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PSR J0952 − 0607 and GW170817: Direct multimessenger constraints on neutron star
equation of state through a novel wide-ranging correlation
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Our knowledge about neutron star (NS) masses is renewed once again due to the recognition of the heaviest
NS PSR J0952 − 0607. By taking advantage of both mass observations of supermassive neutron stars and
the tidal deformability derived from event GW170817, a joint constraint on tidal deformability is obtained. A
wide-ranging correlation between NS pressure and tidal deformability within the density range from saturation
density ρ0 to 5.6ρ0 is discovered, which directly yields a constrained NS equation of state (EoS). The newly
constrained EoS has a small uncertainty and a softer behavior at high densities without the inclusion of
extra degrees of freedom, which shows its potential to be used as an indicator for the component of the NS
core.
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The equation of state (EoS) of nuclear matter is essen-
tially important for both nuclear physics [1] and astrophysics
[2]. However, the nuclear EoS is still poorly determined, in
particular at high densities or with large isospin asymme-
try. Our knowledge about the nuclear EoS mainly comes
from the properties of heavy nuclei, where their density is
typically limited below the nuclear saturation density ρ0 =
2.8 × 1014 g cm−3 with a relatively small isospin asymme-
try δ. Fortunately, neutrons stars (NSs) are one of the most
compact forms of matter in the universe with central densities
reaching up to 5 to 10 times the nuclear saturation density ρ0

and with very large isospin asymmetry δ which is nearly 1;
i.e., neutrons dominate the nucleonic component of NSs [3],
which provide natural laboratories for studying nuclear matter
under extreme conditions.

Macroscopic properties of NSs, such as masses, tidal de-
formabilities, and radii are totally governed by the EoS of
NSs [4–6], and thus a great deal of information about the EoS
of NSs can be revealed by observations on these properties.
Among them, masses are the most widely observed and thus
the most informative property, especially those of supermas-
sive NSs [7–13], which can efficiently constrain the NS mass
limit Mmax. The recently discovered supermassive NS PSR
J0952 − 0607 [7], with a mass of M = 2.35 ± 0.17 M�, is
the heaviest NS ever known [14]. Combining this discovery
with observations of previous supermassive NSs, a new prob-
ability distribution function (PDF) of NS mass limit Mmax,
which greatly challenges the stiffness of the neutron star EoSs,
is proposed [14]. The discovery of the binary NS merger
gravitational-wave (GW) event GW170817 [15] also opened
a new window to probe the tidal deformabilities of NSs which
are one of the main observables provided by GW signals [16].
It gives a constrained value of a 1.4-solar-mass NS to be
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�1.4 = 190+390
−120(90%). With the ongoing operation of avail-

able GW detectors and the development of the next generation
of detectors, tidal deformabilities are going to be determined
more accurately in the future.

To utilize such observation information to constrain the NS
EoS, the EoS is usually parametrized by different kinds of
parametrizations, such as the Taylor-expansion parametriza-
tion [17,18], the spectral parametrization [16,19–21], and
the piecewise polytropic parametrization [22–26], or con-
structed by different energy density functionals [27–31]. The
corresponding parameters are constrained either directly or
through the Bayesian analysis by the observation information.
Due to the lack of physics information or good correlations
[30,32] between NS observables and EoS parameters, the
uncertainties of the constrained EoS are consequently large.
Furthermore, limited by the computing resources, the un-
avoidable cutoff makes the completeness of parameter space
usually not as good as what is expected. Therefore, it calls
for innovative approaches to constrain the NS EoS in a more
direct way.

To achieve such a goal, the key is to explore the direct
correlations between macroscopic properties of NSs and mi-
croscopic local behaviors. Such studies are rare but with one
exception, where the correlation between NS pressure at twice
saturation density p(2ρ0) and the tidal deformability of a
1.4-solar-mass NS, �1.4, was discovered [27,30,33]. If this
correlation were universal for a wide density range, the bridge
between NS observations and the EoS would be built directly.
Therefore, we will explore the universality of this correlation
and investigate the possibility to constrain the NS EoS through
such a bridge.

In order to adopt more observation information into the
above constraint, one also needs to build correlations be-
tween different NS observables and tidal deformability. Our
knowledge of masses of supermassive NSs are relatively

2469-9985/2024/110(1)/L012801(6) L012801-1 ©2024 American Physical Society

https://orcid.org/0009-0002-9558-8662
https://orcid.org/0000-0003-1029-1887
https://ror.org/01mkqqe32
https://ror.org/01mkqqe32
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.110.L012801&domain=pdf&date_stamp=2024-07-22
https://doi.org/10.1103/PhysRevC.110.L012801


L. GUO AND Y. F. NIU PHYSICAL REVIEW C 110, L012801 (2024)

abundant, and recently the supermassive NS PSR J0952 −
0607 updated our knowledge of the NS mass limit again.
The correlation between the NS mass limit Mmax and the tidal
deformability �, although still insufficiently studied [34,35],
allows us to convert the abundant mass information into tidal
deformability, which can be further used to constrain the EoS.
In this work, we propose a novel approach to constrain the
NS EoS directly through a wide-ranging correlation between
the pressure of the NS and tidal deformability, which at the
same time considers the updated information of NS masses.
Furthermore, the confidence level of the yielded EoS is
obtained through the PDF of each involved quantity, which
overcomes the shortage of uncertainty analysis in the previous
correlation studies.

In this work, we use 16 EoSs of NSs assuming a crust
governed by the Baym-Pethick-Sutherland + Baym-Bethe-
Pethick (BPS+BBP) model [36,37] and a pure npeμ NS
core from 16 nucleonic effective interactions, including 9
nonrelativistic ones, MSL0 [38], SGI [39], SIV, SV [40],
SKa [41], SkM [42], SLy0 [43], KDE0 [44], and SAMi [45],
as well as 7 relativistic ones, DD-ME2 [46], TW99 [47],
PKA1 [48], PKDD [49], PKO1 [50], PKO2, and PKO3 [51].
These interactions are chosen under no specific considera-
tions except to ensure their variety; hence, the yielded results
can be considered as general as possible. With the obtained
EoS, the Tolman-Oppenheimer-Volkoff equations [4,5] and
NS tidal deformabilities [6] can be solved and yield the data
set {pi(ρ); Mi

max; �i
1.4}, with pi(ρ) being the ith EoS, and Mi

max
and �i

1.4 being the NS mass limit and the tidal deformability
of a 1.4-solar-mass NS corresponding to the ith EoS. We
have verified that all quantities involved in this work are not
influenced by the choice of the crust EoS, and all results in
this work are stable under a moderate change of the members
or the size of the interaction pool.

As shown in the main panel of Fig. 1, for the data set
{Mi

max,�
i
1.4}, a good power-law correlation between Mmax

and �1.4 is discovered since {Mi
max,�

i
1.4} can be efficiently

fitted using the power function y = axb with a coefficient of
determination (CoD) of up to R2 = 0.91, which is

�1.4 = 11.5346M4.84693
max . (1)

This fitting only gives the most probable �1.4 values for dif-
ferent Mmax. However, in order to obtain the PDF of �1.4 at
each given Mmax, i.e., P(�1.4|Mmax), one can use Eqs. (A1)
and (A2) in Appendix A and the corresponding results are
shown in shades of red with the color bar in Fig. 1(a).

Considering the fact that the observations of masses of
supermassive NSs are relatively abundant compared to the
poorly known tidal deformability, the discovered correlation
with R2 > 0.9 makes it reliable to use P(�1.4|Mmax) as a
converter from the information of Mmax to that of �1.4. From
electromagnetic (EM) observations of supermassive NSs,
especially the novel heaviest NS PSR J0952 − 0607, the state-
of-the-art distribution about the NS mass limit P(Mmax|EM) is
extracted in Ref. [14], which is shown in Fig. 1(b). Combining
this result with P(�1.4|Mmax), the following integration,

P(�1.4|EM) =
∫

dMmaxP(�1.4|Mmax)P(Mmax|EM), (2)

FIG. 1. (a) Tidal deformability of a 1.4-solar-mass NS, �1.4, vs
the NS mass limit Mmax, given by 16 different effective interactions
(blue dots). The corresponding fitted line �1.4 = 11.5346M4.84693

max

with a CoD of R2 = 0.91 is plotted with a solid line. The PDF of
�1.4 for each Mmax, P(�1.4|Mmax), is denoted by shades of red with
a color bar, from which the 90% confidence interval is obtained
and its boundaries are denoted by blue dashed lines. (b) The PDF
of the NS mass limit P(Mmax|EM) constrained by the NS mass
observations taken from Ref. [14] is shown. (c) The yielded PDF
of �1.4 P(�1.4|EM) through the correlation between �1.4 and Mmax

[see Eq. (2)] is shown.

yields the distribution P(�1.4|EM), which is shown in
Fig. 1(c) as well as in Fig. 2 with the red dash-dotted line.
The 90% confidence interval of this distribution gives �1.4 =
675+543

−188.

FIG. 2. The PDF of the tidal deformability of a 1.4-solar-mass
NS, �1.4, constrained by different messengers. P(�1.4|EM) con-
strained by supermassive NSs is denoted by a red dash-dotted line
with the 90% confidence interval as �1.4 = 675+543

−188. P(�1.4|GW)
constrained by GW170817 is denoted by a blue dashed line which
reproduces �1.4 = 190+390

−120 [16]. The joint distribution P(�1.4|Joint)
combining both messengers is denoted by a black solid line, with the
90% confidence interval as �1.4 = 576+262

−135.
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Besides the above yielded constraints on �1.4 from the ob-
servation of NS masses, the direct constraint on �1.4 from the
NS merger event GW170817 is also known, which is �1.4 =
190+290

−120 [16]. In order to get a PDF of �1.4 that reproduces
this constraint, we follow the procedure given in Ref. [52],
which is also shown in Appendix B, and the corresponding
result is shown in Fig. 2 with the blue dashed line. We notice
that these two PDFs of �1.4 are quite different. The EM-
derived Mmax pushed higher by the newly discovered NS PSR
J0952 − 0607 prefers larger tidal deformabilities, resulting
in a quite different PDF compared with the well-known one
from GW170817. The larger tidal deformabilities preferred
by NS mass limit compared to that given by GW170817
calls for more observations of NS mergers to constrain tidal
deformabilities. As two independent constraints, we use the
following joint distribution to combine the information from
both messengers,

P(�1.4|Joint) ∝ P(�1.4|EM)P(�1.4|GW), (3)

which gives the black solid line in Fig. 2, with the 90% confi-
dence interval being �1.4 = 576+262

−135. Both bounds of this joint
result are much higher than those constrained by GW170817,
due to the influence of P(�1.4|EM). Due to P(�1.4|GW) from
GW170817, the upper bound of the 90% confidence interval
of the joint result is much lower than that of P(�1.4|EM).
Therefore, the joint distribution gives a comprehensive con-
straint on �1.4 with information from both messengers being
considered.

In order to convert the observation information of �1.4 to
the EoS, one needs to investigate correlations between the
macroscopic properties of NSs and quantities in the EoS.
Here, we find a surprisingly strong linear correlation between
�1.4 and the pressure p(ρ) at each specific density in the
range of ρ0 to 5.6ρ0 with CoDs of R2 > 0.81 (in the lin-
ear case R2 = r2, with r being the Pearson’s coefficient), as
shown in Figs. 3(a) and 3(b). In particular, the correlation
at density ρ = 1.6ρ0 has the largest CoD of R2 = 0.992.
These good correlations allow us to constrain the EoS of
NSs directly. Following the same procedure in Fig. 1, we
can first obtain the PDF of pressure p(ρ) at a given �1.4,
i.e., P(p(ρ)|�1.4), using Eqs. (A1) and (A3) in Appendix A.
Then combining the observation information P(�1.4|Joint)
[shown again in Fig. 3(c)] with the converter P(p(ρ)|�1.4), the
integration

P(p(ρ)|Joint) =
∫

d�1.4P(�1.4|Joint)P(p(ρ)|�1.4) (4)

yields the PDF of pressure p(ρ) at each specific density ρ,
i.e., P(p(ρ)|Joint) [shown in Figs. 3(d) and 3(e)], which gives
exactly the NS EoS under multimessenger constraints.

By making ρ vary continuously, we can obtain a con-
strained NS EoS after connecting the bounds of 90% (50%)
confidence intervals of P(p(ρ)|Joint), shown as a light (dark)
red band in Fig. 4. For comparison, the constrained EoS in
Ref. [16], obtained through spectral parametrization taking
into account the GW170817 mass configuration and the NS
mass limit Mmax > 1.97M�, is also shown with green bands.
It can be seen that our constrained EoS has a remarkably
lower uncertainty compared to that of Ref. [16]. At lower

FIG. 3. Pressure at different densities ρ = ρ0–2.0ρ0 [panel (a)]
and ρ = 2.0ρ0–5.6ρ0 [panel (b)] p(ρ ) vs tidal deformability of a
1.4-solar-mass NS, �1.4, given by 16 different effective interac-
tions (open circles). The linear fitted lines and the corresponding
90% confidence intervals are shown by solid lines and shaded ar-
eas, respectively, with the CoD R2 on the top of each fitted line.
The joint PDF of �1.4, P(�1.4|Joint), is shown in panel (c). The
yielded PDF of pressure at each density P(p(ρ )|Joint) through the
correlation between p(ρ ) and �1.4 is shown in panel (d) for the
density range ρ = 1.0ρ0–2.0ρ0 and in panel (e) for the density range
ρ = 2.0ρ0–5.6ρ0.

densities (ρ � 1.6ρ0), our EoS prefers the upper bound of
that in Ref. [16], but at higher densities (ρ � 4.0ρ0) our EoS
prefers their lower bound. It means that our EoS shows a
stiffer behavior at lower densities and a softer behavior at high
densities.

The observation information from GW170817 and the NS
mass limit are used to constrain the EoS in both our work
and Ref. [16]. However, in Ref. [16], the NS mass constraints
of Mmax > 1.97M� given by the 1σ lower mass bound of
the previous heaviest NS PSR J0348 + 0432 discovered in
2013 [10] is considered, while in our work the state-of-the-art
Mmax distribution P(Mmax|EM) given in Ref. [14] including
the novel heaviest NS PSR J0952 − 0607 is adopted. In order
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FIG. 4. The NS EoS p(ρ ) under different constraints. The light
(dark) red shades denote the EoS constrained by P(�1.4|Joint) con-
taining information from both the GW event GW170817 [16] and the
EM observations on supermassive NSs [14] with 90% (50%) confi-
dence intervals. By replacing the NS mass limit to a distribution of
Mmax ∈ [1.97M�, 3M�], the constrained EoS with a 90% confidence
interval is given by violet dashed lines. For comparison, the con-
strained EoS with a 90% (50%) confidence interval from Ref. [16]
is also shown by the light (dark) green shades. Some representative
densities are marked by gray dotted lines.

to exclude the effect of different observation information, we
replace P(Mmax|EM) with the uniform distribution Mmax ∈
[1.97M�, 3M�] whose lower bound is the same as that of
Ref. [16]. Here, the upper bound is a conservative estimate
of Mmax, which has a small impact on the result due to
the extremely small P(�1.4|GW) values at high �1.4 values.
The corresponding 90% confidence interval of the result after
the replacement of the NS mass limit is shown with violet
dashed lines in Fig. 4. It can be seen that the EoS with
the same Mmax constraint as Ref. [16] still shows a similar
behavior as before, just with larger uncertainties. It means
that although our EoS is obtained under the pure npeμ core
hypothesis, it still prefers stiffer NS EoSs at lower densities
and softer ones at higher densities with the same information
considered, compared with that in Ref. [16], where no hy-
pothesis on NS components is made. It tells us the nucleonic
interaction is able to give softer behavior at high densities
without the inclusion of extra degrees of freedom, and this
phenomenon has the potential to be used as an indicator for
the components of the NS core.

Furthermore, our constrained EoS has a much smaller un-
certainty than that of Ref. [16] even with the same observation
information considered, due to the innovative constraining
method making use of the newly discovered p-�1.4 correla-
tion. It shows that the p-�1.4 correlation is verified not only
as a quick converter but also as an efficient constraint on the
EoS. With the inclusion of more advanced observation infor-
mation, the uncertainty of the EoS is further reduced from
violet dashed lines to the light red region, which shows the

importance of new observations, and the new observation in-
formation could be efficiently transferred into the EoS through
our constraining method. Therefore, our method could serve
as a useful converter between future advances in observation
of NSs and the EoS.

In summary, we proposed a novel method to constrain the
NS EoS through the linear correlation between the pressure
of the NS at each density and the tidal deformability of a 1.4-
solar-mass NS based on various density functionals including
both relativistic and nonrelativistic ones. Apart from the tidal
deformability constraints from GW170817, the observation
information of the NS mass limit, especially the novel NS
mass limit given by NS PSR J0952 − 0607, is also transferred
to the constraints on tidal deformability through the corre-
lation between them. With the efficient constraining method
and the most advanced observation information of NSs, our
yielded EoS has a very small uncertainty, which shows our
method could serve as a useful converter between observa-
tions of NSs and the EoS. The newly constrained EoS shows
a stiffer behavior at lower densities and a softer behavior at
higher densities compared to that of Ref. [16] without the in-
clusion of extra degrees of freedom, which shows its potential
to be used as an indicator for the components of the NS core.

With this adaptable new approach, future development of
observation of NSs can be directly converted to the constraints
on the NS EoS, which will further deepen our understanding
of the EoS as well as the components of NSs.

This work is supported by the National Key Re-
search and Development (R&D) Program under Grant No.
2021YFA1601500 and the National Natural Science Founda-
tion of China under Grant No. 12075104.

Appendix A: Conditional probability distribution function.
The correlation between two data sets (xi, yi ) is modeled by
the function ŷ = f (x) using the least-square method. For a
given x, the y values follow the conditional PDF P(y|x), which
is obtained using a t distribution with degrees of freedom of
n − 2 [53]:

P(y|x) = �
(

n−1
2

)
√

(n − 2)π�
(

n−2
2

)
[

1 + (y − ŷ)2

(n − 2)σ 2Var

]
, (A1)

where �(x) is the Gamma function; σ 2 is the variance of the
population error, which is usually unknown, and it is usually
unbiased estimated by the mean-squared error S2 = ∑

i(yi −
ŷi )2/(n − 2), with ŷi = f (xi ); and Var is the variance of the
fitting model given by the well-known � method [54]. For a
power-law fitting, the model variance is given as

Var[axb]

= x2b
[∑

x2b
i ln2 xi − 2 ln x

∑
x2b

i ln xi + ln2 x
∑

x2b
i

]
(∑

x2b
i ln2 xi

) ∑
x2b

i − (∑
x2b

i ln xi
)2 ,

(A2)

and for a linear fitting, the model variance is given as

Var[ax + b] = nx2 − 2x
∑

xi + ∑
x2

i

n
∑

x2
i − ( ∑

xi
)2 , (A3)
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where n is the sample size, and a and b are model
parameters.

Following the above formulas, for {Mi
max,�

i
1.4}, after

a power-law fitting, the conditional PDF of the tidal de-
formability �1.4 at a given Mmax, P(�1.4|Mmax), is obtained;
and similarly for {�i

1.4, pi(ρ)}, after a linear fitting, the
conditional PDF of pressure p for a specific density ρ

at a given tidal deformability �1.4, P(p(ρ)|�1.4), is also
obtained.

Appendix B: Probability distribution function of �1.4 from
GW170817. In Ref. [16], the GW170817 event gives the
constraints on tidal deformability of a 1.4-solar-mass neutron

star, �1.4 = 190+390
−120. In order to get the PDF of �1.4 which

reproduces this constraints, we use the so-called generalized
β distribution of the second kind (GB2) like Ref. [52] does,

GB2(x; p, q, α, β ) = α(1 + (x/β )α )−p−q(x/β )pα−1

βB(p, q)
, (B1)

with B(p, q) being the Beta function. Here the parameters are
adjusted to be α = 3, β = 170.97, p = 1.02, and q = 0.82 in
order to reproduce �1.4 = 190+390

−120(90%). The resulting dis-
tribution is denoted as P(�1.4|GW) = GB2(�1.4; p, q, α, β ).
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