isotones.

Next, we focus on the S (Z = 16) isotopes, and their
nuclear density properties are drawn respectively in Figs.
5(a)–5(d). In the present calculation, all the S isotopes are
found to be spherical. The emergent mechanism of the bubble
structure is simpler than that of the Si one. Figure 5 shows the
density profiles, bubble and diffuseness parameters, and the
occupation numbers of 1d and 2s neutron states for Z = 16
isotopes. We see that they have a neutron semibubble structure
for N = 8 − 14. The Gn

B becomes maximum at N = 14, 30S,
because the maximum neutron density 	n

max increases due to
the occupation of the d orbits, and disappears at N = 16, 32S,
since the 2s orbits are occupied. Similarly to the Si isotopes,
the Coulomb interaction is not large in such light nuclei.
We also see the isospin symmetric behaviors on the nuclear
densities between these mirror nuclei.

It should be noted that nuclear deformation does not always
necessarily reduce the degree of the bubble structure. That
depends on the energy position of the occupied and unoc-
cupied s orbits. This relation between nuclear deformation
and diffuseness was discussed in Ref. [27], e.g., the nuclear
deformation may reduce the bubble formation for Si isotopes.
In contrast, the occupation numbers of the s states can be
reduced by the nuclear deformation for S isotopes, where the
proton 2s orbits are already occupied in the spherical limit.

2. Bubble structure in the region (ii): Z = 50 isotopes

Next, we focus on the bubble structure of the medium-
heavy nuclei [region (ii)], the Z = 50 isotopes. Figure 6 plots
the density profiles, bubble and diffuseness parameters, and
occupation numbers of s states for N = 50 − 82 of Sn iso-
topes. The neutron bubble parameter Gn

B is most pronounced
at N = 50 and decreases as increasing N . This can also be
explained by the occupation of the 3s orbit because the excess
neutrons fill the s, d, g shell toward N = 82. The evolution of
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FIG. 4. (a) Density distributions, (b) bubble and (c) diffuseness parameters, and (d) occupation numbers of s states obtained from
[(a1)–(d1)] HF + BCS and [(a2)–(d2)] spherical constrained HF + BCS calculations. Connecting lines for (b), (c), and (d) are plotted as a
guide to the eye.

the bubble parameter is smooth with respect to N , which is in
contrast to that of light nuclei because the s orbit is gradually
occupied with increasing N due to the pairing correlation.
This behavior of the bubble parameters is well reflected in
the nuclear diffuseness parameters. The diffuseness becomes
large while Gn

B diminishes when the s orbit is occupied. In
contrast, the proton bubble is enhanced as the neutron number
increases because the proton 2s orbit becomes more bound
with the neutron excess. The matter bubble behaves as an
intermediate between the neutron and proton ones.

One may think that the bubble formation is related to
the EoS parameter of nuclear matter. To see the interac-
tion dependence, we investigate the correlation between the
bubble and EoS parameters by employing eight standard
Skyrme parameter sets selected by Ref. [28]: SGII [29],
SkM∗ [25], SLy4 [30], KDE0v1 [31], SkT3 [32], SV-sym32
[33], LNS [34], and SkI3 [35]. We take a covariance among
typical EoS parameters and Gτ

B, but no robust correlation
is found in this work. This implies that the nuclear bubble
structure is formed by the fluctuation of the shell struc-
ture rather than the bulk properties. We remark that this
finding is consistent with Ref. [12], in which the central
density lighter than 208Pb carries no information on the EoS
parameters.

We, however, note that the nuclear bubble structure of
100Sn is robust and emerges for the eight Skyrme parameter
sets employed in this paper: Well-developed bubble structure
for proton, neutron, and matter density distributions is pre-
dicted for 100−108Sn. This matter bubble structure is reflected
in the nuclear density profiles near the nuclear surface and
can practically be extracted by using proton-elastic scattering
as prescribed in Refs. [18,21].

C. Bubble structure in the region (iii): Rare-earth elements

The region (iii) corresponds to the rare-earth elements re-
gion. Their bubble structure can basically be explained by a
combination of the mechanisms in regions (i) and (ii). Many
nuclei in the rare-earth region have deformed shapes and the
pairing correlation. Their character plays a role in modifying
the occupation numbers near the Fermi surface, which is re-
flected in the bubble parameters.

D. Coulomb induced bubble structure in the region (iv):
Superheavy nuclei

Earlier study [1] for the bubble structure of heavy or su-
perheavy nuclei pointed out that the repulsive effect of the
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FIG. 5. Same as Fig. 4 but for Z = 16 isotopes. Panel (d) shows
occupation numbers of 1d5/2 and 2s1/2 states for neutron. The num-
bers are obtained by Eq. (7).

Coulomb force enhances the bubble structure. We remark
that, recently, this mechanism was microscopically explained
by the wine-bottled proton mean-field induced by the strong
Coulomb repulsion [3]. To corroborate this, we examine
changes in the internal density by artificially varying the
Coulomb force. Figure 7 displays the density profiles of
346Og. The density distributions obtained by changing the
strength of the Coulomb interaction by ±10% are also drawn
for comparison. As we see in the figure, the internal density
is sensitive to the strength of the Coulomb force, while the
radius at the maximum density is not for 346Og (Z = 118)
case. The Gp

B value is changed by +0.064 (−0.032), which
corresponds to +35% (−18%), for the Coulomb strength
varied by +10% (−10%), respectively. We also evaluated
a case with smaller Z , 270Hs (Z = 108). The effect on the
bubble parameter is less than the 346Og case: The Gp

B value
is varied by about ±20% by the ±10% changes of the
Coulomb strength. The strong Coulomb repulsion is essen-
tial to form the bubble structure in this superheavy-mass
region.

FIG. 6. Same as Fig. 4, but for Z = 50 isotopes. Panel (d) shows
the occupation numbers of 3s states for neutron.

E. Multilayered bubble structure

Through the present analysis of the density profiles on the
nuclear chart, we find the higher order of the nuclear bubble
structure, MLB structure, i.e., depressions of the density dis-
tributions other than the origin. The definition of the nuclear
MLB is Eq. (5) in Sec. II C.

Figure 8 shows the number distribution of nuclear bubble-
multiplicity on the nuclear chart for (a) neutron, (b) proton,
and (c) matter, in which the ordinary single-layered bubble
structure is excluded. Nuclei with more than three density de-
pressions are not confirmed in this work. The MLB structure
appears at A � 40 and at around the magic numbers. This
implies that the shell structure also induces the emergence of
the MLB structure as like the ordinary bubble structure.

Figure 9 shows the generalized bubble parameter Gτ
MLB for

(a) neutron, (b) proton, and (c) matter density distributions as
a function of the mass number. Although the values are, in
general, smaller than the bubble parameters, the characteristic
patterns appear for both neutrons and protons: N, Z = 28,
around N, Z = 50, and N, Z = 82, which correspond to 1 f7/2,
1g9/2, and 1h11/2 closed configuration, respectively.
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FIG. 7. Same as Fig. 1 but for 346Og. The results with varying the
Coulomb strength by ±10% are plotted for comparison.

There is almost no MLB structure in the matter density
distributions in A � 100. The nuclei having the neutron MLB
structure are few in N < 50, and there is no nucleus having
MLB structure for proton at Z < 20. The behavior of Gp

MLB
differs from the others at Z � 82. We see some peak structures
that may come from the shell structure at Z � 60, while it dis-
appears in the heavy-mass region Z � 82 where the Coulomb
force is expected to play a significant role. For Z � 70, the

FIG. 8. Bubble multiplicity Mτ
B for (a) neutron, (b) proton, and

(c) matter, excluding the bubble at rτ
min = 0.

FIG. 9. Multibubble parameters Gτ
MLB for (a) neutron, (b) proton,

and (c) matter density distributions.

mechanism may also be attributed to the Coulomb force.
Figure 9 shows a comparison between Gn

MLB and Gp
MLB.

Actually, the Gp
MLB of the superheavy nucleus (346Og)

is also changed by +0.085(−0.038), which corresponds
to +44%(−19%) for the Coulomb strength varied by
+10%(−10%), respectively.

Figure 10 plots the characteristic proton and neutron den-
sity distributions for (a1) N = 50, (a2) N = 82 isotones and
for (b1) Z = 50, (b2) Z = 82 isotopes, where that well-
developed MLB structure is found. We see some proton
density depressions at 1.5 fm for 78Ni (N = 50) in (a1) and at
2.8 fm for 132Sn in (a2), and some neutron density depressions
at 1.6 and 1.4 fm for 132,140Sn in (b1) and at 2.9 and 2.4 fm for
208,218Pb.

Figure 11 shows the MLB parameters (a) Gp
MLB for N =

50, 82 isotones and (b) Gn
MLB for Z = 50, 82 isotopes. Here

we do not need to worry about the effects of nuclear defor-
mation since all nuclei with N, Z = 50 and N, Z = 82 have
spherical shapes in the present model. Let us first discuss
the proton MLB structure. In N = 50 (N = 82) isotopes, the
Gp

MLB value is peaked at Z = 28 (Z = 50), where the 1 f7/2

(1g9/2) orbit is fully occupied. This MLB structure rapidly dis-
appears with increasing Z . Since these single-particle orbits
are nodeless j-upper orbits, their amplitudes are concentrated
at the surface regions. In fact, the surface region of the proton
density distribution with Z = 28 is highly enhanced compared
to that with Z = 20, as displayed in Fig. 10(a1). The proton
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FIG. 10. Density distributions of (a) N = 50, 82 isotones and (b) Z = 50, 82 isotopes.

density depression at 1.5 fm disappears for Z = 40 as nodal
single-particle orbits such as 2p orbits are occupied, which
has some amplitude in the internal regions. This contrasts the
ordinary bubble structure, in which the s orbit plays a role in
diminishing it.

The same behavior is also found for N = 82 isotones,
though the degree of the MLB structure is not as prominent
as that in N = 50 isotones. The occupation of the 3s and 2d

FIG. 11. Nuclear MLB parameters Gτ
MLB for (a) N = 50, 82 iso-

tones and (b) Z = 50, 82 isotopes.

proton orbits fills the density depressions around the origin
and ∼3 fm. The relatively larger Gp

MLB value at Z = 36 is
considered as a remnant of the Z = 28 MLB structure found
in N = 50 isotones in Fig. 11(a).

For heavier nuclei, the emergent condition of the MLB
structure becomes a little complicated because the pairing in-
teraction plays a role. For the Z = 50 isotopes, the generalized
bubble parameter becomes large due to the occupation of the
1h11/2 states. The Gn

MLB value is peaked at N = 90 because
the pairing correlations induce both 1h9/2 and 2 f7/2 states,
while the 1h11/2 orbit is completely filled at N = 82 if no
pairing correlation is contributed. For the Z = 82 isotopes,
the Gn

MLB value is not very large. The characteristics of the
single-particle orbits are smeared out in such heavy nuclei.
The kink behavior at N = 126 comes from the mixing of
1i11/2 and 2g9/2 orbits, which are essential to account for
the sudden increase of the charge radius as was discussed in
Refs. [36,37].

Since the emergence of the MLB structure is closely re-
lated to the properties of the outermost single-particle orbits,
the generalized bubble parameter is well correlated with the
diffuseness parameters. Figure 12 shows the diffuseness pa-
rameters (a) for the neutron of Z = 50, 82 isotopes, (b) for
the proton of N = 50, 82 isotones, and (c) for the matter of
N = 50, 82 isotones and of Z = 50 isotopes, respectively. For
the occupation of nodeless j-upper orbits, the nuclear surface
becomes sharp as the angular momentum is the highest among
the others, while the occupation of the nodal lower angular
momentum single-particle states diffuses the nuclear surface
[19]. In fact, as displayed in Fig. 12, the peak position of Gτ

MLB
corresponds to the local minima of the diffuseness parameters.
A systematic measurement of the diffuseness parameters is
useful to identify the MLB nucleus along the isotopic or
isotonic chains.

We note that the MLB structure, including the ordinary
bubble structure, is formed by the depletion of the specific
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FIG. 12. Nuclear diffuseness parameters: (a) neutron for Z =
50, 82 isotopes, (b) proton for N = 50, 82 isotones, and (c) matter
for Z = 50, 82 isotopes and Z = 50 isotones.

single-particle orbits. The deficiency of the s orbit induces
the nuclear bubble. As a natural extension of this, the MLB
structure is caused by the depletion of the nodal p or d orbits.
In fact, the degree of the MLB structure is enhanced for the
nuclide with Z = 28, Z, N = 50, and N = 82, which corre-
spond to 2p, 2d , and 3p orbits depletion, respectively. Nuclei
with MB = 2 in Fig. 8 appear when both the 2p and 3d or both
3d and 4p orbits are depleted.

IV. CONCLUSION

We have systematically investigated the nonuniformity of
the internal density distributions of nuclei for the whole nu-
clear mass region, 1389 even-even nuclei with from Z = 6
to 118, using the HF + BCS model represented in the 3D
coordinate space. The nuclear deformation and pairing cor-
relation are taken into account. To quantify the depressions
of the nuclear density distributions, we introduce the gener-
alized bubble parameter to evaluate both the ordinary bubble

structure and the MLB structure, which exhibits some depres-
sions in the density distributions at r 	= 0.

We discussed the bubble structure categorized into the fol-
lowing four mass regions: (i) at N = 14, 16 and Z = 14, 16,
(ii) at around Sn isotopes, (iii) Z < 82, N > 100, and (iv)
superheavy elements. The emergence is correlated with the
vacancy of the s orbits, which is strongly affected by nuclear
deformation and pairing correlations.

We show that in light nuclei, e.g., N, Z = 14, 16, the nu-
clear shape plays a decisive role in determining the occupation
of the s orbit, leading to the sudden emergence of the bubble
structure. This spectroscopic information is reflected in the
density profiles near the nuclear surface.

For N, Z = 50 nuclei, the pairing correlation plays a role
and induces the gradual evolution of the nuclear bubble struc-
ture. We find that its pronounced bubble structure of 100Sn,
which is robust, as it appears, with all the Skyrme density
functionals employed in this paper.

For the region (iii), the emergent mechanism can be ex-
plained by a combination of the ones for the regions (i) and
(ii). For the superheavy elements (Z > 100), we show that the
strong Coulomb force assists the nonuniformity of the density
distributions.

As an extension of the bubble structure, the MLB struc-
ture is investigated systematically on the nuclear chart and
is found in a wide nuclear mass region. The proton den-
sity distribution of 78Ni shows a typical MLB structure,
having a local minimum at rp

min 	= 0 in the density distri-
butions. We show that the emergence of the MLB structure
is correlated with the occupation of nodeless j-upper orbits
because the nodeless j-upper orbits are concentrated at the
surface regions that can attract the nucleons in the internal
regions.

The nuclear nonuniformity appears due to the lack of spe-
cific single-particle orbits, which are the nodal s, p, and d
orbits. Therefore, the degree of the nonuniformity may depend
on a structure model employed, since each model has the
difference of the single-particle states. Nevertheless, some
nuclei exhibit robust bubble or MLB structure, which does
not depend on the effective interaction employed in this pa-
per. Determining the spectroscopic information is interesting
to quantify the degree of the nonuniformity of the nuclear
density distributions. Even if such a direct measurement is
difficult, the nonuniform internal density is reflected in the
density profiles near the nuclear surface, which can be ob-
served by proton-elastic scattering measurement [18].
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