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Tritium β decay and proton-proton fusion in pionless effective field theory
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The Gamow-Teller and Fermi matrix elements, 〈GT〉 and 〈F〉, respectively, for tritium β decay are calculated
to next-to-leading order (NLO) in pionless effective field theory in the absence of Coulomb interactions and
isospin violation giving the leading order predictions 〈GT〉0 = 0.9807 and 〈F〉0 = 1. Using an experimentally
determined value for the tritium β decay GT matrix element, the two-body axial current low energy constant
is fixed at NLO yielding L1,A = 6.01 ± 2.08 fm3 at the renormalization scale of the physical pion mass, which
agrees with predictions based on naive dimensional analysis. The impact of L1,A on proton-proton fusion is also
discussed. Finally, the consequences of Wigner-SU(4) spin-isospin symmetry are considered for the Gamow-
Teller matrix element.
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Introduction. The simplest nuclear system that offers an
experimentally clean probe of the axial current is tritium β

decay. Due to the small difference in the 3H-3He binding
energies (∼764 keV), tritium β decay near threshold can be
described quite naturally in pionless effective field theory
[EFT(/π )], which has been used to great success in the descrip-
tion of two- and three-body nuclear systems (see Refs. [1,2]
for reviews). Kong and Ravndal [3,4] used EFT(/π ) to cal-
culate the pp → de+νe cross section to next-to-leading order
(NLO), but were constrained by the unknown two-body axial
current low energy constant (LEC) L1,A. To next-to-next-to-
leading order (NNLO), Ref. [5] showed that νxd → npνx

and ν̄ed → nne+ were also limited by the uncertainty in
L1,A. Precise knowledge of these processes is important for
determining the total flux of neutrinos from the sun in the
Sudbury Neutrino Observatory experiment. L1,A also appears
in the process μ−d → nnνμ, which will be measured in the
upcoming MuSUN experiment [6,7].

Tritium β decay is a superallowed process that is pre-
dominantly given by the Gamow-Teller (GT) and Fermi (F)
matrix elements. It is also of inherent interest as a detailed
analysis of the tail end of its spectrum can give the mass of
the antineutrino [8] and potentially give evidence for sterile
neutrinos [9–11].
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Using the formalism of Ref. [12], this letter calculates the
GT and F matrix elements of tritium β decay to NLO in
EFT(/π). Isospin invariance is assumed and Coulomb inter-
actions are neglected but their contribution is estimated to
be small. Such effects can be treated as perturbative correc-
tions and making these assumptions removes the need for an
additional Coulomb dependent isospin breaking three-body
force correction [13,14]. The experimentally determined GT
matrix element is used to fit L1,A at NLO. In addition, the
consequences of Wigner-SU(4) spin-isospin symmetry [15]
on the GT matrix element are explored, the order at which
three-nucleon effects will become important for the axial cur-
rent is discussed, and the impact of L1,A on proton-proton (pp)
fusion is given.

Lagrangian and two-body system. The Lagrangian for
EFT(/π ) including the weak axial and vector currents in the
dibaryon formalism is given by

L = N̂†
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0 + H.c., (1)

where t̂i (ŝa) is the spin-triplet (spin-singlet) dibaryon, ψ̂ is
the isodoublet three-nucleon field, Â−

k is the leptonic axial
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FIG. 1. Diagrams for the LO three-nucleon axial and vector form
factors. The zig-zag represents the one-body axial or vector current.

current, and V̂ −
0 is the temporal component of the leptonic

vector current. The strong interaction parameters are fit using
the Z parametrization [16], which at leading order (LO) fits
to the nucleon-nucleon (NN) scattering 3S1 and 1S0 poles and
their residues at NLO, yielding

y2 = 4π

MN
, �t = γt − μ, c0t = (Zt − 1)

MN

2γt
,

�s = γs − μ, c0s = (Zs − 1)
MN

2γs
, (2)

where γt = 45.7025 MeV (γs = −7.890 MeV) is the 3S1

bound state (1S0 virtual bound state) momentum and Zt =
1.6908 (Zs = 0.9015) is the residue about the 3S1 (1S0) pole.
Three-body parameters � and ω

(n)
{t,s}0 are fit to the 3H bind-

ing energy [17] and Pi = 1√
8
σ2σiτ2 (P̄a = 1√

8
τ2τaσ2) projects

out the spin-triplet isosinglet (spin-singlet isotriplet) combi-
nation of nucleons. The Pauli matrix τ+ is normalized such
that τ+ = −(τ1 + iτ2)/

√
2 and the one-nucleon axial (vector)

coupling is gA = 1.26 (gV = 1). The two-body axial current
LEC l1,A in the dibaryon formalism is related to the traditional
L1,A coupling in Ref. [18] via

l1,A = −MN

4π
�t�sL1,A + gA

2

(
c0t

�s

�t
+ c0s

�t

�s

)
,

l1,V = gV c0s. (3)

The additional terms in l1,A and l1,V are induced by the co-
ordinate transformation relating the nucleon formalism to the
dibaryon formalism. l1,V is entirely predicted by other known
LECs and contains no new two-body vector current LEC.

GT and F matrix elements. The half-life of 3H β decay t1/2

is given by [19]

(1 + δR) fV
K/G2

V

t1/2 = 1

〈F〉2 + ( fA/ fV )g2
A〈GT〉2 , (4)

where 〈F〉 (〈GT〉) is the Fermi (Gamow-Teller) matrix ele-
ment and other parameters are given in Ref. [19].

In the absence of Coulomb interactions and assuming
isospin invariance, the axial and vector form factor can be
calculated using Ref. [12]. In the limit Q2 = 0, the axial
(vector) form factor gives the GT (F) matrix element. The
axial (vector) form factor is given by the sum of diagrams in
Fig. 1 where single lines are nucleons, double lines dibaryons,
triple lines three-nucleon systems, circles three-nucleon ver-
tex functions, and zig-zag lines the axial or vector current.
Details of how these diagrams and the three-nucleon vertex
functions are calculated can be found in Refs. [12,17]. The

TABLE I. Values of coefficients for the LO weak form factor
used in Eq. (6).

Form factor a11 a22 b11 b12 b21 b22 c11 c12 c21 c22

F GT
W (Q2) − 1

3 − 1
3

5
3

1
3

1
3

5
3 0 2

3
2
3 0

F F
W (Q2) 1 − 1

3 1 1 1 − 5
3 0 0 0 4

3

LO GT (F) matrix element is given by

Fχ

W,0(Q2 = 0) = 2πMN
(
�̃0(q)

)T ⊗ f0(q, �) ⊗ �̃0(�), (5)

where

f0(q, �) = 2πMN

{
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c11 + a11 c12

c21 c22 + a22

)
+ h(q, �)

×
(

b11 − 2a11 b12 + 3(a11 + a22)
b21 + 3(a11 + a22) b22 − 2a22

)}
,

(6)

g(q, �) = π

2

δ(q − �)

q2
√

3
4 q2 − MN B

, (7)

and

h(q, �) = 1

q2�2 − (q2 + �2 − MN B)2
. (8)

χ is GT (F) for the axial (vector) form factor. The function
�̃0(q) is related to the three-nucleon vertex function [17]. Co-
efficients a11, b11, c11, etc., in Eq. (6) come from projecting out
the one-body axial or vector current for each of the diagrams
in the doublet S-wave channel giving the values in Table I.
B = 8.48 MeV is the triton binding energy.

The NLO correction to the axial (vector) form factor is
given by the diagrams in Fig. 2 where diagram (d) is the
l1,A (l1,V ) term for the axial (vector) form factor and diagram
(e) is subtracted to avoid double counting from diagram-(a)
and its time reversed version. In the limit Q2 = 0, these

FIG. 2. NLO corrections to the axial and vector form factor. The
dashed-boxed diagram is subtracted to avoid double counting and
the box with “1” is the NLO correction to the three-nucleon vertex
function. Diagram (d) for the axial (vector) form factor comes from
the two-body axial (vector) current term l1,A (l1,V ). Diagrams related
by time reversal symmetry are not shown.
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TABLE II. Values of coefficients for the NLO correction to the
axial (vector) form factor used in Eq. (10).

Form factor d11 d12 d21 d22

F GT
W (Q2) 0 1

3 l1,A/MN
1
3 l1,A/MN 0

F F
W (Q2) 0 0 0 4

3 c0s/MN

contributions give the NLO correction to the GT (F) matrix
element given by

Fχ

W,1(Q2 = 0) = 2πMN
(
�̃1(q)

)T ⊗ f0(q, �) ⊗ �̃0(�)

+ 2πMN
(
�̃0(q)

)T ⊗ f0(q, �) ⊗ �̃1(�)

− 4πMN
(
�̃0(q)

)T ⊗ f1(q, �) ⊗ �̃0(�), (9)

where

f1(q, �) = π

2

δ(q − �)

q2

(
c0t
MN

a11 + d11 d12

d21
c0s
MN

a22 + d22

)
. (10)

Coefficients d11, d12, d21, and d22 are given in Table II. �̃1(q)
is related to the NLO correction to the three-nucleon vertex
function [17].

Results. The LO GT matrix element is 〈GT〉0 = √
3 ×

0.9807, while the NLO GT matrix element depends on L1,A.1

Taking L1,A = 0 gives 〈GT〉0+1 = √
3 × 0.8777. Choosing

the renormalization scale μ = mπ , a fit of L1,A to the value
extracted from experiment 〈GT〉exp = √

3 × 0.9511(13) [20]
yields

L1,A(μ = mπ ) = 6.01 ± 2.08 fm3. (11)

This is compatible with naturalness expectations, which pre-
dicts a value of [4]

|L1,A(μ = mπ )| ≈ 1

mπ (mπ − γt )2
= 6.5 fm3. (12)

The pp-fusion rate is given by the matrix element [4]

|〈d; j|A−
k |pp〉| = gACη

√
32π

γ 3
t

�(p)δ j
k , (13)

where Cη is the Sommerfeld factor in Coulomb scattering
and �(p) at threshold to NLO in the Z parametrization is
given by [4]2

�(0) = 1

2
(1 + Zt ){eη − γt app[1 − ηeη�(0, η)]}

− γ 2
t app

γt − μ

MNC(pp)
0,−1

[
L1,A

gA
− MN

2

(
C(pp)

2,−2 + C(d )
2,−2

)]
.

(14)

The value η = αMn/γt , α is the fine structure constant from
quantum electrodynamics (QED), and �(0, η) an incomplete

1The factor of
√

3 comes from a Clebsch-Gordan coefficient.
2 pp fusion in the Z parametrization can be obtained from calcula-

tions in the ERE parametrization by replacing all occurrences of the
effective range ρt with (Zt − 1)/γt . Differences between ERE and Z
parametrization in the 1S0 channel are ∼1% effects [21] and can be
neglected at NLO.

gamma function all arising from Coulomb corrections. The
LECs C(pp)

0,−1, C(pp)
2,−2, and C(d )

2,−2 are given in Ref. [4]. Plugging
in physical values, the NLO Z-parametrization prediction for
�(0) is

�(0) = 2.72 + 0.0087

(
L1,A

1 fm3

)
+ O(12%). (15)

Using the value for L1,A from Eq. (11) gives �(0) = 2.77(33).
Within errors, this prediction agrees with the phenomenologi-
cal value �(0) = 2.65(1) [22].

In the isospin limit and ignoring higher partial waves, the
GT matrix element is given by

〈GT〉 =
√

3 × (PS − PS′/3), (16)

where PS is the probability of the triton wave function
being in the symmetric S state and PS′ is the probability
of the mixed symmetry S′ state [19]. In the Wigner-SU(4)
limit (γt = γs, Zt = Zs), PS′ = 0 and therefore 〈GT〉 = √

3
up to NLO, which is verified numerically. In order to get
〈GT〉 = √

3 at NLO, l1,A is defined by Eq. (3) with L1,A = 0.
In the Wigner-SU(4) limit, the non L1,A term in Eq. (3)
becomes μ independent. Similarly, since there is no isospin
breaking, it is found at LO and NLO that the F matrix element
reproduces the wave function renormalization expression and
therefore 〈F〉0 = 1 and 〈F〉0+1 = 1, in agreement with the
Ademollo-Gatto theorem [23].

The GT matrix element has been calculated previously in
EFT(/π ) with and without Coulomb interactions in Ref. [24].
However, Ref. [24] did not include Coulomb corrections
either nonperturbatively or strictly perturbatively. Rather
Ref. [24], building upon the work of Ref. [13], treated
Coulomb nonperturbatively in the two-body pp subsector and
iterated all three-nucleon diagrams with a single Coulomb
photon exchange. Although correct to O(α) this method
contains an infinite subset of higher order Coulomb cor-
rections and therefore impedes proper error estimates. To
include Coulomb corrections strictly perturbatively (nonper-
turbatively) the approach in Ref. [14] (Refs. [25,26]) can
be used. In addition, when Ref. [24] dropped Coulomb and
isospin breaking terms, they found 〈GT〉0 = √

3. However,
this result is only true in the Wigner-SU(4) limit and Ref. [24]
did not appear to be in the Wigner-SU(4) limit as indicated by
their choice of parameters.

Conclusions. In this work, the Gamow-Teller (〈GT〉)
and Fermi (〈F〉) matrix elements of 3H β decay have
been calculated to NLO in EFT(/π ) in the Z parametriza-
tion ignoring Coulomb and isospin effects. The omitted
Coulomb effects are perturbative corrections approximately of
the size αMn/p∗ ≈6%, where p∗ =

√
(4/3)(MN (B3H + γ 2

t ) ≈
112 MeV is the approximate three-nucleon binding momen-
tum.3 Although Coulomb corrections to the amplitude are
≈6%, their effect on L1,A can be more sizable and is given

3This estimate for the binding momentum differs from previous
estimates that did not include the binding of the deuteron [27].
Previous estimates found Coulomb effects to be slightly larger.
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naively by

�L1,A

L1,A
≈

∣∣∣∣∣
αMN

p∗ 〈GT〉0

〈GT〉exp − 〈GT〉0+1|L1,A=0

∣∣∣∣∣ = 0.80 . (17)

Thus, Coulomb corrections are potentially important for L1,A

and can be included perturbatively as in Ref. [14] or in a
nonperturbative fashion as in Refs. [25,26]. Propagating the
uncertainty due to Coulomb corrections for L1,A, Eq. (17),
through our expression for pp fusion, Eq. (15), leads to a
≈1.5% effect.

At NLO, the two-body axial current LEC L1,A = 6.01 ±
2.08 fm3 was fit to reproduce 〈GT〉exp. In addition, it was
also found that in the Wigner-SU(4) limit, 〈GT〉 = √

3 at LO
and NLO (with values for l1,A solely predicted from two-body
physics), in agreement with analytical predictions and is a
nontrivial check on the calculation. The value for 〈F〉 at LO
and NLO was found to be 1, which is expected due to the
lack of isospin breaking up to NLO and the Adellamo-Gatto
theorem [23]. Finally, using the value for L1,A determined
from 3H β decay, the threshold value for the pp-fusion re-
duced matrix element is �(0) = 2.77(33) with a 12% NLO
EFT(/π ) error estimate.

Outlook. Our calculation in the Wigner-SU(4) limit pro-
vides an essential benchmark for any calculation of 3H β-
decay. L1,A is the only unknown two-body axial current LEC

up to NNLO in EFT(/π ). Thus, in principle with a prediction
of L1,A, the pp-fusion cross section could be determined to
3% with a NNLO EFT(/π ) calculation including Coulomb

corrections. However, our predicted value of L1,A relied on
a fit to 3H β decay at NLO in EFT(/π ). A NNLO EFT(/π )
L1,A calculation of 3H β decay would necessitate refitting L1,A

or adding a perturbative correction. Reference [28] demon-
strated that a NNLO EFT(/π ) calculation of the three-nucleon
magnetic moments requires the insertion of a new three-body
current counterterm. This would imply there is a three-body
axial current counterterm. Therefore, a NNLO calculation of
3H β decay is not possible without fitting this new three-body
axial current counterterm to a new three-body datum. In the
case of χEFT, this would manifest as a three-nucleon meson
exchange current that would give a sizable contribution at
low energies. This also implies that any calculation including
meson exchange must include three-body meson exchange
currents at low energies to make accurate comparisons be-
tween pp fusion and 3H β decay.
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