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Ab initio computations of strongly deformed nuclei near 80Zr
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Nuclei around N ≈ Z ≈ 40 are strongly deformed and exhibit coexistence of shapes. These phenomena have
challenged nuclear models. Here, we perform ab initio coupled-cluster computations of low-lying collective
states and electromagnetic quadrupole transitions of the even-even nuclei 72Kr, 76,78Sr, 78,80Zr, and 84Mo starting
from chiral nucleon-nucleon and three-nucleon forces. Our calculations reproduce the coexistence of oblate and
prolate shapes in these nuclei, yield rotational bands and strong electromagnetic transitions, but are not accurate
for some observables and nuclei. These results highlight the advances and challenges of ab initio computations
of heavy deformed nuclei.
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Introduction. Atomic nuclei in the vicinity of the neutron
deficient nucleus 80Zr have a rich and interesting structure;
they are often strongly deformed [1,2], exhibit shape co-
existence and mixing [3–6], and pose a difficult task to
nuclear models [7–18]. The energy ratio R4/2 ≡ E (4+

1 )/E (2+
1 )

and reduced electromagnetic quadrupole transition probabil-
ity B(E2) ≡ B(E2; 2+

1 → 0+
1 ) highlight the emergence of

deformation around N ≈ Z ≈ 40 [2,4,19–22]. In particular,
there is a transition from oblate ground state shapes in
68Se and 72Kr [3,20,23,24] to prolate ones in 76Sr and 80Zr
[1,2,7,8,10,16,22,25]. These nuclei also exhibit coexisting
shapes. Beyond mean-field calculations, for example, pre-
dicted that 80Zr has five nearly degenerate nuclear shapes [13].
In 72Kr, there is mixing between oblate and prolate shapes
within the ground-state rotational band [5,26].

Thus, these nuclei provide us with unique phenomena to
test nuclear models and methods. So far, shape coexistence
and deformation in the heavy N ≈ Z region have been studied
using mean-field methods [2,8,10,13,22,27] and large-scale
shell model computations [11,12,16,21,28]. Although these
calculations have guided and interpreted experiments, the data
clearly challenge the theory. In 80Zr, for instance, the mean-
field computations [13,29] overpredict the B(E2) [2], and
several calculations yield a spherical (and not a deformed)
ground state [15,17,18]. The recent high-precision mass mea-
surement of this nucleus revealed a large deformed shell
gap which nuclear models find difficult to explain [27]. This
makes it interesting to see how ab initio methods fare in this
region of the nuclear chart.

Ab initio computations have advanced tremendously in
recent years, see Refs. [30–34] for examples and Ref. [35]
for a recent review. In this Letter, we compute nuclei around
80Zr ab initio, following the interpretation of this expression
by Ekström et al. [36] as “to be a systematically improvable
approach for quantitatively describing nuclei using the finest
resolution scale possible while maximizing its predictive

capabilities.” We study the structure and electric quadrupole
transitions of the nuclei 72Kr, 76,78Sr, 78,80Zr, and 84Mo based
on chiral nucleon-nucleon and three-nucleon forces.

Our calculations start from axially deformed Hartree-Fock
states, and we calculate the energy using single reference
coupled cluster theory [37–39]. The broken rotational sym-
metry is then restored through angular momentum projection
[40–43]. This approach captures both short- and long-range
correlations [44]. As we shall see, the ab initio results
are competitive with those from axially symmetric (beyond)
mean-field methods and—like those—are also challenged by
the data. The calculations of this paper target nuclei that are
about twice as heavy as the deformed neon and magnesium
nuclei in the first island of inversion [45,46] that were recently
computed with ab initio methods [33,38,44,47–49]. This is a
significant step forward in mass number for ab initio compu-
tations of deformed nuclei.

Methods. We start from the intrinsic Hamiltonian

H = T − Tc.m. + VNN + V3N , (1)

where T and Tc.m. are the total kinetic energy and that of
its center of mass, respectively. For the two-nucleon (NN)
interaction VNN and three-nucleon (3N) interaction V3N we use
the chiral interaction 1.8/2.0(EM) [50], which yields accu-
rate ground-state energies and spectra of light, medium, and
heavy mass nuclei [30,31,33,51–54]. The NN interaction is
calculated in the harmonic-oscillator basis with spacing h̄ω

and single-particle energies up to Nmax h̄ω; the 3N interac-
tion is truncated to excitation energies of three nucleons up
to E3max = 28h̄ω. The 3N forces were generated with the
NUHAMIL code [55]. To overcome the computational cost re-
garding the large number of 3N matrix elements, we used the
normal-ordered two-body approximation [56–58], modified
for deformed nuclei as follows [59]. First, we performed a
spherical Hartree-Fock calculation with the three-body force
using a fractional filling of the orbit(s) at the Fermi surface.
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The three-body force is then normal ordered with respect
to the Hartree-Fock vacuum and truncated at the two-body
level. In a final step the normal-ordered Hamiltonian is trans-
formed back to the harmonic oscillator basis. The ensuing
Hartree-Fock and coupled-cluster calculations are based on
this normal-ordered two-body interaction. They are described
below.

We performed axially symmetric Hartree-Fock compu-
tations using the Hamiltonian H ′ = H − λQ20, where Q20

introduces the quadrupole deformation and λ is a Lagrange
multiplier. We followed Ref. [60] to determine λ for a given
mass quadrupole deformation 〈Q20〉. This allowed us to map
out a potential energy surface (which is the Hartree-Fock
energy of the Hamiltonian H at a given deformation 〈Q20〉).
Each local minimum of the energy surface represents a
distinct deformed configuration of the nucleus, and the cor-
responding Slater determinant is the reference state used for
coupled-cluster computations. We need to account for short-
range (dynamical) and long-range (static) correlations [44].
We included the former via coupled-cluster with singles and
doubles (CCSD) computations [61] and the latter via symme-
try restoration [43,44]. This last step allowed us to compute
rotational bands. We computed B(E2) using the method de-
veloped in Ref. [44].

Results. The middle part of Fig. 1 shows the unpro-
jected Hartree-Fock energies of 80Zr in the vicinities of four
minima. The oblate, spherical, prolate, and larger prolate min-
imum have deformation parameters β2 ≈ −0.17, 0.0, 0.33
and 0.46, respectively. Here we obtained β2 from the mass
quadrupole moment 〈Q20〉 via β2 ≡ √

5π〈Q20〉/(3AR2
0) with

R0 = 1.2A1/3 fm [62]. It is interesting that the number and
shapes of local Hartree-Fock minima computed with chiral in-
teractions are consistent with the mean-field calculations [13].

The lower part of Fig. 1 shows coupled cluster results
obtained at each minimum that include estimated energy
contributions from triples excitations and angular momentum
projection. Uncertainties come from model-space truncations.
The energy from triples excitations is accurately estimated
as 10% of the CCSD correlation energy [37,44,63,64], the
contribution from angular momentum projection was obtained
from a projected CCSD calculation in a smaller model-space
Nmax = 6, and the model-space uncertainties are estimated as
the difference between the Nmax = 10 and Nmax = 12 of the
unprojected CCSD results. The coupled-cluster calculations
show that the spherical configuration is lowest in energy and
slightly overbinds 80Zr when compared to data [27]. However,
within uncertainties it is not possible to unambiguously iden-
tify the ground-state shape between oblate, spherical, prolate,
and larger prolate. Details are documented in Fig. 9 of the
Supplemental Material [66].

The upper part of Fig. 1 shows how the different Hartree-
Fock minima form a Nilsson diagram. The spherical state is
a result of N = Z = 40 harmonic-oscillator shell closure. The
oblate configuration is obtained mainly from the inversion of
{2p1/2 ↔ 1g9/2} for both protons and neutrons at the Fermi
surface. In the Nilsson diagram, the prolate states are from
the level crossing, i.e., {2p1/2 ↔ 1g9/2, 1 f5/2 ↔ 1g9/2} and
{2p1/2 ↔ 1g9/2, 1 f5/2 ↔ 1g9/2, 2p3/2 ↔ 1g9/2} for the first
and second prolate state, respectively. We also found an even

FIG. 1. Quadrupole constrained Hartree-Fock energies for dif-
ferent shapes in 80Zr (green, gray, blue, and red lines show oblate,
spherical, prolate, and larger prolate configurations, respectively,
for model-space sizes as indicated). Coupled-cluster results that in-
clude estimated energy contributions from triples excitations and
angular momentum projection are shown in the lower part for the
corresponding Hartree-Fock minima. Uncertainty estimates reflect
model-space truncations. The horizontal gray dashed line shows the
recent high-precision mass measurement of 80Zr [27]. The upper
panel illustrates the Hartree-Fock single particle energy (eHF

sp ) around
the Fermi surface as a Nilsson diagram with lines connecting the
energies at the minima to guide the eye.

more deformed “superprolate” shape at Q20 ≈ 940 fm2 (β2 ≈
0.58) with {2p1/2 ↔ 1g9/2, 1 f5/2 ↔ 1g9/2, 2p3/2 ↔ 2d5/2}.
However, this deformation gave a too large B(E2) and a too
compressed rotational band compared to the data, and we will
omit it in this work.

We performed similar calculations of the nuclei 76Kr,
76,78Sr, 78Zr, and 84Mo. Here again, the coexistence of various
shapes results from the competition between the N = Z = 40
harmonic oscillator shell closure and the intruding 1g9/2 and
2d5/2 orbitals. The convergence of the energies of different
shapes is documented in Fig. 9 of the Supplemental Material
[66]. We find that method uncertainties make it difficult to un-
ambiguously identify the lowest energy, i.e., the shape of the
ground state. This makes it interesting to see how the spectra
and values of B(E2) can be used to distinguish between the
different shapes.

Figure 2 shows the calculated rotational bands in 72Kr,
76,78Sr, 78,80Zr and 84Mo and compares them to data. The

L011302-2



AB INITIO COMPUTATIONS OF STRONGLY … PHYSICAL REVIEW C 110, L011302 (2024)

FIG. 2. Excitation energies of 72Kr, 76,78Sr, 78,80Zr, and 84Mo from the projected coupled cluster (CC) and projected Hartree Fock (HF)
calculations for model spaces of size Nmax. The uncertainty is estimated based on varying the harmonic oscillator frequency h̄ω from 10 to 16
MeV. Experimental data are from [65].

angular-momentum projection in coupled cluster theory is
expensive and restricted to Nmax = 6 for spectra and Nmax = 8
for the B(E2)’s. Spectra from angular-momentum projections
of axially symmetric Hartree-Fock states are well converged
in such spaces, see Fig. 6 of the Supplemental Material
[66]. As collective rotational phenomena are mainly related
to long-range physics this suggests that the model spaces
are large enough for the computation of rotational bands.
In 80Zr, the spectrum agrees with that found for the larger
prolate minimum.

For 72Kr, the computed spectrum suggests that the ground
state and its rotational band are oblate deformed. In reality,
the situation is more complicated because oblate and prolate
bands mix in this nucleus [3,5,20,24]. We probed the mixing
of different reference states in a generator-coordinate method.
On the mean-field level, where we can assess such mixing, we
see no evidence for it. In effective theories of nuclear defor-
mation, mixing between two bands with identical K quantum
numbers is a higher-order effect [67]. Thus, one needs pairs of
levels with identical spins in two bands to be close in energy.

L011302-3
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FIG. 3. B(E2; 2+
1 → 0+

1 ) values for the N = Z nuclei from 72Kr
to 84Mo. The values for mirror nuclei 78Sr and 78Zr are also illus-
trated. The uncertainty is estimated based on the basis parameter
h̄ω, ranging from 10 to 14 MeV. Experimental data are from
Refs. [2,19,22,24].

In our case, the pairs of oblate and prolate 0+ states and 2+
states are about 1 MeV and 0.8 MeV apart, respectively. This
is probably too large a separation. From this perspective, the
mixing observed in 72Kr [5] has some accidental character.

In our calculations, the mirror nuclei 78Sr and 78Zr both
exhibit two deformed Hartree-Fock minima and similar rota-
tional bands. For 78Zr (78Sr), Delaroche et al. [29] found 2+
and 4+ states at 0.27 and 0.74 MeV (0.30 and 0.79 MeV),
respectively. Although our projected Hartree-Fock results are
close to these and the data in 78Sr, the coupled-cluster spectra
are too compressed. For 84Mo, Delaroche et al. [29] found
2+ and 4+ states at 0.54 and 1.20 MeV, respectively, and
this is close to data. Our coupled-cluster results for the oblate
deformation agree with these results.

With the exception of molybdenium, our projected
Hartree-Fock results appear easier to match with data than
the projected coupled-cluster ones. We can only speculate
about possible shortcomings in our computations. First, we
are limited to axial symmetry. Any static triaxial deformation
or γ softness cannot be captured with our present limitation.
Second, in the angular-momentum projection we approxi-
mate a product of the rotation operator and the exponential
cluster-excitation operator as a new exponential including up
to two-particle–two-hole excitations [40,43,44]. The inclusion
of three-particle–three-hole terms is beyond our computa-
tional abilities because those amplitudes lack axial symmetry
and require too large memory demands. Although this approx-
imation was accurate in light nuclei up to mass number 34
[44], it is otherwise hard to assess its precision.

We turn to the reduced transition strengths B(E2) as an-
other measure of nuclear deformation. Figure 3 shows the
B(E2) values for nuclei computed in this work and compares
them to the data. The coupled-cluster results of 72Kr and 76Sr
agree with the data. The B(E2) of 78Sr and 80Zr suggest
that the prolate state is the ground state. The larger-prolate
configuration reproduces a relatively correct spectrum but too
large B(E2). The B(E2) values of the mirror nuclei pair 78Sr

FIG. 4. Spectrum of 80Zr (Exp.) compared to the coupled-cluster
(CC) results of this work, and to the results from Delaroche et al.
[29], Rodríguez and Egido [13], and Kaneko et al. [16]. B(E2; 2+

1 →
0+

1 ) values fare also indicated.

and 78Zr, shown in Fig. 3, agree within uncertainties for both
deformations.

Figure 4 compares the data for 80Zr with the results from
this work and other models. Clearly, this nucleus is chal-
lenging, and the results by Delaroche et al. [29] are overall
closest to data. We continue the comparison of our ab initio
approach with other models and compiled data in Table I.
Here, we singled out the beyond-mean-field computations by
Delaroche et al. [29] in column 4 and showed results from
other computations in the last column. The main point is here
that our calculations reach an accuracy that is comparable
to other nuclear models. We also want to get a sense on
how our results depend on the chosen interaction. We remark
that, although 1.8/2.0(EM) interaction underestimates nuclear
radii [51,52,68], it does not significantly underpredict B(E2)

TABLE I. B(E2; 2+ → 0+) values (in units of e2fm4) from ex-
periment, this work, Delaroche et al. [29], and other references for
various nuclei. The values reported under “This work” are those pre-
sented in Fig. 3 and reflect the shapes and deformation as indicated
there.

Nucleus Exp. This work Ref. [29] Other

80Zr 1910(180)a 1713+111
−183 2323 3900b

3044+143
−274 2540f

78Zr not known 2040+118
−220 2504

2927+155
−288

78Sr 1840(100)a 2108+121
−211 1989 2291f

2519+125
−228

76Sr 2390(240)a 2444+145
−248 2350 2175f

72Kr 810(150)c 1012+36
−50 819 763d

999(129)e 1403+84
−775 1097f

aRef. [2]; bRef. [13]; cRef. [24]; dRef. [69]; eRef. [20]; fRef. [16],
with effective charges adjusted to B(E2).
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FIG. 5. Double mass difference δVpn (top), two-proton shell gap
δ2p (bottom), and two-proton/neutron separation energy S2p,2n (in-
sets), from FRDM [70], HFB-24 [71], our coupled-cluster (CC)
computations, and the DFT, Bayesian model, and experiment-plus-
extrapolation (Exp.+Extra) results from Ref. [27]. The coupled-
cluster uncertainties are estimated based on the harmonic oscillator
frequency h̄ω, ranging from 10 to 16 MeV. The experimental data
are from Ref. [72].

values [44]. For example, our B(E2) examination of the larger
prolate shape (〈Q20〉 = 737 fm2) in 80Zr, calculated in a
model space of Nmax = 8 and h̄ω = 12 MeV, yields a value
of 3044 e2fm4. The �NNLOGO [73] interaction, which more
accurately reproduces charge radii, yields a B(E2) value of
3449 e2fm4 at the larger prolate minimum (〈Q20〉 = 859 fm2),
see Fig. 8 in the Supplemental Material [66]. The difference
between the B(E2) and 〈Q20〉 values for the two different
interactions is consistent with the difference in charge radii
[73,74]. We note the rotational band is more compressed
for the �NNLOGO interaction, consistent with expectations
from 〈Q20〉.

Finally, we revisited the mass anomaly near N = Z = 40
region reported by Hamaker et al. [27]. That work showed
that theoretical approaches struggle to reproduce the four-
point mass difference δVpn = 1

4 [B(N, Z ) − B(N − 2, Z ) −
B(N, Z − 2) + B(N − 2, Z − 2)] and the two-proton shell gap
δ2p = 2B(N, Z ) − B(N, Z + 2) − B(N, Z − 2). Here, B(N, Z )
is the binding energy of a nucleus with proton number Z and
neutron number N . To extract δVpn and δ2p at N = Z = 40,
one needs the masses of 76Sr, 78Sr, 78,80Zr, and 82Mo (which
we also calculated, see Fig. 9 in the Supplemental Material
[66]). As only 76Sr, 78Sr, 80Zr have been measured, Hamaker
et al. [27] used extrapolated masses for 78Zr and 82Mo.

Figure 5 shows our extracted δVpn and δ2p. Our results
are consistent with previous calculations from Ref. [27]
using the finite-range droplet mass model (FRDM), the

density functional theory (DFT), as well as Bayesian analysis
based on these models. All theoretical results of δVpn and
δ2p deviate from those derived from data and extrapolated
masses. Additional measurements for 78Sr and 82Mo are
required to confirm this anomaly.

Considering the separation energies, data are available for
the two-proton separation energy S2p = B(N, Z ) − B(N, Z −
2) in 80Zr, and the two-neutron separation energy S2n =
B(N, Z ) − B(N − 2, Z ) in 78Sr. The inset in Fig. 5 shows our
CCSD results for S2p and S2n, and as can be seen they are
smaller then data. This discrepancy might be due to miss-
ing correlations in the CCSD approximation, the employed
interaction, and the normal-ordered two-body approximation
of the 3N interaction.

Discussion. On the one hand, ab initio computations
can now describe shape coexistence in nuclei with mass
numbers of about 80. On the other hand, they lack the
precision to unambiguously determine nuclear ground-state
shapes. This difficulty exists because the 1% uncertainties
in the total energies for different shapes are larger than
the small differences between them. As is documented in
the literature [75–77], nuclear energy functionals could be
facing similar problems (though model-space uncertainties
were not reported in Refs. [13,29]). Schunck et al. [76],
for instance, showed that the model-space dependence of
the ground-state energy increases from less than 1 MeV in
40Ca to 7 MeV in 240Pu. Marević et al. [77] showed that
it might be difficult to decide the ground state shape of
50Cr because different bases yield different results. There
is also good news, and we mention two points. First, the
B(E2) values from symmetry-projected computations are im-
proved compared to the valence-space IMSRG where these
are typically too small [47,78,79]. Second, the ab initio re-
sults are of similar quality as from comparable mean-field
calculations.

Summary. We investigated the low-lying collective states
and B(E2) values in the heavy N = Z region using the ab
initio coupled cluster calculations based on axially symmetric
reference states followed by angular-momentum projection.
While we found coexistence between various oblate and
prolate shapes the calculations were not precise enough to
unambiguously identify the shape of the ground states. In
particular, we are unable to simultaneously reproduce the
rotational band and B(E2) for 78Sr and 80Zr. This discrepancy
of theoretical calculations and data in these region remains a
challenge to nuclear theories, and poses the need for further
theoretical development. The computations presented here
provide us with a useful step towards the description of de-
formed nuclei in heavy-ion collisions [80], and for tests of
fundamental symmetries [81].
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